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EXACT BOUNDS FOR THE FORM FACTOR OF K,; DECAY

By L. Tataru*

University of Helsinki**
(Received May 2, 1973)

Assuming the Callan-Treiman and Dashen, Li, Pagels, Weinstein relations, exact
inequalities for the Kj; scalar form factor f(r) and its derivatives have been studied. These
inequalities are too stringent to fit with the experimental data. Only for a very large value
of the propagator 4(0) of the divergence of the strangeness changing current at zero momen-
tum there is a better agreement. Various causes of this disagreement are analyzed.

1. Introduction

Recently, the problem of deriving bounds for the X;, parameters has been investi-
gated by various authors [1, 2, 3, 4, 5]. The key feature is that analyticity of the strangeness
current is used to exploit information above the K|, threshold in order to constrain the
form factor in the experimental decay region. The numerical estimation of the bounds
involves an estimation of 4(0), and the problem has been solved by using the chiral SW(3)
model of Gell-Mann, Oakes and Renner [6].

However, in the above discussion, the Dashen, Li, Pagels, Weinstein [8] relation
was not taken into account. We wish to emphasize that although this sum rule is based
on chiral SW(3) power series perturbation theory, it remains unchanged, as far as numerical
results are concerned, when the non-analytic character of expansion of matrix elements
in the symmetry breaking parameters is taken into account.

The purpose of this paper is to find some rigorous bounds for the X, form factor
valid in the decay region by using the Callan-Treiman relation [7] together with the
Dashen, Li, Pagels, Weinstein relation.

In Section 2 we present our main result. This is a bound involving derivates of the
divergence of the strangeness changing current f(¢) at points ¢ = 0 and ¢ = mZ. In Section
3 we calculate numerical values for the bounds for f(#). For the sake of comparison with
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the present data we consider the case where f(m3) is treated as a free parameter. In Sec-
tion 4 the bounds for A, = m,f(0)/f(0) are given, and a comparison with experimental
data is made.

In Conclusion we discuss the implication of the results for the different hypotheses
that have been made in the derivation. An Appendix is devoted to a proof of the general
inequality for the K;, form factor which has been used in various particular cases in this

paper.

2. Derivation of the general bound

In this section we shall give a very short summary of the general results concerning the
K,, form factor obtained from the Cabibbo theory of the semi-leptonic interaction. Using
these results we may write our main inequality for this form factor.

Let V{*7* be the strangeness changing current. Then the K, form factor f(¢) is
introduced and parametrized in the standard way

IV TPNOIK () = —(Bkopo) (21 {(p+K), S+ (D+ (=R f-(D}, (1)

(1) t
) = - =fi(O+ —2—mzf—(t), 2)

my—m? myg—

where p and k are the momenta of #° mesons and K* mesons respectively, and ¢ = (k- p)>.
The propagator 4(z) is defined as follows

AD) = % [ d*x{0|T(3, V4~ ™(x)0, V4 F5X0)) 10 exp igx, 3)

o

and it is explicitly assumed to obey an unsubtracted Kallen-Lehman representation

. o(thdt
A1) = f el 0
where £, = (m,+myg)* and
o(t) = 1 (2n)> ¥ <010,V *~X0) imd126%(q — g,)- 5

Retaining only the Kr intermediate state form the summation over |r), and using the
positivity of the spectral weight it is easy to show that

+ @
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with ¢, = (mg—m,)>.



363

The Eq. (6) represents our underlying relation. In order to obtain the bounds for
f(r) in the interval (0, #,) we should find a lower bound of the integral

1 " 1 1. 2
= o J dr'(t — )~ T — 1) = 1) () (7

which appears in Eq. (6). By changing the integration variables, this integral may be rewritten

L f dx(x—x0) " % (= D =D S, ®
where
w = (mg—myf(mg+my) = 0.571, ®
Xo = t(mg+my)>. 10)
From Egs. (6) and (A.21) we find
32 A(t) N
3 (PTIK—NTTC) Z (A )l m/l?nv (11)
where
W= p,, (12)
and
p(z) = \/2 \/w_. [l=z+A+2) JT=%o] [1—z+(1+2) JI—02]%, (13)

where z is given by (A.2) and the matrix A is defined in the Appendix.
Now it is easy to recover from Eq. (11) the main results of Refs [1, 2, 3, 4, 5]. If we
choose N =1, z, = z(¢) and n, = 0 then Eq. (11) becomes

A0
3 (mE—-m2)

which represents the bound obtained by Radescu {4]. For t = 0 we may recover from
Eq. (14) the main result of Refs [1,3}. For N=2,n, =n,n, =0,z, =0, z, = z,(mE)
it is easy to show that Eq. (14) is exactly the same as one used by Shih and Okubo [2].

