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The equations of isentropic rotational motion of a perfect fluid are investigated with
use of the Darboux theorem. It is shown that, together with the equation of continuity, they
ensure the existence of four scalar functions which constitute a dynamically distinguished
set of coordinates. If in this system of coordinates the metric tensor is constant along the lines
tangent to velocity and vorticity fields, then the field equations with T;j == (€-+-puu;—pgij
can be completely integrated, The resulting metrics divide into 3 families, first of which con-
tains 6 types of new solutions with non-zero pressure. All of them are given explicitly in
terms of hypergeometric or confluent hypergeometric functions, type IV being the only
one containing entirely elementary functions. The second family contains only the solution
of Gbdel, and the third one — only the solution of Lanczos.

Introduction

Soon after the creation of the general relativity theory people started trying to solve
the Einstein field equations for rotating matter. The problem was interesting both from
theoretical and observational points of view because nobody knew how to describe the
rotational motion in the formalism of general relativity while many stars and galaxies
exhibited visible rotation. Today even the possibility of rotation of the Universe at large
is admitted (see e. g. [1]).

However, for quite a long time models of rotating matter were constructed under very
special assumptions. The development followed two lines. The first line was originated by
Lense and Thirring [2] in 1918 and was based on the “‘slow rotation” approximation. The
disadvantages of approximate solutions in comparison with exact ones are rather ob-
vious, however there are more physical objections against this particular method. 1 shall
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present them in Part 3 of the paper. The second line started with the paper of Lanczos
[3] in 1924 and contained models of dust with or without cosmological term. There are
no physical indications that the assumption p = 0 is wrong in cosmology, but it is unsatis-
factory from the mathematical point of view as it is just an escape from the difficulties
connected with introduction of pressure into the solutions.

It was not till 1967 that Triimper [4] clearly siated the problem of searching for solu-
tions with pressure different from zero. However he has just written down the field equa-
tions and stopped after arriving at some general statements. A few authors went further,
but they abandoned the problem when the equations were simplified and nearly-inte-
grated (/. e. there remained only one or two equations to be solved), giving just some
special cases of solutions which were mathematically simple (e. g. Stewart and Ellis [5],
Wainwright [6]). Until 1972 there were just two complete solutions with non-zero pressure
given by Wahlquist [7] in 1968 and Herlt [8] in 1972 (I do not take into account such
models as that of Raval and Vaidya [9] representing a fluid with anisotropic pressure
because they are rather artificial).

One sees therefore that models of rotating matter are still needed. The aim of the
present paper is to supply new solutions of the Einstein field equations with rotating
perfect fluid as a source. The method of description of the isentropic rotational motion
of a perfect fluid introduced by Plebanski [ 10] is used here. Under the assumptions which
are clearly stated in Chapter le the field equations are completely integrated. The first
part of the paper deals with the procedure of solving the field equations and presents the
complete set of solutions. Among them appear as special cases those of Lanczos [3]
with A = 0, Gédel [11] and Raval-Vaidya [9] in the case of isotropic pressure. The metrics
of the first family (according to the classification given in Chapter 4) are new.

The second and third part of the paper will we published separately.

In the second part the discussion of geometrical and physical properties of the new solu-
tions will be given. It turns out that they are not quite realistic as models of the Universe
or interior of stars. However they may be of some importance for relativistic hydrodynam-
ics. Also they may constitute a base for more realistic non-stationary cosmological models.

The third part of the paper will be a review article where all exact solutions of the
field equations for a rotating perfect fluid or dust, found up to the middle of 1973, are
hoped to be included.

To make this paper 1eadable independently of [10] 1 give all the necessary considera-
tions in Chapter 1. It should be emphasized that all the theorems and statements given
there are not global. They hold only in simply connected neighbourhoods.

1. General considerations and statement of the problem

a) The equations of isentropic motion of a perfect fluid

Throughout the paper we shall use the signature {(+ — — —). The energy-momentum
tensor of a perfect fluid has the form:

T = (e+ p)uuf — pg*, 1.1
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where € is the energy density in the rest-frame, p is the pressure and * — the velocity
field of matter, (e+p) is the enthalpy density.
The equations of motion follow from the relationship:

nﬁ;ﬂ = . (1.2)
Let 5% denote the enthalpy per one particle of the fluid. Then:
H = (e+p)n, (1.3)

where » is the density of the number of particles. Independently of (1.2) the conservation
of the total number of particles is postulated:

(nu®, = 0. (1.49)
By virtue of (1.3) and (1.4) the equations of motion can be written in the following way:
nu(#u),—p, = 0. (1.5)

The enthalpy fulfils the following thermodynamical identity:
1
d# = —dp+TdS, (1.6)
n

where T is temperature and S — the entropy. This equation may be considered to be the
definition of temperature and entropy in general relativity. Namely, the equation of
state F(o£, p, n) = 0 guarantees that only two of the functions 5, n, p are independent.
Then the form (d# — |/n dp) certainly has an integrating factor which we denote by 1/T,
and call its inverse the temperature. Consequently, the form 1/7 (d2# —1/n dp) is a total
differential of a function S which we call entropy.

With the help of (1.6) we obtain in (1.5):

n[uf(Hu).,—H ,+TS,] =0. 1.7
Now the identities * u, = 1 and «’u,, = 0 allow us to write (1.7) as:
[(#u,),—(Hup) Ju’ + TS, = 0. (1.8)

We have written partial derivatives instead of covariant ones because in torsionless Rie-
mannian space the connection terms cancel out.
When S, = 0 we call the motion isentropic. We shall confine ourselves to such mo-
tions only. Then (1.3) and (1.6) imply:
d[(e+p)/n] = (dp)/n (1.9)

which we can write in the form

d[(e+p)/e] = (dp)]o, (1.10)

where p is the density of the rest-mass, ¢ = mgn, mg is the mean mass of a particle. Hence
we see that de = [(e+p)/g]do and therefore € = €(p) and p = p(p). Thus the isentropic
motion is characterized by the condition:

e =¢e(p), ¢ = o(p). (1.1
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If so, then (1.10) is an ordinary differential equation, which can be easily integrated

to give:
4
1 [ dp
€+p = QC —7 "(—- = QC (112)
0
where H, = const. Then (1.8) may be rewritten as:
[(Hu,) s —(Hug) . Ju* = 0. (1.13)

These are the equations of isentropic motion of a perfect fluid. In the case of dust (p = 0)
we have € = gc? and H = Hy = 1 in (1.13). Then we abandon the assumption ¢ = o(p),
as the equations of motion follow immediately from (1.2).
b) Two useful theorems
Let:

o = V. dx" (1.14)
denote a differential form of the Ist order on some region of a Riemannian space, where ¥,
is a continuously differentiable vector field. We define:

Ifdon...Ado#0 but oAdon..Ado=0
\_..___Y.___.__J \___Y.___J

1 times 1 times

then o is of class 2I.

