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Assuming the geometrical model of particle production, the average multiplicity of
negative particles produced in high-energy proton-proton collisions at fixed impact parameter
is determined from experimental multiplicity distributions and elastic scattering data. The
effects of multiplicity fluctuations and two-component structure at fixed impact parameter
are discussed. The results are compared with the predictions of some simple mechanisms
of particle production.

1. Introduction

In this paper we discuss some properties of the multiplicity distribution in the impact-
-parameter representation. In particular we attempt a determination of the average
multiplicity of negative particles produced in the proton-proton collisions at a given
impact parameter.

The application of the impact-parameter representation to the description of the
multiplicity distributions observed in particle production at high energies was discussed
already by Heisenberg [1] and by Landau [2], in their models of multiparticle production.
A rather complete general discussion of the problem was given by Michejda [3]. Recently,
this idea was used in several papers [4-12] for explanation of the apparent scaling observed
in the multiplicity distributions [13].

The multiplicity distribution is represented by

P(n) = f_fd%a(b)p(n, b), )
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where 0 = [ d?ba(b) is the total inelastic cross-section and a(b) is the total inelastic cross-
-section at impact parameter b. p(n, b) is the multiplicity distribution of particles produced
in the collision at impact parameter b.

Equation (1) is quite general. To derive from it the properties of the distribution
pin, b), further assumptions are needed. In this paper we follow the approach used in the
so-called geometrical models of particle production [4-7], i.e. we assume that, at high
energies, the distiibution p(n, b) is very narrow

d(B)/n(b) ~ 0. (2)

Here d(b) and n(b) are the dispersion and the aveiage multiplicity respectively, at impact
parameter b:

n(b) =Y np(n, b), 3)

n

d*(b) = ¥ [n—n(6))p(n, b). G

In the high-energy limit, the condition (2) follows from the short-range correlation hypo-
thesis applied to the collision at fixed impact parameter, and provides also a simple justi-
fication of the Koba-Nielsen-Olesen [13] scaling. Thus it is likely to be satisfied at least
for non-diffractive collisions which dominate the inelastic cross-section at energies avail-
able at present.

In this paper, using the condition (2), we determine the average multiplicity of negative
particles n(b) from the existing data on multiplicity distributions and on elastic scattering
in proton-proton collisions. The properties of the function n(b) obtained in this way are
discussed and compared to the expectations of some simple models of particle production.

Since the condition (2) is vital for the method of determination of n(b) used in this
paper, it is necessary to investigate the possible corrections which arise if a non-vanishing
width is given to the distribution p(n, b). We considered two possible origins of this effect.

i) At finite energies we do expect the distribution p(n, b) to have a non-vanishing
width even for non-diffractive production. We showed however that, provided this width
does not exceed significantly the one expected from weakly correlated models, it does
not influence the determination of n(b).

i} If the two-component structure of the collisions’ is accepted at each impact param-
eter, the distribution p(n, b) has a non-vanishing width even in the high-energy limit.
However, we checked that under reasonable conditions of diffractive cross-section and
multiplicity distribution, the general features of n(b) are not changed by the presence
of the diffractive component.

Perhaps the most important conclusion from our analysis is that the function n(b)
depends rather strongly on b. This fast variation of n(b) is at the origin of the strong positive
correlations between produced particles. Since this feature does not seem to be significantly
influenced by the presence of the diffractive component of the interactions, we expect
strong, long-range correlations between particles produced in non-

! For the complete list of references on two-component models see, for example, Ref. [14].
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-diffractive interactions. This is to be contrasted with predictions of the two-compo-
nent models of particle production [14].

In Section 2 we describe the determination of n(b). The corrections implied by the
non-vanishing width of the distribution p(n, b) are discussed in Section 3. In Section 4
we discuss the properties of n(b) and compare them with the predictions of several models.
Our conclusions are summarized in the last section.

2. Determination of the average multiplicity

Let us now describe how it is possible to determine n(b) from the data, using the condi-
tion (2). It was shown by Buras and Koba [4] and by Moreno [6] that Egs. (1) and (2)

imply

NE(m) = 2nbae(b) - N s
(m) = — ‘Eﬁ(b) ’ ®)
db |yep,

where b, is the solution of the equation n(b,) = n, and N is the average multiplicity of

the collision
N = g nP(n) = ! j d*bo(b)n(b). (6)
g

f

We observe that the only unknown quantity in Eq. (5) is 1d71(b)/db|,,=bn. Indeed,

i) the function NP(n) = y(z, N), where z = n/N, can be determined from the exper-
imental multiplicity distribution at each energy;

ii) the partial inelastic cross-section a(b) is simply the impact parameter representation
of the Van Hove overlap function [15]

-

F(4) = [ d*be'd () (7

and thus can be deteimined from the measured elastic scattering.
Consequently, Eq. (5) can be considered as a differential equation for n(b):

dw +2nb6(b) 1
db = g w(w)

®

where, for convenience, we denoted w(b} = n(b)/N.

