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COHERENT SCATTERING ON DEUTERIUM: FORMULA
INCLUDING SPINS
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A general formula for coherent scattering on deuterium, including all the complications
due to isospin and spin, is derived from Glauber’s theory. The advantage of using tensor
transition amplitudes instead of the usual amplitudes with two spin projections as indices
is stressed.

1. Introduction

There seems to be growing interest in high energy coherent scattering on nuclei [1, 2].
By coherent scattering we understand the scattering processes, where in both the initial
and the final state the target nucleus is in its ground state. Simplified versions of Glauber’s
theory have been successfully used for a phenomenological analysis of the data [1]. The
results, however, show a puzzling feature: the nucleus is unexpectedly transparent for
newly produced particles. It is plausible that a careful study of coherent production
processes on the smallest nuclei, could help to resolve the problem (cf. e.g. Ref. [3]).

In the present paper we consider high energy coherent scattering on deuterium:

x+d — y+d, (1.1)

where x and y are well defined but arbitrary particles or groups of particles. Deuterium
is the smallest nucleus, where the puzzling rescattering terms appear. Their contribution
is, however, small and therefore a particalarly careful theoretical analysis is necessary
in order not to misinterpret the experimental results. OQur analysis is based on the ordered
Glauber formula [4], but includes all the spin and isospin complications and also inelastic
shadowing and longitudinal momentum transfers. A general formula for the amplitude
of process (1.1) is derived. It should be remembered, however, that in f-region where the
rescattering terms are important, Glauber’s approximation may require corrections. There-
fore caution is necessary when using the formula to fit data.
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Elastic nd scattering — which is a particular case of our problem for x = y = n — has
already in this approximation been described [5-7]. The calculations seem to have been
elementary, but rather tedious. Here in the calculation for the general case we extensively
use the theory of angular momentum. This makes the calculations much shorter and,
we hope, the result more transparent.

2. Results required and necessary input

In order to describe process (1.1) for given x and y it is necessary to find the scattering
amplitude as a function of the total energy, the momentum transfer g, the spin states
of x and y, the spin projection M of the initial deuteron and the spin projection M’ of
the final deuteron. For simplicity the usual assumption will be made that the same spin
reference frame is used for the initial and for the final deuteron.

The amplitude will be denoted A, y( ¢) and normalized so that the differential cross-
-section is

e = Ay 2.0

This formula is applicable for given spin states of x and y. In order to describe the experi-
mental data it may be necessary to average over the spin states of x and/or to sum over
the spin states of y.

Glauber’s formula is quoted in Section 4. In this and the following section the necessary
input is described.

In the framework of Glauber’s theory the scattering amplitude 4 is expressed in terms
of the wave function for the deuteron ground state and of the scattering amplitudes for
scattering on single nucleons.

Since the deuteron is a parity plus, spin one object, with its two nucleons in the triplet
spin state, the most general wave function can be written in the form [5-7]

W(r, o) = Z Z (L, M~a; 1,61, M> "Lf”) Y (F)v,. 2.2)

¥
L

Here YX(r) is the spherical harmonic having as arguments the spherical angles of ¥, g,
is the spin wave function for the two nucleons with resultant spin projection o, and the
S and D radial wave functions ug(r) and up(r) can be chosen real and are normalized by
the condition

Z [us()+up()ldr = 1. (2.3)

In order to calculate numerically the amplitude 4, it is necessary to choose the two functions
us and u, The wave functions appear in the form factors

Si(g) = gmqr)uy(r)uL(r)dr (2.4)
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and
Sivi(g) = Gm) ™12 [ r 2 e Y (Du ruy(Ndr, (2.5)
where e(z) = z/|z|. The form factors are needed only for the sets (, L', L) = (0,0, 0),

©,2,2), (2,0,2), (2,2,2) and (4, 2, 2). One needs 5 formfactors (2.4) and 13 formfactors
(2.5), since from the properties of spherical harmonics m <[ and

