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Equilibrium pairing in the deformed rare earth nuclei is calculated by varying eneigy
expression along the trajectory of the constant mean square radius. The Nilsson potential
is used in the calculations and its parameters are the only input data for the problem. The
resulting equilibrium values of the proton and neutron energy gaps are compared with the
values obtained by the standard procedure of fitting the pairing strength to the experimen-
tal odd-even mass differences.

1. Introduction

Pairing is well known to be one of the most important phenomena in the structure of
nuclear states at low excitation energy. A great deal of consideration has been given to
the problem of finding the best methods for its treatment. However, for heavy nuclei
most of the work has been concentrated on the search for good methods of diagonaliza-
tion of the pairing Hamiltonian with the phenomenological constant taken as the pairing
force strength. It is far from obvious that even the exact diagonalization of the constant
matrix element pairing force takes one close to the physical situation. Even assuming that
the relevant matrix element of the real two-body force in the nucleus, namely:

W VIV, V)Y = G,,, where |V is the time reversed |v) state, varies slowly in the Fermi
surface region, the average pairing strength:

z va’uvvvuv’vv’
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is still a function of many nuclear parameters. In particular, it should depend rather
strongly on the energy gap 4, which determines the pairing amplitudes u, v. This is due to
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the fact that, even if one starts with all G, = G° and performs the calculation in a limited,
symmetric with respect to the Fermi surface 4, single particle state region, the renormaliza-
tion of G, connected with the use of the limited single particle space, will increase it near
the edges of the region, far from the Fermi surface, more than at the Fermi surface. The
averaging (1) of the renormalized G, = G°+4G,,. will give G small for small 4 (for
which the weight function w,v, is picked at the Fermi surface), and larger G value for
larger values of 4 (for which the weight function becomes more and more flat).

The dependence of G on 4 may turn out to be important when the pairing potential
E(4) is used, e. g. in calculating the Coriolis-antipairing effect in the rotational spectra.
Of course, all the effects connected with variation of the pairing matrix element could be
accounted for in the framework of the theory which uses the real nuclear two-body force
as a starting point. This, however, is obviously a very complicated problem, and it seems
useful to look for some simpler, approximate solutions.

The one proposed in [1-4] consists in constructing a variational procedure in which
the equilibrium values of the energy gaps 4., and the corresponding average matrix ele-
ment G(4,,) are determined for a given nuclear state. Apart from postulated ules for
varying the energy with respect to the energy gap 4, which allow for the changes of G
with 4, the only input parameters of the procedure are those of the single particle poten-
tial. Thus the comparison of the equilibrium energy gaps obtained in this way with the
experimental odd-even mass differences (or with the energy gaps obtained for the phenom-
enological value of the paiiing strength) can be used as a straightforward test of the theory.
Such a test was performed for the case of some spherical nuclei and gave satisfactory
results [2, 3]. In the present paper the results obtained for the deformed rare earth nuclei
with the Nilsson single particle potential as the input data are presented and compared
with the values of the pairing parameters obtained by fitting the experimental odd-even
mass differences.

2. Variational procedure and its connection with the H-F energy changes

In order to allow for the effective pairing strength G changes with 4, and use these
changes in the variational procedure, consider the limit in which G changes in such a way
that every values of 4 is the self-consistent one in the BCS approximation

4=G6M)Yup, or GA)=EYLIE), e

where E, is the quasiparticle energy of the state v. The pairing contribution to the energy
is then:

E, = —A4Y up, €))

For a small single particle space (3) can differ strongly from the constant G expression

E(G = const.) = —G (¥ u,n,)? “
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in all but two points: the curves intercept at 4 = 0 and at the point G(4) = G. In the
limit of very large single particle space G becomes very small for any finite value of 4,
thus it becomes very flat as a function of 4. If the variational procedure assures stability
of the equilibrium value of 4 in this limit we turn back to the constant G approximation.
Thus, in enlarging the single particle space we get closer to the real variation of the
effective G with 4, which should lie somewhere between the constant and the “self-consist-
ent” case.

In practical calculation the expression (3) for the pairing contribution to the energy
can be used for the single particle space large enough to ensure stability of the resulting
equilibrium values of 4 with respect to the variations of the cut-off energy. Indeed, the
constant value of 4 for a finite single particle energy interval may be considered as a step
function approximation to a more realistic dependence of 4 on v, which should also be
varied in a more -complete variational approach.