The sign ambiguity in Eq. (8) implies that there are two solutions for n(b). The nega-
tive sign on the right-hand side of Eq. (8) gives n(b) decreasing with increasing &. This
is the so-called “intuitive” solution. It corresponds to the geometrical picture of the
collision in which “central” collisions at small impact parameters lead to the production
of many particles, whereas in “peripheral” collisions at large impact parameters only a few
particles are produced.
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The positive sign on the right-hand side of Eq. (8) gives n(b), which increases with
increasing b. Such a situation arises in simple field-theory models, for example in a multi-
peripheral model.

The solution w = w(b) of Eq. (8) is obtained by integration:

w(b) o

f p(w)dw = éjdzba(b), (9a)
0 b

wi(b) b

J w(w)dw = % j d*ba(b), (9b)
0 o

where Eq. (9a) provides the decreasing solution and Eq. (9b) the increasing one.
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Fig. 1. Average multiplicity n(b) of negative particles produced in high-energy proton-proton collisions as

a function of the impact parameter: (a) decreasing solution, (b) increasing solution. The results were ob-

tained using the overlap function calculated from data shown by Amaldi [17] and the multiplicity distribu-
tion according to fit done by Buras, Dias de Deus and Maoiler [16]

We have performed numerical integration of Eqgs. (9a) and (9b) intheregion 0 < b < 2f
and thus obtained explicitly the two solutions for n(b). They are plotted in Figs la and 1b.
The function y(z, N) was taken from the fit to multiplicity distributions presented recently
by Buras, Dias de Deus and Meller [16]. The partial cross-sections were taken from the
analysis of Amaldi [17].

In the region considered the results are not sensitive to small changes in input data.
To check this, we calculated n(b) taking as input the Czyzewski-Rybicki [18] and Wré-
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blewski [ 19] fits to multiplicity distributions. This does not change the results significantly.
Also, replacing the Amaldi fit to o(b) by that of Henyey er al. [20] does not affect the
curves shown in Fig. 1.2

3. Corrections for non-vanishing width of p(n, b)

The next important problem is to estimate the possible influence of the non-vanishing
width of the distribution p(n, b). To illustrate the kind of effects which may be expected,
let us write the formula for the dispersion of the multiplicity distribution P(n)

D?* = Z (n—N)*P(n) = i—J‘dea(b)dz(b)+ %J‘dzba(b) (n(b)—N)2. (10)
We see that the width of the multiplicity distribution is a sum of two positive terms. The
first of these terms is neglected in the zero-width approximation. Consequently, if a non-
-vanishing width is given to the distribution p(xn, b), its effects should be compensated
by a decrease of the second term in Eq. (10). This would lead to a less steep dependence
of n(b) on b, at least in the region where o(b) is large.

The accuracy of the zero-width approximation (2) depends on the ratio of the

contributions from the two terms in Eq. (10). Assuming a Poisson-like relation d*(b) ~
~ an(b)+ B, we obtain

D? = aN+ ﬂ+7\7‘2% J d*ba(b) (w(b)—1)>. (11)

From the Wréblewski fit to the dispersion [21] we have D = 0.585 (N+0.5) and thus
conclude that

LF 2
o= — | d’ba(b) [w(b)—1]* ~ 0335 and p =~ 0.085.
G

The error in the determination of 1/o [ d%ba(b) (w—1)? is thus (aN+ B)/N?, which is
below 109, at ISR energies, and should decrease with increasing incident energy.
The argument given above indicates also that it should be possible to describe all
observed energy variation of the multiplicity distribution by the ‘“geometrical”’ Ansatz
n(b, s) = N(s)w(b) and Poisson-like distribution at given b.
To obtain a rough idea of how this affects the determination of w(b) we have calculated
w(b) from fits to multiplicity distributions extrapolated to infinite energy, where the

2 The decreasing solution at large b is sensitive to the behaviour of the Koba-Nielsen-Olesen function
¥(z) at small z. In this region data are not good enough to determine y(z) with good accuracy and thus
the same is true for n(b). At extremely small impact parameters the decreasing solution is sensitive to the
behaviour of y(z) at large z, z = 3, where the statistics reached in present experiments are small and,
consequently, the errors are large.