Ifoarndon...Ado#0 but doandon..Ado=20
—— —

1 times ! times
then o is of class (21+1).
It is obvious that the class of a form may be equal at most to the dimension of space
on which it is defined. The following theorem holds:
Theorem 1 (Darboux)

w is of class 21 if and only if there exists the set of independent functions (&;, n,), i =
i

=1, ...,/ such that » = Y. n,dé;; w is of class (2I+1) if and only if there exists the
i=1

1
set of independent functions (v, &;, ), i =1, ..., | such that w = dv+), ndé;.
i=1

It is easy to verify that these conditions a.e sufficient. The proof that they are
necessary can be found in [12].

If the dimension of a manifold is even: n = 2m, then for every antisymmetric tensor
F,; the following form can be defined:

Pf(F,;) = (2"m!) ‘e ~“mF, .. (1.15)

¢2m - 1%2m?
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where €*'*" is the totally skew-symmetric Levi-Civita symbol. This form is called the
pfaffian of the tensor F,;. We have:

Theorem 2
[Pf(Fap)]z = det(F,ﬂ).

The proof of this theorem can be found in {13] and [14]. Now we shall apply the
theorems 1 and 2 to an investigation of the equations (1.13).

c¢) The invariant hypersurfaces defined by the equations of motion

Let us define:

o = Huy,dx", (1.16)
Fop = (Hu,) y—(Huy) .. (1.17)

We see that:
Fpdx® A dx* = —2dw. (1.18)

In the equations (1.13) F,; when acting oa the vector «*, has the eigenvalue 0. Hence
det (F,) = 0 and, by virtue of theorem 2, Pf(F,;) = O which means that FyzF,; = 0.
This, together with (1.18), implies that dw Adw = 0. We see then that the class of @ is
at most 3. Theorem | implies now that there exist three independent functions 7, ¢, 5
such that o = dr+ndé, i. e.

Hu, = 1,+né,. 1.19)
From (1.19) and (1.17) we see that:
Faﬁ = é,an,ﬁ_g,ﬁ",u' (1'20)

When F,; = 0 we call the motion irrotational. When F,; # 0 we call it rotational.
To distinguish rotational and irrotational motions we can use as well the vorticity
vector defined as follows:

wh = —(—g) ?eyu, ;. (1.21)

The differentiation between rotational and irrotational motions based on w* agrees with
that in Newtonian mechanics. Imagine an observer who is at rest relative to the matter at
a point p. Then let us take a local inertial frame at p (i. e. such that u* = 65 and g,4(p) =
= Diag (+1, —1, —1, —1)) and calculate the components of w* in this frame. It turns
out that

w = (0, — %W) , (1.22)

where W = rot v is the Newtonian vorticity vector. Thus w* is a relativistic generalization
of the vector W. We have
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Theorem 3
(Fpp = 0) <= (w* = 0).

The proof is left to the reader. In consequence of this theorem we are allowed to consider
F4 to be the angular velocity tensor. But there is the definition of the angular velocity tensor
given by Ehlers in [15] and [16]:

Qup = Upg;p1— Upas o) U Up) (1.23)

(o between vertical strokes is not included into antisymmetrization). With the help of
(1.17) and (1.13) it is easy to show that:

Foy = 2HQ,,, (1.24)

so our differentiation between rotational and irrotational motions agrees with that of
Ehlers.
From now on we shall deal with rotating matter only, so we assume:
Fp # 0. (1.25)

The functions 1, £, # given by (1.19) are not unique. They are determined with the
following arbitrariness:

T 1* = 14+8E& 1), & - EXE m, n - & n), (1.26)
where S, £*, n* are two-argument functions with the condition that:
ndé--n*dt* = ds. (1.27)

Again the proof is left to the reader. From (1.13), (1.17), (1.20) and (1.25) we conclude
that:

" =nu* =0 (1.28)

By virtue of (1.28) and the equation of continuity [( —-g)" 29““];‘: = 0 we can define a func-

P

tion {:

(“g)l/ZQ“a = Edﬁy&f,ﬁ’?,yf,a- (1.29)
For the proof see [10]. It is easy to show that { is defined exact to the transformation:
{=>{*={+Q¢Em, (1.30)

where  is an arbitrary two-argument function.
By contraction of (1.19) with (1.29) we obtain the third equation:

v 2
g = —g“zﬂ—z[.f’“’ S, 8) ] . (1.31)

ax°, x', x2, x7)

It is easy to verify that if (1.19) and (1.29) are assumed then the equations of motion (1.13)
and the equation of continuity are just identities.
The functions (t, £, , {) define a set of geometrically distinguished coordinates.
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d) Geometrically distinguished coordinates and the metric tensor

Let us execute the following coordinate transformation:
(%, xt, x¥, x%) = (1, &, n, ). (1.32)

By virtue of (1.31) this transformation is not singular. We have chosen t to be the time
coordinate as gradient 7 is the only one having non-zero projection on the #* direction;
see (1.19) and (1.29). In these coordinates (1.31) reduces to:

g=—p2H? (1.33)

while (1.19) and (1.29), with the help of (1.33), simplify to:
u* = H[1,0,0, 0], (1.34)
u, = H'[1, x2,0,0]. (1.35)