The next problem is to construct such an expression for the single particle contribu-
tion to the energy change with A4 which would take into account the rearrangement change
of the single particle potential parameters, corresponding to the configuration change
introduced by pairing correlations. In [1] the volume conservation was proposed as the
simplest candidate for the condition determining the rearrangement changes. The moti-
vation of such a choice is as follows. Pairing correlations in a system described by a single
particle potential with 4-independent parameters change the volume of the system. This
means, in particular, that the average particle density ¢ = A4/Vis changed. For the saturated
system the energy change should not contain contributions proportional to dp while for
the 4 independent parameters of the single-particle potential it does. The difficulty can
be overcomed by calculating the energy change for a given nuclear state at o = constant
or V = constant. This in turn can be achieved by an appropriate change of the single
particle potential parameters with 4. The changes quadratic in d¢ are also eliminated in this
way, but they can be estimated to be very small.

The meaning of the rearrangement changes of (he single particle potential parameters
imposed by the constant volume condition is clearly seen in the case of the harmonic
oscillator potential. Here the oscillator frequency w is the only parameter and the volume
of the system can be connected with the mean square radius. Thus the condition of con-
stant volume may be written as

I

P pes = ri2v = (Eq+JE,) -~ -— = const., 5
ma(4)

v

where E, and E,+JE, are the sums of the single particle energies, measured in fiw units,
at 4 = 0 and at a finite 4 value, respectively. The rearrangement change of w is thus
given by

4)  Eo+0E
@) _Eotoks =0 )
Wy E,
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If the whole reartangement is given by (6), only half of the potential energy should be
summed in the energy expression, and we get:

E,,(4) = ho(d) (Eq+8E,) § = hw[const. + $ 6E,+ O(SE,)?], N

where we used (6) to write the cnergy in the 4-independent units. It is easy to see the origin
of the factor 3/2 appearing in (7) from the point of view of the Hartree-Fock approxima-
tion. The 2/2 part is simply the H-F rearrangement in the potential term, giving back
factor 1 in the energy changes. The remaining 1/2 comes from the kinetic energy change
corresponding to the H-F change of the h. osc. potential, its value being determined by
the equality of the potential and kinetic energy contributions for the harmonic oscillator.
So large a rearrangement change of the kinetic energy is thus specific for the harmonic
oscillator. In the case of the Saxon-Woods potential the corresponding change of the
kinetic energy contribution would be connected with the change in the diffuseness of the
edge of the potential, caused by the pairing configuration change.

Summing the contributions (3) and (7) we get the expression

()3
E(4) = " I:Z(EO+5EA)—A E uvvv] (8)
0

¥

which can now be varied to obtain the equilibrium value of 4.

3. The case of the deformed nucleus

Owing to the Coriolis-antipairing effect, pairing correlations change drastically within
the rotational band of the deformed nucleus. To get the equilibrium pairing for a given
rotational state, the ground state of the nucleus in particular, the wave functions projected
on the right value of the angular momentum should be used in fact for calculation of the
energy and the mean square radius. The first order projection correction to the energy
expression will be discussed in the next section. The mean value of the scalar squared
radius operator may be calculated for the deformed state because the projection on the
I = 0 ground state amounts to giving of equal weights to every orientation of the
deformed object with respect to the laboratory coordinate system. The main effect of
working with the projected state is hidden here in the volume definition — for projected
state we are forced to define it in the laboratory reference frame and connect it with the
mean square radius in contrast e. g., to the equilibrium deformation calculation, in which
the intrinsic volume of the ellipsoidal density distribution should rather be conserved,
while the mean square radius varies with deformation. This also means that different
expressions for the energy changes should be used in the two cases. To be as close as possible
to the standard equilibrium deformation calculation by the Bes-Szymanski method [5]
we use here their expression for the energy change with deformation, with our equilibrium
values of the pairing energy gaps, determined by varying (8) at a fixed deformation. Such
a procedure corresponds approximately to fitting the nuclear radius to the 4'/3 dependence
at equilibrium values of the pairing energy gaps.