= [1-2’ 0]y O =) (14)

3. A bound for d'(my)

Taking as given quantities 4(0), £(0) and f(m32) and applying Eq. (11)for N=2,n, =0,
n,=1z, =0, z;, = z(nk) = a, and t = 0 we shall find here the best possible bound
(under this given input) for d'(m%) = (mi—m?2) f'(m}).
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Many estimations for 4(0) are given in Ref. {2]. For this reason it is convenient to
write
A¥0) = 1.01m,f M, (15)

where M is a parameter. If we take M = 1 we obtain the value ot 4(U) evaluated by Mathur
and Okubo, using the symmetry-breaking Hamiltonian introduced by Gell-Mann, Qakes
and Renner. All evaluations from Ref. [2] give M smaller than 2.3. For f(0) = £.(0)
we shall take two values f1.(0) = 1 and f1(0) = 0.8], both being in agreement with the
Ademollo-Gatto theorem. f(mz) is given by the Callan-Treiman relation

fmE) = 1.281.(0). (16)
At this point we want to remark that there have been some discussions connected
with this value. Thus in a recent letter [12] it has been argued that the Kemmer-Duffin
formalism, when used to describe pseudoscalar mesons, leads to a more satisfactoty theory
of K;, form factor than does the conventional Klein-Gordon formalism. In particular, the
theory provides the following value for the scalar form factor: f(m2) = 0.53£.(0). How-
ever, Deshpainde and Mc Namee [11] pointed to some difficulties connected with this
formalism. Because of these difficulties we shall not use this result, but this possibility
must be kept in mind.
Eq. (11) in this particular case becomes

32n 40) 1 t—a* (1—-a?® |
;> 4v§+ — 7+ = 7 -

3 (mK—m,,) a
(d-a?? | (1—a2 2 l—a
=231+ 2 ——5 Y170~ 2 —5 YoV1s (17)
a a (l
where
d
Yo = YOL0), 7. = p@fimd), v = (f(z)f”—(i)-) o a—zed ()

The numerical calculations of the bounds obtained for d(mZ) from Eq. (17) are presented
in Table I. We see that the value of d(m) = 0.28 obtained by Dashen, Li, Pagels, and
Weinstein (DLPW) could be compatible with Eq. (17) only if M > 1. But in view of the

TABLE 1
The value of the bounds for d’(m¥k) as function of Mf. ) =1

M 1.2 1.4 1.6 1.8 2.0 2.3 4
d’(m%)m,x — 0.57946 0.62173 0.66565 0.689147 0.734096 0.963744
& (M) min — 0.40442 | 0.362155 | 0.318231 | 0.294738 | 0.249789 | 0.20140

M| a2 14 16 1.8 20 | 23 a
d' (MK max 0.494961 0.535882 0.569960 0.608878 0.630497 0.673787 0.89
A (MK min 0.341341 0.300421 0.266343 0.227424 | 0.205805 0.370543 0.060177
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different evaluations of 4(0) we may say that the DLPW result, in fact, agrees well with
Eq. (17). At any rate, choosing

A*(O) \/" (meK ufn) (19)

as in Ref. [2] we obtain M = 2.3 with very good agreement between DLPW result and
Eq. (17).

If we assume that Eq. (19) is the correct form of 4(0), then the DLPW value does not
contradict Eq. (17). On the other hand, if this is really the case, then it follows that the
parameters a = gg/+/2¢0 and b = <0ug|0)// 2 {0lu|0> (where &g, &, Uy, ug are the quanti-
ties which appear in the symmetry-breaking Hamiltonian introduced by Gell-Mann,
Oakes and Renner H' = gyug+8ggg) satisfy the relation a = b. This is rather hard to
understand since on physical grounds we expect to have g = —1 and b 0.