The increasing solution is much better determined. At large b the accuracy is limited mostly by inaccura-
cies in determination of o(b).
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assumption (2) is expected to be exact. The corresponding curves are shown in Fig. 1.
It is seen that they are indeed a little flatter than those obtained for fits at finite energies.
The difference does not exceed a few per cent however. Thus we conclude that the correc-
tions to width are not likely to change our results significantly.
We have also directly fitted the distribution (1) to the experimental data using p(n, b)
in the form of the truncated Gaussian
[ —v(@j}

p(n, b) = Z(b) exp{ —Tay(—b)

=0 for n<9o, 12)

where Z(b) is determined by the normalization condition and ¢ is the parameter responsible
for the width of the distribution (12). For 6 = 0 we recover the condition (2). For 6 = 1,
p{n, b) is close to the Poisson distribution. The function y(b) was fitted to reproduce the
data with 0 being kept fixed. The results of the fitting for the case of the decreasing solu-
tion are shown in Fig. 2, where the function w(b) = n(b)/N is plotted for different values
of 8 and N = 4.3. It is seen that for & < 0.5 the results do not differ considerably from
the ones obtained with condition (2). We feel that 6 ~ 0.5 is perhaps a reasonable guess
if one assumes that, for given b, there are no important dynamical correlations between
pions [22]. Consequently we believe that our results are rather insensitive to the details
of the distribution p(n, b).

1t should be emphasized, however, that it is certainly possible to construct models
in which the behaviour of w(b) is rather different from the one shown in Figs 1 and 2,
and which can still describe well the experimental data®. Our estimate of error was based
on the assumption that the departures from the Koba-Nielsen-Olesen scaling law, observed
at low energies, are mostly caused by a non-vanishing width of the distribution p(n, b).
This seems a natural explanation in geometrical models*; however other effects are also
possible.

3 A simple example is to take p(n, b) = P(n).
41t is interesting to note that the generalized Koba—Nielsen-Olesen scaling law advocaied recently
by Buras, Dias de Deus and Mgller [15] and by Wroblewski [19]

{n—=Ny = CuN-+2)F
is satisfied exactly if the moments of the multiplicity distribution p(u, b) fulfil the following conditions
7(b) = w(b)N,
d3(b) = wr(B)N+22[w(b)— 1713,
wk(0) = Y. In—n(B)Fp(n, b) = 2[w(b)—1]~.
Here w(b) is given by Eq. (8) and

2

b
b) == A ! d?bo(b)wb)—1
wilh) = o | o)1),
1]

If these conditions are satisfied, all corrections to the Koba-Nielsen-Olesen scaling are indeed provided
by non-vanishing of the central moments of the distribution p(n, b).



379

A particularly important effect may arise if the multiplicity distribution has the two-
-component structure at each impact parameter, since in this case the condition (2) is
violated even in the high-energy limit. To estimate possible corrections, some information
on diffractive cross-section and multiplicity distribution of diffractively produced particles
is necessary. We assumed that the partial diffractive cross-section is strongly peripheral and
concentrated at impact parameters around 1, as suggested by the analysis of Sakai and
White [23] and by Henyey [24]. The diffractive multiplicity distribution was taken from
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Fig. 2. n(b) in the model with non-vanishing width of the multiplicity distribution at fixed
impact parameter

experiment at 303 GeV/c [25]. With these assumptions, and using the condition (2) for
a non-diffractive component, it was possible to determine the average multiplicity nyp(b)
of negative particles produced in non-diffractive collisions®. In Fig. 3 nyp(b) is compared
with the decreasing solution at /s = 23.5 GeV obtained in Section 2. We also constructed
the average multiplicity for all collisions, assuming that nye.ci.0(P) does not depend on b.
This last assumption is justified because the diffractive component gives a significant
contribution only in a rather narrow region around 1 [23, 24]. The n(b) determined in this
way is also plotted in Fig. 3.

It is seen from Fig. 3 that the presence of the diffractive component does not influence
n(b) for b below 1f. For larger impact parameters, the curve flattens significantly but the
general picture remains unchanged. The details of the curves shown in Fig. 3 do not

5 The method was the same as described in Section 2. The non-diffractive partial cross-section was
calculated as the difference between the Amaldi fit to the overlap function and the Sakai-White diffractive
partial cross-section. Also a non-diffractive multiplicity distribution was obtained by subtracting the experi-
mental diffractive multiplicity distribution at 303 GeV (smoothed out, to avoid discontinuities) from the
fit of Ref. 116].
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have much significance, because the assumptions on the diffractive component were
rather crude. However, it seems safe to conclude that the presence of the peripheral
diffractive component does not change drastically the impact parameter dependence of
the average multiplicity in the high-energy collisions.