The coordinates (1.32), as is seen from (1.26)—(1.27), can be transformed as follows:
X0 = x¥—S(xY, x¥), x! = F(xV, x2), x? = G(x'', x?'), x® = x¥ +T(x", x*), (1.36)
where T is arbitrary while S, F, G obey the equations:
GF, —x* =8,,GF, = S,, (1.37)
with the integrability condition:
F1.Gy —FyGy = 1. (1.38)
The vorticity vector (1.21) in the coordinate system (1.32) assumes the form:
w® = [0,0,0, pH']. (1.39)

Since u, = g,u° the equations (1.34)—(1.35) yield some information about the metric
tensor:

8oo = H2,8y, = X*H™?, 852 = goa = 0. (1.40)

Ovr approach cannot give a satisfactory model of the interior of a star. First, the
fluid inside a star certainly is not perfect bacause it is viscous and heat-conducting.
Second, the particles of the fluid have different masses, so one may doubt whethet o in
(1.10) is a well defined quantity. And third, in the course of nuclear reactions the rest-
-mass of particles is constantly converted into energy. Therefore (1.4), where n should be
understood as the number of particles minus the number of antiparticles, is not equiv-
alent to the equation (ou”),, = 0. So we should rather have in mind the applications of
our results to cosmological models.

e) Statement of the problem

The functions in (1.36) depend only on two variables: x! and x2. Therefore the idea
arises: if the metric tensor would also depend only on x! and x? (in the coordinate system
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used) then may be the transformations (1.36)—(1.38) would allow us to simplify the metric
further. So we assume:

0 b7}
6_;‘6 glﬁ = E glﬂ = 0. (1.41)

These conditions are covariant with the transformations (1.36)—(1.38). From (1.34) and
(1.39) we see that they are equivalent to:

augaﬁ = awgaﬂ = Oa (142)

where 8, = u® 8/0x°, 8,, = w* 0/0x".

The first of (1.42) means that our metrics have the timelike Killing vector collinear with
the velocity field of matter. This is why we call them flow-stationary. This assumption
implies that the expansion and shear of the velocity field vanish. The second of (1.42)
means that the space-time is homogeneous in the direction of the vorticity vector. This
property we call vortex-homogeneity.

We emphasize that (1.41) is the only simplifying assumption which we make through-
out the paper. From now on we maintain full generality.

2. First integrals of the field equations and their consequences

a) Specialization of the coordinate system

We see that one of the functions F, G in (1.36) is arbitrary and once it 1s fixed, the
other is determined by (1.38). The function § is then fixed up to a constant by (1.37).
Together with T we have got two arbitrary funcdons in (1.36). We expect therefore
that by a suitable choice of these two functions we will be able to put two more components
of the metric tensor equal to zero.!

The set of equations g,.,- = 0 and g,.3- = 0 does not require any limitations on the
initial metric (1.40). It can be represented in the form:

Ty = —(813/833) F1-—(823/832) G 1, @.1n
(£11833—G*800833—813) FF 34812833 813823) (F 1 G2+ F 2. G )+
+(822833—823)G1.G 2 = 0. 2.2)

We know that g5; # 0 because w” is a spacelike vector different from 0 (by virtue of (1.25)
and theorem 3) and (1.39) implies:

0 > g w'w = p*H 2g;;. 2.3)

(1.38) and (2.2) constitute the set of equations for F and G. It can be shown that,
irrespective of the form of the metric components, this set does have solutions. To show

! However for a general metric (1.40)~(1.41) these components cannot be chosen arbitrarily. The
reader is asked to verify that the set of equations g4-3- = 0, g3 = 0 requires an integrability condition for
the function T which is equivalent to an additional equation (g13/g33),z == (£23/833),1-
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this one should solve the set algebraically for partial derivatives of one of the functions,
e. g. G, and substitute the resulting expressions in the integrability condition G ;.. —
—G ;.1 = 0. One obtains then a well defined second order partial differential equation
for one function F.

So we have shown that under the assumptions (1.41) there exist such coordinates x!
and x? that the metric given by (1.33) and (1.40) has the additional properties:

g2 =813 =0. (24)

These coordinates are not unique. When (2.4) are fed back in (2.1) and (2.2) we obtain
the equations for the transformations (1.36)-(1.38) preserving all the properties (1.33),
(1.40) and (2.4):

(gu"ngoo)gsaF,l'F,2'+(822833"g§3) GG, =0, (2.5)
T,l’ = _(g23/g33)G,1" (2.6)
From now on there is no arbitrary function at our disposal. All the functions in (1.36)
are submitted to the equations (1.37), (1.38), (2.5) and (2.6).
b) The fundamental first integrals of the field equations

Owing to (2.4) a few of the field equations become quite simple and can be integrated.
We give them below. To arrive at them one should use (1.33) which means that
92[(3‘2)2}1—2 “gu] (gzzgss—ggs) =1:

0=R3=1% gH[gsz_l(g”gn,l—~g23g33,1)l2, 2.7

0=R3=-1% QH[QH«I(gssgzs,l —823833.1].2> (2.8)

0=R; =1} QH(QH_3g33),2, (2.9

0= R5 = — } oH(eH ’g33),1. (2.10)

The first two of them imply that:
823 = K(x?) g33, (2.11)
where K is an arbitrary function of one variable. The other two yield:

833 = Go™'H?, (2.12)

where G = const. (2.3) implies that:
G < 0. (2.13)
(2.11) and (2.12) are the first integrals we have been searching for.
¢) Further specialization of coordinates
Execute the following coordinate transformation:

X0 = x4 xUx%, Xt = x¥, x2 = —xt, X = x¥— [K(x?)dx?, (2.14)
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where K is the function from (2.11). One verifies easily that (2.14) is of the form (1.36)
and fulfils the equations (1.37), (1.38), (2.5) and (2.6). In addition it yields:

83 = O. (2.15)

So from now on we have the following metric (see (1.40) and (2.4)):

H?  x*H? 0 0
H? g, 0 0

[g] = | o 6a 0 (2.16)
0 0 0 Go-' H?