Si(g) = Si(—g) - (=)™ (2.6)
Note that when longitudinal momentum transfer g, is negligible, all the formfactors (2.5)

vanish.
Let us denote by F™N(g) the amplitude for the process

x+N - y+N, @.7)

where N, N’ are nucleons. According to Glauber’s theory the scattering amplitude A4,,,,
is a sum of two terms. In the single scattering term only the amplitudes F”N occur. In
the double scattering term there are the amplitudes F*™ and F®. Here ¢ can in principle
be any particle, which could occur as an intermediate state of the incident particle between
its impact as x on the first nucleon and its re-creation as y on the second. We derive the
general formula for an arbitrary set of particles ¢, in practice usually, only ¢ = x and
¢ = y are included in the calculation. Thus in the usual approximation the necessary
amplitudes for scattering on single nucleons are F*N, F**N and F”N, The representation
of the amplitudes, which is suitable for our calculations, is described in the following
section.

To summarize: the amplitudes 4,,.,/( ¢) will be expressed in terms of the form factors
(2.4) and (2.5) i.e. of the radial wave functions ug(r) and up(r), and of the amplitudes
for scattering on single nucleons F™N, F*N and FoN,

3. Representation of the amplitudes for scattering on single nucleons

Pauli spinors will be used to describe the spin orientation of the target nucleons. Thus
the most general form of the scattering amplitude F® is an arbitrary 2x2 matrix.
The elements of this matrix are in general operators transforming the spin state of x into
the spin state of y. It is convenient to write F in the form

FPNg) = a™N(@)S° + 5™ (@)So+ a:[b2N (@)% +b2N(g)S1 ], @B.1)

where S° is the unit matrix and S} are the Pauli matrices in the spherical basis:

. _ {10 , (0 =212 s _{ 0 0\
SO_(O -1 » S+—' 0 0 > S = 21/205 (3'2)

gy is the transverse component of the momentum transfer g. In order to specify the ampli-
tude F it is necessary to specify the four coefficients a, bg, b, b_. It will be assumed that
the coefficients are written in a rotation invariant form. Thus if they contain tensors,
these must be included in scalar or pseudoscalar products.

In order to illustrate the interpretation of formula (3.1), we present two examples.
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These examples are comparatively simple, but they seem to contain all the main features
of the problem, so that extensions to more complicated cases should present no new
difficulties.

a) Elastic scattering of a pseudoscalar particle

The most general amplitude for the process 03" —» 0§+ can be written in the
form [5, 7]:

F(g) = a(@)+0 - (g x B)b(g), (3.3)

where k is a unit vector parallel to the c.m.s. momentum of the incident particle and
o = (0,, 0, 0,) is the vector composed from the Pauli matrices. Our parameters depend
on the spin reference frame chosen. We take the z axis parallel to k, the x axis parallel
to gy — the transverse component of g — and the y axis normal to the reaction plane
and oriented so as to make the x, y, z system right-handed. Then using

Si=o0, Si= 2"”2($ax—iay) (3.9
and comparing with (3.1) we find b, = 0 and
a=a", by=-2""%p" (3.5)

b) Scattering of a %+ particle

The most general amplitude for the process 1/27 1/27 — 1/2* 1/2+ can be written
in the form

F ={c,+c0 (gx B)1S°+0 - (c3q+c ko, +
+[cs+ceo - (qxl?)]ay+a- . (c7q+csl?)ax, (3.6)

where in each term the matrix following the brackets acts on the Pauli spinor of the target
nucleon. Using formula (3.4), rearranging and comparing with (3.1) we find

a(q) = c;(@+cx(q)a - (gxk), 3.7
bo(q) = 6 " (c3q+cak), (3.8)
bi(q) = 2'%i[cs(@)+co(@o - (g x k) L i - (c,q+cgk)]. (3.9)

Note that as required all the vectors are included in scalar (or pseudoscalar) products.
In most of the practical cases the coefficients ¢{q) are interrelated by various internal
symmetries, but there is no point in going into it heie.