23,5 Gev

Ditfrocctive 4- Non-diffractive
—_————— - ¥ 1
20 N Non-diffractive

10~
0.8

= 06—

fa(b)

Q4i—
031

W(b)

02+

o1 1 1 1 t

bif]

Fig. 3. n(b) in two-component model

4. Discussion

Let us now discuss the behaviour of w(b) as presented in Fig. 1. First, we notice that
there is very little energy dependence. As pointed out above, this energy dependence can
be entirely explained by the corrections due to the non-vanishing width of p(n, b). Thus
we conclude that within the accuracy of our analysis the data are compatible with energy-
-independent w(b) given by the “asymptotic’” curves in Fig. 1.°

Several models make statements about the behaviour of the function w(b). The ge-
ometrical models choose the decreasing solution. In these models, w(b) is usually related
to the “opaqueness” or eikonal (b) defined as

26(b) = 1—e 2P, (13)

To see the relation between w(b) and Q(b) we plotted in Fig. 4 w versus Q. The first observa-
tion is that the “optical” relation [9-11] n(b) = 2Q(b) is not satisfied. Instead, the depen-
dence of w on @ is characterized by a steep rise at small Q followed by a linear increase
over a rather large interval. At very large Q (i. e. small b) there are deviations from this
linear law.

6 The observed energy dependence of o(b) can be approximately taken into account by assuming
that o(b, ) = o[b/R(5)1[26]. All our conclusions remain valid after the substitution b — b/R(s).
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The Buras and Koba relation [4] w(b) ~ J Q(b) is also plotted in Fig. 3. It is in good
agreement with our curve up to € ~ 1. A discrepancy is seen, however, at large Q.

Rechenberg and Robertson [12] have noted that the Heisenberg model [1] predicts,
in general, w(b) ~ [2(b)]%, where 0 < a < 1 is a measure of the strength of the interaction.
The Buras and Koba relation discussed above is a special case of this formula. Thus
we conclude that the Heisenberg model describes reasomably the data, provided the
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Fig. 4. Plot of w(b) versus eikonal £2(b). The solid line shows the result of our analysis. The dotted line is
the prediction of the Buras and Koba model. The dashed line is the prediction of the Barshay model

impact paiameter is not too small. This was noted already by Rechenberg and Robertson.
We feel that the possible rescattering effects may be at the origin of the discrepancy.

The simple example of the model which predicts increasing w(b) is the multiperi-
pheral model”. In the Chew-Pignotti model [28], for example, the multiplicity distribu-
tion at fixed b is given by [9]

N
o(b)p(n, b) = —

1
— g Pna (14)
na

In Fig. 1b the function w(b) following from Eq. (14) is shown for N = 3 and @ = 0.25.8
1t is seen that w(b) from the Chew-Pignotti model is much flatter than the one obtained in
our analysis. This is so because (i) the distribution p(n b) following from Eq. (14) is rather
broad and (ii) the Chew-Pignotti model predicts too narrow a multiplicity distribution
(Poisson distribution), which does not fit correctly the high-energy data.

Finally, we note that the linear parametrization of the incieasing solution, proposed
by Moreno [6], reproduces apptoximately our results.

7 Sakai discussed recently a large class of multiperipheral models which provide increasing w(b) [27].
8 For this value of a, a(b) following from Eq. (14) reproduces approximately the experimental data.
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5. Conclusions

Our conclusions can be summarized as follows:

i) In a geometrical model of high-energy collisions, it is possible to determine the
average multiplicity n(b) of particles produced at fixed impact parameter, using the experi-
mental multiplicity distributions and elastic scattering data.

if) There are two possible solutions for n(b): the “multiperipheral” one with n(b)
increasing with increasing b and the “intuitive” one with n(b) decreasing with increasing b.

iii) The existing data allow the determination of the average multiplicity of the negative
pacticles produced in proton-proton collisions at fixed impact parameter. The errors do
not exceed 109, in the region of & below 2f.

iv) The corrections for non-vanishing width of the multiplicity distribution p(n, b) at
fixed impact parameter do not influence significantly the determination of n(b), provided
p(n, b) is narrower than the Poisson distribution.

v) n(b) is not proportional to the eikonal Q(b).

vi) The Buras-Koba and Heisenberg models describe correctly the behaviour of n(b)
for b z 0.4 f. At smaller impact parameters the average multiplicity is higher thai: expected
from these models.

vii) The data are compatible with an energy-independent ratio w(b) = n(b)/N. All
energy dependence of the multiplicity distribution can be explained by an energy-dependent
(increasing) N and the corresponding decrease of the ratio d(b)/n(b) with increasing
energy.

viii) The presence of a peripheral diffractive component, does not change the general
behaviour of n(b). Thus our analysis suggests the existence of strong long-range coirela-
tions® between particles produced in non-diffractive interactions.
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We are also grateful to L. Caneschi, K. Fiatkowski, R. Hagedorn, H. 1. Micttinen,
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