However, without assuming any specific form for the symmetry-breaking Hamil-
tonian we may estimate the value of 4(0) by uvsing kappa dominance. In this case

= »\-/13 m.f,. = 1.70m_f, (20)
i. e. M = 1.7 for which the DLPW relation still agrees with Eq. (17).

In conclusion we want to emphasize that the DLPW relation can be used together
with the Callan-Treiman relation only if one chooses for 4(0) values given by Eqs (19)
or (20). Insofar as the theoretical calculations for A(0) are still somewhat uncertain, we
might say that the DLPW relation could be compatible with the rigorous unitarity
bound (17).

4%0)

4. Comparison with experiment

In this section we wish to take into account the experimental K;, data. In order to do
this we may write down a bound which contains the value of

ey mK my m:
[ = —f+(0) I:l++ 53 f] (21
1: mg—mg
with
_ 24 _ S0
Ay = mnd—tlogf+(t)it=o, ¢ =70 (22)

This bound is obtained from Eq. (11) by choosing N =2,n, = 1,n, = 1,2, =0, z, = a.
In this case Eq. (11) becomes

L ORI [2(1 a’) (1-a%’ ] :

3 (m/a4 Yo +2 (Po—rvD+ g N Yot
4a*—Ta*+4 , (1-a%»? 2 (a*~3a*+4) (1—a?)

+ + —270)+
25 Yo e "1 2° 71(71—270)

N 22 —a*) (1—a??

p Y1(Po~—71)s (23)
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where
yo = '(0) £(0)+ w(0) £'(0). (24)

At this point we shall take the DLPW relation for granted, and use Eq. (21) to obtain
some bounds for

m2

Ag = Ay + . & 25)
Using Eqgs. (18), (22) and (23) it is easy to write down these bounds. The numerical calcula-
tions are presented in Table II. In order to see how well the experimental data are fitted
we have taken three values for f,(0), disregarding the fact that f.(0) = 0.31 is far from the
value predicted by the Ademollo-Gatto theorem.
The present experimental data concerning the decay parameters are as follows:
Chouvet and Gaillard [I13] report

Ay = 0.045+£0.015, & = —0.854+0.20, A, = —0.02440.015. (26)
X2 Collaboration [14] with fixed A.
Ar = 0.029 as world average value, & = —0.6540.13, A, = —0.024+0.011. (27)
X2 Collaboration [14] with 1, free parameter
Ay =0.06040.019, ¢ = —1.040.5, 4, = —0.022+0.019. (28)

On comparison of the experimental and the theoretical results (see Table 1I) it turns
out that our bounds are too wide to fit the present experimental data, using the present
input. This fact might be roughly explained in the following way. In order to achieve the
value at ¢ = m% for both the function and its slope it is necessary that f(¢) should exhibit
considerable curvature. On the other hand the unitarity condition expressed by Eq. (23)
does not allow such a dip mechanism to explain the fall-off of the data for an accepted
value of M. It can be seen that such a mechanism is permissible only for a very large
value of M.

5. Conclusion

The purpose of this paper was twofold: firstly, to check the compatibility of the
DLPW relation and the unitarity condition (11), secondly, to make a comparison, by
means of Eq. (23), between the theoretical results and the experimental data. It has turned
out that the DLPW relation may be used together with the Callan-Treiman relation and
Eq. (23).

On the other hand, we can say that, from the results of the previous section, our
bounds should not fit with the present experimental data. The main difficulty in recon-
ciling our bounds with the experimental data comes from the Callan-Treiman relation
(and probably the DLPW relation) which requires a dip mechanism to explain the fall-off
of the data. On the other hand, the maximum value for 4(0) allowed seems to be too small.
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However, in the present author’s opinion, it is rather hard to believe that another theory
may give a value for 4(0) which is by a thousandfold larger. The use of a subtracted
dispersion relation for 4(0) has been proposed, but in spite of an additional constant
which cannot be calculated theoretically, it seems improbable that this will reduce such
a large modification.

If the experimental data remains unchanged, the Callan-Treiman relation is the only
one to be considered. Indeed, as we have already mentioned, the Kemmer-Duffin formalism
leads to a value for the scalar form factor in the point ¢ = m : f(mZ) = 0.53 £,(0), which
agrees well with our bounds. However, since there are some difficulties connected with
this formalism, it is rather difficult to use these results.