4. Glauber’s formula

Our starting point is the ordered form of Glauber’s formula [4]. We generalize it
including the phase factors containing the longitudinal momentum transfers. The transition
amplitude for the process x+d — y+d is given by

Ayp(g) = AM'|F7P(g)e'® "? + F°(@)e ™ " IM ) +
+ IAM| [F(q )F™™(q ™)+ F"(q " )F*P(q™)] [1 +&(2)]e'? 1M}, 4.1
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where for shortness we used the operator [ defined as

I = (4np)yti Y nlc) [ d*q'. 4.2)

The coefficient 7(c) equals 1 for non charge exchange processes and — 1 for charge exchange
processes. The transverse vectors perpendicular to the momentum p of the incoming
particle x are

7 = q:/2+ ¢, 4.3)

where ¢, is the transverse component of the total momentum transfer g. Vector ¢’ is
transverse and together with the longitudinal component

e = % (qcy_qxc) (44)

it forms the vector Q. By ¢, and g, we denote the longitudinal momentum transfers
for the processes c+N — y+N and x+N — ¢+ N respectively. At high energies

q. ~ (mi+m}—2m?)/4p 4.5)
and the longitudinal component g, of the total momentum transfer q is
q =~ (m;“—mi)/Zp. (4.6)

Here m; denotes the mass of particle i and p is the laboratory momentum of particle x.

The first and second term in (4.1) are known as the single and double scattering
contributions. In the double scattering term the amplitudes for scattering on single nucleons
do not commute in general and therefore the order in which they occui is important for
the further calculations.

5. Amplitudes for scattering on deuterium

In this section our results are given. Most of the proofs are placed in the Appendix,
which the reader not interested in the technical details of the derivation is advised to skip.
The amplitude A4,,,,(¢) is given by the formula

2
Aumg) = <1, M;j, M'—M|1, M"> A3y _y(q), G.D
=0

J

where <1, M;j, M'—M|1, M"> denote Clebsch-Gordan coefficients. This formula intro-
duces the tensor amplitudes 4 z,'( q). We found that these amplitudes are given by simpler
formulae and are easier both to transform (when the spin reference frame is rotated)
and to interpret than the amplitudes 4,,.,/(q). For these reasons most of our results are
formulated in terms of the tensor amplitudes. The ordinary amplitudes, whenever necessary,
can be found using formula (5.1).

The tensor amplitudes are given by the formula

{
A = lZ L4, B, 5, )+ _Z-l Agn(l, )B,(1, s, D1 (5.2)
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TABLE 1
T LT o
! I s | J B(l, s, j) P i N B, s, j)
| l i | | 1
0 | 0 | 0 Soss+Sopn 20 2 2825p— /5 S2pp
i 2 1 i | : 1
2 ‘ 2 ! 0 ESLSD— Iﬁ) S2pp ! 0 1 2 2 Soss + ESODD
o Lol h s dSen L2 | 202 | VIESspt S
i 4 : ! ; ! i
2 ! 1 i 1 | —S825p— }/_Z—Sznu t 4 i 2 ! 2 _-‘Si \f’z_ﬁ&DD

i

The functions B(l, s, j) depend on the wave function of the deuteron, but neither on the
scattering amplitudes F nor on the spin reference frame. The coefficients B, (], 5, j) also
do not depend on the scattering amplitudes, but do depend on the reference frame. Expres-
sions in terms of the form factors (2.4) for the non-zero functions B(J, s, j) are collected
in Table I. The argument of each of the form factors is understood to be equal ¢/2.