401

4. Corrections terms

The obvious corrections to the harmonic oscillator single particle potential are the
Nilsson [ -5 and /(/+1) terms. We take them with the r-independent Nilsson para-
meters:

U" = —x[2] - 5+ p((1+ 1) —-<I%y)], ©)

where ([ 2%y is the average of the single particle angular momentum square for the N-th
oscillator shell, and (9) is measured in the fiw units. It is difficult to conclude anything
about the rearrangement change with 4 of the purely phenomenological parameters
and u. As their values are determined with respect to the change of the sum of the har-
monic oscillator single-particle energies, we include (9) to the energy-change expression (8)
with the same 3/2 factor as that multiplying the change of the single particle energies sum
SE,. (Note that a factor 1.25 was used in {2, 3, 4]. The difference in the resulting 4., values
is small. The factor 3/2 leads to a somewhat better relation between proton and neutron
energy gaps.) The value of x and u for the rare earth region were taken from [6]. Working
with a large single particle space one must, however, ensure a reasonable behaviour of the
single particle energies for very large value of N, far above the Fermi surface. For these
states the product x - u should go to zero. Otherwise the states with very large N would
emerge everywhere, even far below the Fermi surface. We keep x constant for all the
states and let p decrease in such a way that the product « - u decieases according to the
extrapolations of [6] for A-values large enough to shift the Fermi surface up to the
shell considered. The decrease in u starts at N = 6 for protons and N = 7 for neutrons
(about 2Ahw above the Fermi surface). The rate of the decrease has practically no effect
on the equilibrium values of 4, provided it is kept in reasonable limits.

The next correction term comes from the approximate projection on the chosen
value of the total angular momentum /. It is taken in the form given in the [7]:

2,%2 27
R + il—I(I—i-l), (10)

SEf = —
rot 2}. 2}

where £ is the moment of inertia, and the average is taken over the deformed BCS state.
The expression (10) has the following simple physical meaning. If the energy (8) with the
correction (9) is assumed to be the average value of the real nuclear Hamiltonian over
the deformed state and the real Hamiltonian dependence on the angular momentum has
the form of the rotational energy operator h21%2#, the average value of this operator
should be replaced by its value for a fixed angular momentum /. The correction (10)
increases the values of the equilibrium energy gaps for / = 0 ground state and approxi-
mately accounts for the Cotiolis-antipairing effect for larger /. In the calculation the crank-
ing model formula is used for the moment of inertia 7.

Another correction term used in the calculation is the RPA-correction to the ground
state energy. It is essentially the RPA~-BCS difference in the energy of the zero-point
vibration in this state [8]. Its form is given in [2]. This correction increases the equilib-
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rium energy gaps by a few per-cent. It has been checked by calculation that it can be
replaced here by the familiar term:

_GY ot (1)

v

This is connected with the fact that for the cases of very small equilibrium values of 4,
where BCS+RPA approximation of [8] should improve the results, a very flat or two
minima curve is obtained for the energy as a function of 4 and dynamical pairing calcula-
tions similar to those of [9] should be performed. On the other hand, for larger values
of 4 the BCS approximation, with the term (11) included, works quite well.

Finally, the Coulomb energy change is also included:

2 1/2
Ec = E2 [52‘; Z‘;:"] , (12)

where EQ is the sharp-edge, deformed charge distribution Coulomb energy (see e. g. [6])
and the square root factor accounts for the change of the proton distribution radius
with 4. The proton mean square radius may change with 4 because only the mean square
radius of the total (protons + neutrons) density distribution is conserved in the variational
procedure.

The effect of the Coulomb energy correction on the equilibrium values of the energy
gaps is small. It slightly increases the proton energy gaps and leaves the neutron energy
gaps unchanged.

5. Details of the calculation and results

As mentioned above, the Nilsson potential was used as the single particle component
of the Hamiltonian. Quadrupole and hexadecapole deformations were included. The
parameters were taken from [6] where also the details of the form of the potential can be
found. The potential was diagonalized within one oscillator shell in the stretched coordi-
nate system &, 1, { (to account for the quadrupole N, N+2 oscillator shell coupling).
Then the BCS equation:

Y 2v? = number of particles (13)

was solved to obtain the Fermi energy A for a set of 4-values, for protons and neutrons.
The main advantage of the simple Nilsson potential from the point of view of our calcula-
tions consists in the fact that the rearrangement change of the oscillator frequency w
changes only the energy scale for the single-particle energies here, and the equation
(13) can be solved only once for each value of 4 in our variational procedure.