The coordinates in which the metric tensor has the form (2.16) with (1.33), are still not
unique. They are determined up to the transformations (1.36)-(1.38) where T = const
and:

(811—G?800) F1-F 2 4822G .G, =0. Q.17

These coordinates will still be used in the paper, with some specializations in Chapters
4-5, 6 and 7.

The coordinate transformations, preserving our knowledge about the metric tensor
on every step of integration of the field equations shalil be called “admissible transforma-
tions”. At present all the transformations (1.36)-(1.38) with (2.17) and T = const are
admissible. Two special cases will prove to be important later, so we investigate them
separately.

d) Transformations preserving the x! and x? lines and transformations
interchanging x' and x?

The transformations (1.36)—(1.38) in which F = F(x!), G = G(x?) preserve the lines
x' and x?. From (1.38) and (2.17) we see that: (F, = 0) < (G, = 0). For such trans-
formations the equations (1.37), (1.38) and (2.17) are easily integrated to give:

X0 = x¥ —ayxtV' 48, x! = axV+ B, x2 = ax¥ 4y, x* = x¥ +5, (2.18)
where «, ..., ¢ are arbitrary constants, o # 0.
The transformations (1.36)—(1.38) in which F = F(x?), G = G(x') interchange the

lines x' and x. One sees again that: (F;. = 0) < (G, = 0). This time integration of
(1.37), (1.38) and (2.17) yields:

X0 = X0 4 xtx? —ayx? 46, xt = ax¥ 4+ B, x* = —alxt 4y, X3 = x¥4e. (2.19)

3. The complete set of the field equations and classification of the solutions

a) The base of differential forms

We shall use the method of computing the Riemann tensor given in [17], [18], [19]
(and many others). The signature requirements imply [(x?)?H2—g,,] > 0. g2, < 0.
Therefore we introduce new functions / and k:
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g1 = (P)?H 2, (3.1)
de
22, = —k, (32)
where & > 0, k > 0. (1.33), (2.16), (3.1) and (3.2) imply:
—GohkH?® = 1. (3.3)

Now, substituting (3.1) and (3.2) in (2.16) we obtain:
ds®* = H 3 (dx® +x2dx")* —(h'2dx"? —(K"2dx*)? —-[(— Go 'H?)'2dx*]%.  (3.4)
Consequently, we have the following base of differential forms:
e’ = H™Y(dx® +x%dx"), e? = kM?dx?,
e = h'%dx!, e = (=Go™'H?)'dx>. (3.5

In this base the metric (3.4) assumes the form ds? = ne'e’, i, j =0,1,2,3, where
ni; = Diag (+1, —1, —1, —1). Proceeding in the standard way we can compute the
forms of connection and curvature, and then find the scalar components of the Ricci
tensor RY.

b) The right-hand side of the field equations

We shall prefer a form of the field equations different from the standard one. First,
we have to translate them into scalar components, i. e. substitute T} = e} ¢/ T} instead
of Tg where e, are the coefficients of the forms e' = e, dx” given by (3.5), and 7 are given
by e, e} = ;. Next we change to the form:

R = 5 (1 5ot + a5, (36
where T = T! and x L gn kjc*. After easy computation we find that, in consequence of
(1.1, (1.12), (1.34) and (1.35), the equations (3.6) assume the form:

RG = (3 oH +plc’) + 4,
R} = R} = R} = k(—} oH+p/c?)+ 4
Other R} = 0. (3.7
¢) The complete set of the field equations

Substituting the explicit expressions for R§~ in (3.7) we find:
RS = QhH) "(h™‘'hH ;—k™ 'k H +H 'H3—2H ;;+0 ‘0 ,H )+
+QkH) N (=h™ hH +k Tk H , + HT'H, —2H 55+ 07 "0 o H 5)+

+(2hkH? ™ = k(3 oH + p/c®) + A4, (3.8)
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R} = (4hk) " '[—h"'h%+2h 33—k~ 'h ok y—h (0" te . —H ™ 'H )]+
+(4h%) [ —hk™ A 4+ 2hk ™ ey — kT h k k(07 o, —H T H )]+
+(4h)"'(B0"%0% =207 0,1  +1IH 2 HA +2H ™ 'H || — 60" Yo \H™'H )+
—(2hkH?) ™' = k(~1 oH + p/c?)+ 4, (3.9)

R; = (16h%k) " ?h y(0 ™ "0, —H ™ 'H ) +(16hk>) ™ "%k (o 0, —H 'H ) +
+(16hk) 2307 %0.10,,—20 " "0,1,+ 11H *H (H ,+2H 'H , +
—30 o H 'H ,;~30"'0,H 'H ) = 0, (3.10)
R} = (4hk) [—k™ "4 +2k  ,—h ™ h ik —k (0" "o, ~H 'H )]+
+(4K*) T [—h ™ kh% 42k Ykh 5, —h ™ h ok 3+ k(0 e, —H 'H 5)]+
+(4k) 130 205 =207 00+ 1IH P H, + 2H 7 1 H 5, —607 Y0 ,H 'H )+
~(2hkH*)™! = k(=% oH+p/c?)+ A, (3.11)
Ry = (4" "o o —H 'H)QH 'H +h™‘h,—k 'k )+
+(4k) " e o, —H 'H ) QH 'H ,—h™'h,+k 'k )+
+(4h) " 'Bo Y0’ ~20 0.1, +3H *HL +6H 'H | — 60" Yo \H'H )+
+(4k) " 'Bo 0% 20" 0, +3H P H,+6H 'H ,,—60 ‘0 ,H 'H ;) =
= k(—% oH +p/c?) + 4. (3.12)
The equation R? = 0 is identical with (3.10), and all the others are fulfilled identi-
cally. To see this one should use the following identity, resulting from (3.3):

o 0+ hth k- tk 4 3HH, = 0,i = 1,2, (3.13)

d) Classification of the solutions

We divide the solutions of the equations (3.8)~(3.12) into 3 families characterized by
the following conditions:

02 # 0 # o, family Ia, (3.19)
0,1 # 0 =g, family Ib, (3.15)
01 =0 o, family Ic, (3.16)
01 =0 = o, family II, (3.17)
0. #0,H=1,p =0 family IIl. (3.18)

A comment about family III is needed. All the time we dealt with a perfect fluid in
isentropic motion and therefore H was a function of ¢ (see (1.11) and (1.12)). Hence
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H; = (dH|dp) 0; and in families I-II the partial derivatives of H vanish or do not vanish
only together with the corresponding derivatives of g. In particular in family 11 H = const.