The factors AJ(/, s) and A}.(1,s) depend on the choice of the spin reference frame
and on the amplitudes F. They do not depend on the deuteron wave functions. The factors
Al(1 5) are given by the formula

Al s) = Y. oms s, alj, o) [An 'Y, (g) <LISPIIObE +

+1 Y A7 Y (Q) CLIS sy, 52) T35y, 52))- (5.3)

51582

The coefficients 5 and b3(s,, 5,) are given by the formulae (5.6-5.16). The reduced matrix
elements (1}!5°11> and {1{S%(s,, s,)!|1> are given in Table 1. The operator I (cf. formula

TABLE 1I
Operator US>

5°,5°(0,0) ! 1

S V2
S, 0), S0, 1) V2
s°, D —~1/4/3
ST\, 0
S, 1) 24513

(5.5)) contains the factor (4.2), where the integration over d?¢’ is understood to act also
on the following coefficients Bi/, s, j) and B,(l, s, /) (¢f. (5.2)). Moreover the operator I
replaces (before the integration) the argument g/2 of B or B, by @ and indicates that
the coefficients b3(s;, s,) should be calculated for the operator

Fo"(q " )F*(q ")+ F™(q)F*"(g7). (5.4)
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The functions B,(/,.s, /) are obtained from the tabulated functions B(/, s,/) by replacing
each form factor S);.; by the form factor S|7... The coefficients Agm(l, s) are given by

ALl s) = Y <l ms s, alj, 0) (LIS sy, 52) BDIB(s,, 52). (5.5)

Formula (5.2) is the main result of this paper.
The relevant non-zero coefficients b5 and bi(s,, 5,) are:

bo(q) = a”(g). bi(g) = b, bl (@) = a:b™(9), (5.6)

where the superscript xy denotes the summation over the proton and neutron scattering
amplitudes. Thus, for instance, in the notation from Section 3

a? = a”’(q)+a”"(q). (5.7)
Further
b3(0, 0) = aa, B30, 1) = ab,, b3(1,0) = bya. (5.8)

In these formulae and in the following ones the interpretation of the products is given
by the definition of the operator [ thus e.g.

aa = a(g")a*(g")+a"(q")a" (g ). (59)
The remaining formulae are:
1100, 1) = ab.[q1/2—q exp (xin)], (5.10)
bi(1,0) = b.a[q:/2+q" exp (Lix)], (5.11)
bo(1,1) = 371?[b.b_C.(gr, ¢, ) +b_b,C_(qr, q', ®)~bobo], (5.12)

bii(1, 1) = 27 {bob.[qr/2~q exp (xin)]+b.bo[qr/2+q exp (2]},  (5.13)

bg(la I) = 6-”2[b+b—c+(qT7 q'a d)+b-b+c._(q-r, q’A a)+2b0b0]7 (5'14)
b2o(1, 1) = b.b.[g3/4—q' exp (+2ix)), (5.15)
Cilyr, 4’ ®) = q1/4—q"* +igrq sina. (5.16)

where « is the angle between ¢’ and ¢; measured from ¢’ to ¢y. These formulae are valid
for the spin reference frame x, y, z defined in example (a) from Section 3. If amplitudes
in a different spin reference frame x', ', z’ are needed, it is enough to replace in formula
(5.1) the tensor amplitudes Aé(q) by the transformed tensor amplitudes

AXq) = Y. Difo, B, A9 (5.17)

Here D’ are the rotation matrices and the Euler angles «, 8, y correspond to the rotation
converting the x y z frame into the x' ' 2’ frame.
Once the amplitudes are known, the differential cross-sections are fixed by (2.1).
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In particular for an experiment with unpolarized deuterons

1
= 52 (@) = Z 51 Z A, (5.18)
MM’

where the second equality follows from (4.1) and the orthonormality of the Clebsch-
-Gordan coefficients.

6. Conclusions

In order to calculate in Glauber’s ordered approximation the amplitudes for a coherent
process x+d — y+d it is necessary to use as input data:

a) The two radial wave functions of the deuteron (2.2) or equivalently the five form
factors (2.4) and moreover if required the thirteen form factors (2.5);

b) A set of amplitudes for scattering on single nucleons. This set should include at
least the amplitudes for the processes xN — xN, xN — yN, yN — yN, for N being a proton
and for N being a neutron.