With the single particle states, single-particle energies and pairing amplitudes obtained
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in this way the expression giving the energy change with 4 was constructed by summing
the contributions (8), (9), (10), (i1) and (12) for protons and neutrons:

and the ratio

A)[3 . 3
oa )I:— E ghisenp? 4 = E UE20? —
W, | 4 4

—-A4Y up,—GY vi+ 5Em:’ +E¢ (19
P |

4. E 2,202 / E ., (15)
Wy

where rfv is the matrix element of r2 for the Nilsson wave functions, measured in units
of A/mw, and n, are the occupation numbers for 4 = 0, was calculated. All the summations
in (14), (15) run over proton and neutron states.

Equilibrium values of 4, and 4, were determined by finding the minimum of (14)
with respect to both variables. Stability of the solutions with respect to the cut-off energy
variations was not investigated. The cut-off energy was kept constant and equal to 12 2w
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Fig. 1. The deformation dependence of the calculated equilibrium pairing energy gaps and the corresponding
G(deq) values for *7°Hf. The energy function of Ref. [6] calculated with A == Aqq shows the position of

the equilibrium deformation
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both for the proton and neutron single particle spectrum. Such a large single particle
space ensures that for the highest values of 4., (about 0.17 Aw) which we get, the changes
of A, are less than 0.01, when the cut-off is shifted up by 1 iw. They are still smaller at
4eq. = 0.9-0.11, which is a typical A4, -value at equilibrium deformations.

The typical results for 4., at different deformations and the 4., values at the equi-
librium deformations for nuclei in the rare earth region are shown in Figs 1 and 2. The
values of 4 of [6], corresponding to the constant G fitted to the experimental odd-even
mass differences in the rare earth region, are also shown for comparison.

L Sm Gd Dy Er Yb Hf w
h
3 ~ N
&= ~ § \ - - Sl L
4 0.1 - . = — = /
<,°~ —-- Nilsson et al. —

— calculated dgg

J\/ ,\/7 U VU O U Y VO W W
752154 154156158 160 1621647&168170 770170174776?78180182184A

4 Sm Gd Dy Er Yb  HE W
\‘ N ‘\ - ~

01 —  ——o T 7T Ry = X
~—- Nilsson et al.

——calculated Ag

of 7

Ix/\,|1|1|||||l

152 154 Y154 156 158 160 V160162 164 166 168 170 V170 172 174,176 178 730782784A

Fig. 2. The calculated ground state equilibrium pairing energy gaps for protons and neutrons (dp and A,
respectively) in the rare earth region. The phenomenological constant G energy gaps of Ref. [6] are shown
for comparison

It is seen from Fig. 1 that, owing to the strong equilibrium pairing dependence on the
deformation, the calculation of the equilibrium deformation must be performed with the
calculated 4,, values in order to determine what is the ground state pairing in a real
nucleus. As the hexadecapole deformation ¢, was not determined in the calculations,
the quadrupole deformation ¢ was varied along the line ¢, = ag with « chosen for each
nucleus to give the result of [6] for ¢, at the equilibrium value of &. The equilibrium
values of ¢ obtained with 4., are smaller on the average by 109, than the values obtained

in [6].

6. Conclusion

The results for the ground state pairing energy gaps appear quite satisfactory. This is
seen from the Fig. 2 if one remembers that the typical error of 4 determination from the
odd-even mass differences is of the order of 0.01 and that it is probably much larger at
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the edges of the deformed region, where the changes in the deformation energies lead
to additional uncertainties. However, the systematic character of the discrepancies, to-
gether with the too small values of the ground state deformation obtained, suggest that
they may be physically significant. On the other hand, they seem to be within the reach
of the small change of the single-particle potential parametets « and y, which should
probably be chosen much more carefully for our calculations, because they are the only
input parameters here and there is no room for correcting the results by the choice of
some other phenomenological quantities. The opposite sign of the discrepancies for pro-
tons and neutrons suggests that the difference between the proton and the neutron poten-
tials is too large and should be decreased.

Satisfactory results for the ground state deformations tempt one to draw some conclus-
ions concerning pairing beyond the equilibrium deformation. Fig. 1 shows that it varies
faster with ¢ than the constant G pairing. The average pairing matrix element G(Aeq.)
comes close to the critical value at some deformations and is not a monotonic function of
¢ as assumed in some calculations. It is probable, however, that the inclusion of the
quadrupole pairing term, suggested in [10], both in phenomenological and our pairing
calculations would bring the two pictures much closer to each other, because such a term
would obviously influence the dependence of energy gaps on deformation.
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