The author is indebted to Dr M. Whippman for several useful discussions of the
subject of this paper. He would also like to express his gratitude to Professor P. Tarjanne
for the hospitality extended to him at the Institute for Theoretical Physics in Helsinki.

APPENDIX

In this Appendix we derive a general bound for the propagator A4(0). Let I be an
integral of the form

= 2% J (x+a,) (x+a) ... (x+a,)| f(x)|*dx, (A1)
1

where it is assumed that the integral exists and is positive. It is easy to see that an
integral of this form appears in the Eq. (6). Changing the integration variables in (A1)
by the conformal transformation

. 1—z
u=,.,/x—1=1
\/ 14z

(A2)

(which maps the upper and lower sides of the right hand cut in z plane onto the unit circle
z = ¢") one may write

1 ) .
I = 5 Jp(ﬂ)if(e‘“)lzd& (A3)
7
where
p(O) = % jul (> +1) [j] [1+a;+u]™. (Ad)

If we consider the outer function y(z) defined inside the unit circle [z < 1 by

2xr

1 6 etz ) 0
y(z) = exp {3;[ J. o og p( )} s (A5)
0
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then it is easy to verify that

pO) = |p(e*)2. (A6)
The integral in Eq. (A3) may be calculated by using the Jensen-Poisson formula, and
we have

Wz) = J2(L—2)}(+z)" 2 g“ H 1—z+(1+z)/T+a;]™. (A7)

Finally, Eq. (A3) may be written as

1 .
= j |h(e'®)|2do, (A8)

where
h(z) = y(z) A(2). (A9y

Now, the question we want to answer is the following: What is the best lower bound for T
when the values of A(z) and its derivatives are known at some points inside the unit circle.

In order to solve this problem properly it is necessary to introduce some mathematical
notions.

Let 22 be the Hilbert space of all analytic functions inside the unite circle |z] < 1
with boundary values almost everywhere on the boundary and let

1 21! - iONfr
(&f) = P de?g*(e () (A10)

be the inner product of this Hilbert space. Let F be a subset of #2 consisting of all functions
h(z) € #? which satisfy the conditions
dPh(z)

k(p:)(zi) = o

=y#, i=1N, p=0n, (A11)

z=z;

where 7" are some fixed numbers and z; are N points inside the unit circle. The question
presented earlier may now be solved by using the following theorem.
The functional |}hj|?> = (h, h) defined on F has an extremum (in F) if, and only if,

N

h(z) = hy(z) = z Z cieo (”')(z) (A12)
i=1 pi=
where
pi—1
(pi) = p,! _ Al3
#"(2) = pi 1=z (A13)

and C{® are some constants chosen in such a way that /4(z) belongs to F.
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Proof: First of all we notice that

(9", by = h'"(z)). (A14)
If h(z) belongs to F and h(z) # ho(z) then the function
F(z) = h(z)—ho(z) £ 0 (A15)
will have the foliowing properties
F®(z) =0, i=1,N. (A16)
Therefore we may write
A2 = lho+F|1* = {lho|* +1IFI1> = [lholi®. (A17)

The coefficients C®? and the value of ||h,||? are easily calculated by using Eq. (A12).
Defining the matrix

Ay .. Ay
A=1. .o , (A18)
Any .. Ayy
where
Ay = e, i), pi=0,n, p;=0n,, (A19)
one may write [|hy]|? in the following form
HhoHZ = IZ (A_l)t,m?l?m (A20)

where 5 = (32, ..., ¥, 99, ..., 9™ and A.4-' = ]. For all other functions A(z) be-

longing to F we have
”h HZ 2 (A_ l)l,m‘yl'))m' (A21)
I,m
We want to emphasize that the bound (A21) is the best one possible for ||A||? defined
on F.
A particular case, very important in the applications, is one in which n, = n, =
. = ny = 0. Then the matrix 4-' has a simple form

(A Y = H Umzzn) A mzz) gy, (A22)

! (z;—2zm) (2:— 2,)

i#n
It is important to note that all bounds obtained in previous works [I, 2, 3, 4, 5] are,
in fact, special cases of Eq. (A21).
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