The amplitudes are given in terms of the input data by formula (5.1) and the following
definitions. The diffeiential cross-section for unpolarized deuterons is given by formula
(5.18). Both formulae include all the complications due to spin and isospin as well as the
effects of the longitudinal momentum transfer, and can accomodate arbitrary inter-
mediate states (inelastic screening).

It seems to be often advantageous to use the tensor amplitudes A{z'(q) instead of the
standard amplitudes 43,.,,(¢). Formula (5.2) expressing the tensor amplitudes in terms
of the data is simpler than the formula corresponding to (5.1). The transformation law is
given by (5.17), while the corresponding formula for the amplitudes A4,,.,, is bilinear in
the rotation matrices and in general expresses each transformed component as a sum of
nine terms. The formula expressing the unpolarized cross-section in terms of the tensor
amplitudes is not more complicated than that with the standard amplitudes (5.18).

APPENDIX
Derivation of formula (5.1)

In this appendix formula (5.1) is derived from formula (4.1). The necessary theorems
from the theory of angular momentum can be found in any textbook on the subject (cf.
e.g. [8]). In order to facilitate reading the derivation is devided into four steps.

a) Orbital and spin parts of the transition amplitude

Each of the products of operators in formula (4.1) contains an orbital part (exponen-
tial multiplied by 1 or by &(z)), which does not depend on spins. Further there are the
spin parts F(q) or F(g") F(g"), which do not depend on r. The orbital parts and the spin
parts will be separately expanded into series of tensor operators.
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Some care is necessary, when handling the spin parts, because, according to our
definition of the amplitudes F, in the product F(g¢*) F(q~) the first term corresponds to
a spin 1eference frame with the x-axis parallel to ¢+ and the other to a frame with the
x-axis parallel to g—. In the following derivation all the operators will be transformed

Fig. 1.

to a common spin reference frame with the x-axis parallel to g;. This leaves the operators $°
and S; unchanged, while the other two operators are transformed according to

q"Siy — ¢ exp (£ie")SL, = [gr/2+vq’ exp (+im)]SL. (AD)

The angles «, a*, «~ are defined in Fig. 1. The second equality in (A1) is a trigonometric
identity (v = +).

b) Expansion of spin parts in series of tensor operators

The single scattering operator in (4.1) is a sum of two terms. Changing the integration
variable in the second term from r to —r, one finds that the operator factorises into an
orbital part, and a spin part (¢f. (3.1)

FPAQ+F™(g) = F 3 b N)SUN). (A2)
=n,p §,0

Here the notation for the operators defined by (3.2) has been supplemented by the argu-
ment N indicating whether the operator acts on the proton or the neutron spin. Since
the operators S;, are tensor operators — for this 1eason they were chosen as basis in Sec-
tion 3 — formula (A2) gives the required expansion for the spin part of the single scattering
operator. The deuteron wave function is symmetric in the proton and neutron spins.
Consequently the matrix element of S does not depend on the argument N. Putting in
all the terms of (A2) N = p we obtain an equivalent expansion:

F7(@)+F™(q) ~ ). b:5,(p). (A3)

The coefficients &, obtained by comparison with (A2) and (3.1) are given by formula (5.6).
The double scattering amplitude for each intermediate particle ¢ contains the spin
operator FP(gHF*"(q)+F?°(g")F*®(q~) which is a bilinear form in the operators
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S¥p) and Si(n). After transforming according to (Al) all the operators to a common
spin reference frame one can, using the standard Clebsch-Gordan expansion for each
operator product, expand the bilinear form into the tensor operators:

Si(s, 85) = Z (51, 01355, 0415, 6)S;" ST (A4)

71,62

The coefficients b5(sy, s,) of the final expansion

Z by(s15 52)55(5 15 52) (A3)

are given by the formulae (5.8)-(5.16).