However we have noticed after (1.13) that in the case of dust the equations of motion
can be obtained from (1.13) by substituting H = 1 and abandoning the assumption
¢ = o(p). The whole argument from (1.13) up to (3.13) can be thus repeated for dust
because we have never used the fact that H = H(p).

The differentiation between the families I, II and III is clearly invariant, while the
criterion of splitting up the family I is not. We show in the next chapter that families
Ia, Ib and Ic can be transformed into one another by admissible coordinate transforma-
tions, thus they are geometrically identical.

4. Invariant classification

a) The idea of the proof

Families Ia and Ib are easily seen to be identical. Transformations (2.19) interchange
them. Transformations (1.36)-(1.38) with (2.17) and T = const lead from the family 1b
or fc to Ia if the functions F, G, S depend both on x! and x2. The only difficult point is
to prove that an arbitrary solution of the family Ia can be 1educed to a solution of the fa-
mily Ic by means of the (1.36)-(1.38), (2.17) transformations.

If we have 0 = o(x!, x2) before the transformation and ¢ = o(x?)) after the transforma-
tion, with ¢ ,. # 0, then x?" = v(g(x?, x?)) where v(0) is the function reciprocal to o(x?*).
So we should verify whether there exist such functions s(x!, x?), u(x!, x2) and v(o) that
the transformation:

x0 = x0—s(x!, x2), x! = u(x', x?), x*" = v(p(x!, x?)), x> = x3, 4.1)

is consistent with the equations (1.37), (1.38) and (2.17). These equations concern the
transformation inverse to (4.1). Notice that (1.38) means that the Jacobian of (1.36) is
equal to 1. Since the matrix [x%.] must be the inverse of [x%] we find easily the following
equalities:

Fp=00, Fa=-u; Gp=-ve, Gp=u, (4.2
where ' = dv/do. When we substitute (4.2} and (3.1)—(3.2) in (1.38) and (2.17) we obtain
[(GQkHa)—1“,29,2_1\'“.19,1]“’ =0,

(0 u—0u v = 1. 4.3)

If we solve the set (4.3) algebraically for u; and u, and then substitute the results
in the integrability condition u ;,—u,; = 0 we obtain:

()~ i +(GQk2H3‘2,21 - 93)'3‘[{@9’62#9,21 + 9,22) (G9k2H39,1 1+0,22)+

+269k2H39,19,2(k_ik,lQ,z_k_lk.20,1 —20,:)] =0. (4.4
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This is an equation for the function v(p). It does make sense if the term ( )2 -[ ]
is a function of p. Using the equations (3.9)-(3.11) one can prove that this is really the
case. The proof is given in Appendix A.

b) Invariant classification

The conclusion of this chapter is that there are the following physically different
families of solutions of the field equations (3.8)—(3.12):

Family T in which we can choose coordinates so that ¢ = o(x?) and H = H(x?);

Family I1 in which ¢ = const, p = const and H = 1+ p/(c?0) = const;

Family IIT in which p =0, H = 1, p # const.

5. The first family of solutions
a) The group of admissible transformations

The functions ¢, H, p are scalars and so g, is a covariant vector. The condition
0., = Olisnot covariant, it is preserved by those transformations (1.36) for which G ;, = 0.
In Chapter 2d we have shown that they are given by (2.18). Therefore this is the group
of admissible transformations for family L.

b) Algebraic form of the metric tensor and the fundamental differential
equation

Let us substitute ¢ ; = H; = 0 in (3.10). We obtain:

(4;‘!!/2}(3!2)-11(’1(9_10,2_H_IH,Z) = 0' (5.1)

If o7'¢,~H"'H, =0 then H = const * p. If we substitute this in (3.9) and (3.11)
and subtract them, we get —2H ,22/(kH 2) = 0, and consequently H = const. Such solutions
do not belong to the first family. Therefore (5.1) implies:

k,=0. 5.2)
If o, = H; =k, = 0 then (3.13) yields at once:

h,=0. (5.3)

Hence all the components of the metric tensor are functions of one variable x% and
(3.8)~(3.12) reduce to the set of ordinary differential equations. We shall integrate them.
Subtract (3.9) from (3.8) and substitute k = —1/(GohH?) from (3.3). The resulting differen-
tial equation after integration yields:

h = W(x*)|(GH?), (54
where:
W(x*) = (G+x)x*)?*+B'x*+E', B',E' = const. (5.5)
Substituting (5.4) in (3.3) we obtain:

= —(WoH)". (5.6)
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Now subtract (3.12) from (3.9) and use (5.4) and (5.6) in the resulting equation. After
integration we get:

H? G(x*+C) , ,
o = Dw—exp —— dx*}, C,D = const. s.7

(The symbol of an integral whenever used in the paper denotes just a primary function
without any new constant.) If we execute the transformation (2.18)-with y = —C then C
in (5.7) vanishes and the constants B’, E’ in (5.5) change their values. Their new values
shall be denoted by B and E without primes, whereas in (5.7) we have

H® Gx* |, ss
e __x ___.x .
e=D exp||-d (5.8)

From now on, however, the group of admissible transformations has one parameter less
and is given by (2.18) with y = 0.