For further work the reduced matrix elements of the tensor operators occurring in this
section are necessary. Among the many alternative definitions of the reduced matrix
elements we choose the definition by the Eckait-Wigner theorem written in the form

(S"6"[S}IS'0") = (S, 0'; S, 015”0 (S IS7S". (A6)

We need the reduced matrix elements for the case when {S’¢’> and [S"'¢’") are spin states
of the deuteron (S’ = S” = 1). Substituting e.g. {11> for both, we find the reduce matrix
elements given in Table II.

¢) Expansion of the orbital parts in series of tensor operators

Formula (4.1) contains two kinds of orbital parts: exponential and expcnential
multiplied by e(z). Each can be expanded into spherical harmonics:

exp (i@~ 1) = 3 a,(Q, ) (4n)' Y, (r), (A7)
exp (iQ - 1)e(z) = 3, dn(Q, 1) (4m)' 2 Y,(r). (A8)
ILm

Here the coefficients o, and d;, depend on the length of r and on @ while the spherical
harmonics Y!(r) are tensor operators depending only on the spherical angles of r. The
coefficients g, are known from the familiar expansion of the plane wave into spherical
waves:

a(Q, 1) = (4n)' Y 0)*i(0r), (A9)

where j,(Qr) are the spherical Bessel functions of the first kind. Here the dependence on r
and on the orientation of @ factorizes. No such factorization occurs for

di(Q,7) = (4m)"? [ exp (iQ - Pe(2) Y (r)dQ,. (A10)

The reduced matrix elements of the spherical harmonics are given by the formula

QI+ (2L+1)

(4m)'*<LIY'(r) ILY = i1 b % 1,0lL, 0. (Al1)
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Using the notation from this and the preceding Section it is possible to rewrite the
operator from (4.1) in the form

Y an(4/2, Db (A0 Y, ()S; o)+ ¥ I[a,(Q, r) +
+di(Q, 1] (41)' 2 Y, (1)S5s 1, 52). (A12)

The evaluation of the matrix element given by Eq. (4.1) involves the r-integration of the
coefficients a', and d’,, which leads to the form factors (2.4) and (2.5). Note that the r-inde-
pendent factor in a!, is written explicitly in (5.3) and is not included in the form factor.
Further there is the integration over the orientations of r and the summation over spins.
This can be considerably simplitied as shown in the following step.

d) Evaluation of the transition amplitude

As seen from (4.1) and (A12) the amplitude is a linear combination of matrix elements
1. M'ICHNTLFSE|, M. Here CL, denotes a coefficient al, or d’,, T), = (4n)1/2Y! and S?
is one of the spin operators.

Using the Eckart-Wigner theorem (A6) for the spin part and the orbital part separately
we find from (2.2)

<1: M/lC:nTrflS;lla M> = Z <Ea M,'—O'f; -1: O'f‘l, M/> <L> M—Gi; 1; GilL M> X
x (L, M =031, m|L’, M'—o;) (1, 035 5, 01, op) (L|C,TYILY <1S*fi1).  (A13)
Using the definition of the 9-j symbols and the properties of the Clebsch-Gordan coeffi-

cients it is possible to rewrite this formula in a more compact form

2
A, M|CLTESS. My = Y B(l,s,j; Co)<l,m;s,0j, M — M) x
ji=0

x {1, M j, M'—= M1, M"> (1[IS°]115, (A14)
where
L11)%
B(ls,j, Cy = 3v2j+1 Zv’zﬂﬂ Isj JuL,(r)uL(r)c,‘,,(r)drx
- L11)3
x (L'||T'r) L. (A15)

Using the symbols B(/, s5,j) and B,(/, s,j) defined in Section 5, and substituting (A12)
and later (A14) and (Al11) into (4.1) we get (5.1).
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