Finally subtract (3.11) from (3.9) and use (5.4), (5.6) and (5.8). After multiplying by
(—2k) we obtain

4H'H 5, +8H *H% —4W ™ 'W ,H 'H ,+4Gx’W 'H 'H ,~ W™ 'W ,,+
+WTIWI-GX*W AW, +GW ™! = 0. (5.9)

It is a differential equation for the function H which we call “‘the fundamental equation”.
We can substitute:

H = u'3, (5.10)

Then, if we multiply (5.9) by 3u, we obtain a linear homogeneous equation for u:

u’zz_ —‘*‘;’V_w“‘“ u,2+ Z

W,~Gx? 3( W, N W; Gx*W, G 0 511
w TwrT TwE Tw)t T G11)
Each solution of (5.11) determines algebraically through (5.10), (5.8), (5.6), (5.4) and

(3.4) all the components of the metric tensor. It has the following form:
ds? = H-2{(dx°)? + 2x%dx°dx" + [(x?)* ~ W(x?){G|(dx*)*} +
+(WoH) Y (dx?)*+ Go~* H3(dx3). (5.12)
c) Consistence of the field equations

To obtain (5.4), (5.8) and (5.9) we subtracted the equations (3.8), (3.9), (3.11) and
(3.12) from one another, so in each case the terms with pressure on the right-hand side
cancelled out. We have used three such equations and in the fourth one the pressure must
appear. Since (5.4), (5.6), (5.8) and (5.9) completely determine the metric tensor, one might
expect that the fourth equation of the set (3.8)-(3.12) just defines the pressure. But (1.12)
implies p, = c¢?oH , and hence:

plc® = | oH »dx*+ po/c?. (5.13)
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Therefore we must check whether the equations (3.8)—(3.12) define the pressure consistently
with (5.13). It turns out to be true. The proof is sketched in Appendix B.

d) Conditions for the physical reasonability of the solutions

The solutions of (3.8)-(3.12) to be physically reasonable have to obey the following
conditions:

1. All the components of the metric tensor and the physical scalars (o, p, H, etc.) must
be real functions.

2. o, p and H must be positive or vanish.

3. In the whole region of space-time on which the metric tensor is defined (except
possibly for some sets of measure O, where a singularity appears) the signature of the
metric must be (+ — — —).

We investigate these conditions.

1. Since we deal with real functions and real variables this condition is, in general,
fulfilled automatically. However, in the solutions of type 1 (see classification in Chapters
5f—5k) we introduce complex numbers artificially to simplify the computations. As (5.11)
is a linear equation we can always take real combinations of the solutions.

2. We ensure that H > 0 when we substitute |H| instead of H everywhere. We are
allowed to do it, for (5.9) may be rewritten in the form:

2H H(H?) 25+ H “H),—2W ™ 'W,H ™ *(H?) , +2Gx*W ™ H X (H?) , +
~WWy+ W W5 —GX*W W, +GW ™! = 0.

Here, and also in the metric (5.12), H appears only in even powers, so the substitution
of |H| instead of H changes nothing at all. If A > 0 then ¢ > 0, in consequence of (5.8),
means:

DIW > 0. (5.14)

It depends on the type of the polynomial W whether this inequality holds. If ¥ has two
real roots, (5.14) may be fulfilled only in some range of values of x?. Qutside this range
¢ would be negative. In this case we have to match some exterior solution to our interior
one so that the complete metric has no singularities. This is done in Chapter 9 (part two
of the paper).

Since H = H(x?) we can introduce a new variable x? = x2(H) in (5.13) and then:

plct = Jo(H)dH+pg/c?. (5.15)

As we have ensured that o > 0, the integral of o is also positive. Thus p is positive if
the constant p, is not too much below 0. This may always be assured by including a frac-
tion of pg into the cosmological constant.

So the condition 2 requires: substitute |H| instead of H everywhere, and bound the
range of value of x? so that (5.14) holds.

3. This condition means that goo > 0 (which is fulfilled automatically), g008,; + 22, <0,



427

g2 < 0 and g;; < 0. The inequality for g;3 is ensured by (2.13) and the condition 2.
£, < 0 implies, by virtue of the condition 2:

W(x?) < 0. {5.16)
Together with (5.14) this means that:

D <0 (5.17)

The inequality goog,, —g2; < 0 is now fulfilled automatically.

e) Classification of the first family into types

(5.11) has various types of singularities corresponding to W having two complex
roots, two real roots, one double root and so on. In each case the solutions of (5.11) and
the results of integration in (5.8) are different. There are six such cases which give rise
to the classification of the first family into 6 types. We give the corresponding solutions
of (5.11) in the following sections. Sometimes a new constant is introduced for con-
venience :

def
a = G/(G+k). (5.18)

The reader should have (5.8), (5.12) and (5.18) in mind when studying the tables. The
constants M, N are always real and never vanish simultancously. When hypergeometric
functions appear, we omit the special cases corresponding to integer values of parameters.
If needed, they can be found with the help of the references given. Some interesting special
cases will be discussed in Chapter 13 (part two of the paper).

TABLE 1

Type 1 solutions

H = |Mu-+u*)—iN@u—u*)/>?

[ b Bl yFﬂt’ﬂ‘ wtp 1o x2—b
““\ o=k ) b=k TRTTm TR IR T

K== K¥ == const, a= const > 1

; a {
i

¢ = tla—3x(a*—3a-3)"?)
@ §

2 ]
ﬁ’} =G ey (T p-2F [@®b6>+ (b~ ¢' )b~ —ab)]'/?}

*

B>

! Gx? Re b x2—Re b
| X dx? = ~a-ln [(x*—Re 57> ~(Im b)*]1+-a — arc tg| ————
2 Imb

! 1: L {2b+(a—2)c’ +[ac’>+(b— Wb~ +ac)] 3} = {
v 206-c) ‘ h

W Iméb
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f) Type 1 solutions
G+x #0, 4 d:-efBz—4E(G+1c) < 0. (5.19)
W has two ~omplex roots x> = b and x* = ¢’ = b*, and may be represented in the form:
W = (G+k)(x*—b)(x*—C'). (5.20)

G < —k by virtue of (5.16). For definiteness we assume Im (b) > 0. Here we can follow
the standard methods of solving the Riemann equation [20], sometimes called the equation
of Gauss [21] or Papperitz [22]. The solution of (5.11) depends on the hypergeometric
function of a complex variable and complex parameters. We omit the special case when
u = u*.

g) Type II solutions
G+x #0,4>0. (5.21)

W has two real roots x2 = b and x? = ¢’ > b, and may be represented in the form (5.20). This
time however the sign of W depends on the value of x2. If we want the condition (5.16)
to hold for b < x? < ¢’ then G > —«k, if we want it to hold for x> < b and x? > ¢’ then

TABLE II
Type 11 solutions

H= |Mu + Nu,{*/®
u is given in Table L.
K=const # b,¢’; a<0 or a>]l.

u is the second linearly independent solution of the Riemann equation for #. The formulas for «,
o', B, B, v, ¥ are identical with those of Table I. Now no analogue of the equations y = f*
and " = f’* holds.

G 2
X dxt = — [biInix?~bl—c In|x?—c|].
W b—c

When a < 0 the solution has the proper signatute for b < x2 < ¢’; whena > 1 —forx2 < b
and x% > ¢’.

G < —k. In each case we have to match some empty-space metric to avoid the singular-
ities x> = b and x? = ¢’. Here we can repeat the same reasoning which we used for
type 1. The only difference is that now all the numbers are real.

h) Type IIl solutions
G+x #0, 4 =0, W) #0. (5.22)
W has one real root x2 = b # 0 and is of the form:

W = (G+K)(x*—b)>. (5.23)
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TABLE 111
Type 11 solutions

H = |Mu; + Nuy|/3

3 b
Ui = (.X«'z_b)qi F(E —qi,4—ﬂ”‘2llis “%")a i= 1, 2.

x2—

a= const > 1

qi1
} = }B—at(@—3a-+3)1?
qz
Gx? ab
dx*=aln x*—b|—
w x*—b

Again (5.16) implies G < —«. Here the hypergeometric function is substituted by the
confluent hypergeometric function.
i) Type IV solutions

G+x #0,4=0, W({0)=0. (5.24)
Now W has the form:

W = (G+x)x*)? G < —«k. (5.25)

In this case (5.11) is integrated at once. The solution is a limiting case b — 0 of type HI
solutions.

TABLE IV

Type 1V solutions

H = | M(x?)11+ N (x?)a2|1/3
a>1, g, and g, are given in Table 1II
¢= —(D/K)(a~1|x**"2 H®, D= const <0 j
I
i) Type V solutions

G+xk =0, B#0. (5.26)

W degenerates to (Bx2+E). Now it is convenient to introduce E, by Eq = EB¥«. If
we execute the admissible transformation (2.18) with y = 0 and « = B~ - k then we see
from (5.12) that (Bx?+ E) changes to x(x2+E;) and D changes to D' = k2B-2D. So, with
no loss in generality, we can assume B = k. Then:

W = xk(x*+Eo) (5.27)

but now only those transformations (2.18) are admissible, for which y = 0 and « = 1.
We will see in Chapter 8 (part two) that this is the symmetry group for type V solutions.
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Again the confluent hypergeometric function appears. (5.16) here means that:
x? < —E, (5.28)

so we will have to match some empty-space metric to our one in order to avoid the
singularity x? = E,.

TABLE V
Type V solutions
H= [Mu, + Nuy|'/?
Ui = [oxp (x*+Eo)] (= x*—Eol¥ F(gi+Eo—1, 2+ Eo—1, —x*—Eo)  i=1,2.
q’}= Y2 Eo(E2—Ey-+1)42]
qz
o= —(DjK) e *(~x2—Eg)Eo~1 H5 D= const < 0
The signature is proper in the region x*> < —E,.
k) Type VI solutions
G+k =B =0. (5.29)
Here W degenerates to a constant; and in consequence of (5.16):
W = E = const < 0. (5.30)
TABLE VI

Type VI solutions

H= |Mu,+Nu2P/3

_F3 1 K(Z)z
“w=EMg T EY
7 3 4
— x*F 2y2
Ha = X <8’2’2E(x))

D K
== ——eXp| — — (¥*)* |, D,E= const <0
e Eep[ ZE():I

6. The second family of solutions

a) Reduction of the problem to one partial differential equation

The second family is defined by p = const, p = const, H = 1+p/(c?g) (p not
necessarily different from 0). Substituting this in (3.12) we find immediately:

1
Aziic(g— c%) 6.1)
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In consequence of (6.1) and (3.3), (3.8) yields:
G = —2x (6.2)

(3.10) is fulfilled identically. Substituting (6.1), (6.2), (3.3) and (3.13) in (3.9) or (3.11)
we obtain an equation which can be written in the following form:

(1/u)y25+ th11 — (20 H)''? = 0, (6.3)

where k = (2xoH?)"*uand h = (2koH?) " #u1. So the set of the field equations (3.8)~(3.12)
reduces here to one equation (6.3). We prove in Appendix C that this guarantees the
existence of such a set of coordinates in which u = u(x?), w,; = 02,

b) The group of admissible transformations

All the physical scalars as p, p, H are constant. The function u is not a scalar. Therefore
the argument from Chapter 5a would not work here. The full group of admissible trans-
formations is given by (1.38)~(2.17) with g,4(x?) and is larger than (2.18), which constitute
a subgroup of admissible transformations. We will see it in Chapter 8b (part two).
¢) The explicit form of the solution

When u = u(x?), (6.3) is integrated at once to give:

ut = (ko/2H)V*(x?)?>+ Ax*+ B, A, B = const. 6.9

If we make now the transformation (2.18) with y = —A - [H/(2x0)]*/? then 4 in (6.4)
will vanish. So we can assume A = 0, but then (2.18) are admissible only with y = 0 (still
this is only a subgroup of admissible transformations).

It seems that we have obtained three “types” of metrics according as B > 0, B = 0,
B < 0. We can write them as follows:

ds? = H™*{(dx° +x*dx")> -3 [(x*)* +ea®] (dx")*} +
—(eH[(x*) +2a”]}™!(dx*)* —2x0 ™ "H(dx’)%, (6.5

where @ = const # 0, &£ = +1,0, —1. However all these “types” represent the same
solution in three different coordinate systems. We prove it by direct verification.
Take (6.5) with ¢ = —1 and execute the transformation:

x° =2t~ /2¢, x! = (/2/a)p, x> = ach(2r), x* =z (6.6)

The result is:
ds>, = 4H™?dt*+8 \J2H " * sh® rdtdp+4H *(sh* r —sh? r)dg” +

—4(xpH) ™ Ydr*—2kp 'H3dz>. 6.7)

2 This is the reason why we need not solve the equation (6.3). Nevertheless it may be interesting
from the purely mathematical point of view. It does not seem difficult, but in spite of many attempts (not
only mine) no method of searching for its general solution has been found.
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Now take (6.5) with ¢ = 0 and execute the transformation:
x0 = 2t— /29 +(2/2/K) arc tg [e " *'(1 —cos K¢)/sin K¢],
i =§/_§_. sin K¢ sh 2r
K ch2r+cos Kpsh2r’
x2 = c¢h 2r+cos K¢ sh 2r,

x3 =z, K = (ko/ H)'2, (6.8)

After a tedious calculation it appears that dsj transformed this way is identical with
ds%, given by (6.7).

The coincidence of ds3 and ds% | may be shown in the same way, but in (6.6) (ch 2r)
should be substituted by (sh 2r), whereas in (6.8) (sh 2r) and (ch 2r) should be interchanged,
(sin K¢p) should be substituted by (sh K¢) and (cos K¢) by (ch K¢).

So there is no loss in generality if we put ¢ = 0 in (6.5). Finally, we have obtained
the following unique solution:

ds? = H-2[(dx° +x2dx')? — }(x2)*(dx')?] — [ ko H(x?)* ]} (dx?)? — 2xp~  H3(dx?)?,

L 14
H = 1+p/(c’p), A= éx(g— ?) , 0, p = const. 6.9)

Notice that when p = c%p then A = 0. When p = 0, A is necessatily different from 0.

The metric (6.9) has been found for the first time by Raval and Vaidya [9]. It is a gene-
ralization to the case of constant but non-zero pressure of the Gédel solution [11]. If
p =0 then H=1 and (6.9) is precisely the metric of Goédel in a different coordinate
system. The transformation (6.8) is taken from Godel’'s paper. The three metrics (6.5)
were known to be identical to Ellis [19] and Wainwright [6].

Compare (6.9) for p = 0 and p # 0. The difference between those cases consists in
a different interpretation of constants appearing in the Ricci tensor. We can assume p = 0
and interpret the coefficient of (uu,) as ¢c? or we can assume p # 0 and interpret the
same quantity as (pc?+p). Thus these cases are different for qualitative physical reasons,
but geometrically they do not differ, as a simple coordinate transformation yields H = 1
in the metric of (6.9) (with o’ = ¢H). Notice finally that (6.9) is a limiting case of the
type IV solution from the 1-st family. If we substitute a = 2 and M = 0 in Table 1V
then we obtain (6.9) with H = N3 and ¢ = —(D/k)N53,

7. The third family of solutions

This family contains dust. We notice in the conclusion of Appendix A that here
also a transformation like (1.36)—(1.38), (2.17) may be carried out, which yields ¢ = o(x?).
This property is preserved by the transformations (2.18).

If p == o(x?) and H = 1 then (3.10) and (3.13) show immediately that:

h,l = k'l = 0. (7'1)

So again the field equations reduce to ordinary differential equations.
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Using (3.3) with H = 1 in (3.8) we obtain:
~HG+K) = 4. (12)

If A # 0 then G # —« and p = const which is the case of the second family. Therefore
(7.2) implies:

= —x, A =0. (1.3)

Now all the other field equations (3.9)3.12) are easily integrated with the help of
(3.3), (3.13), (7.1) and (7.3). The result is:

2 2 -1
ds? = (dx®+x%dx")* — (3‘— +d) (dx)?— [xa' (x +d)] e V¥ (dx?)? -

bl bl
K _bx2, 5 3.2
- e (dx®)?, (7.4)
o =daée™, (7.5)
with a’, ', d = const, a’ > 0 # b’. If we use the transformation (2.18) with « = —b’,

y = —b'd and denote a i exp (—5'2d) then in (7.4) and (7.5) we obtain
ds® = (dx°)? +2x2dx%dx" + x*(x2 + 1) (dx")? + (xax?) ™ Le*(dx*)* —xa™ ‘¥ (dx*)?,

x2

p=ae ™, a=const >0, A=0. (7.6)

The metric has the proper signature in the region x? <0.

This solution has been found by Lanczos [3], and then rediscovered by van Stockum
[23] and Wright [24]. Lanczos and Wright have found also the generalization of (7.6)
to the case A # 0, but this generalization did not appear among out metrics because it
does not fuifil the second assumption (1.41). We prove it in part three.

Notice finally that (7.6) is a limiting case of the type V solutions from the first family.
If we execute in Table V the transformation x° = x% +Eox!, x? = x* —E,, x' = x',
x* = x* and then substitute M = 3, N = | we obtain (7.6) as a limit E, — 1, with D =
= —Kae .

APPENDIX A
The proof that (4.4) makes sense

From (3.3) we find h = —(GokH?)~'. We substitute this and H; = (dH/dg)p; in
(3.9) and (3.11). Then we subtract (3.11) from (3.9) and write the result in the form:

H’ 1\"!
GQk2H39,11+Q,22 = —(GkaHaé’ﬁ‘*‘Q,zz) (E - —) X

2
: 4 il +7 H” + H” (A1)
x| — —4— —_— + — .
o> Hp H*  H
Notice that H'/H— ¢! # 0, since in the contrary we have H = const : ¢ and from (3.10)
we obtain 2(hk)~1?92p ; @ , = 0 which, in the case of the family Ia, is a contradiction.
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Now we substitute h = —(GokH?' and H; = H' - ¢, in (3.10). We write the
result in the form

k_lk,19,2_k—1k,29,1“29,12 =
2 HI 1 -1 1 4 Hr +7H/2 + HII (Az)
= 20,102 H 0 92 Ho HZ H/

The left-hand sides of (A1) and (A2) are both present inside the square bracket in (4.4).
Let us substitute then (A1) and (A2) in (4.4). We obtain the following equation:

7// Hl 1 -1 1 H/ H/2 Hu
v ——-_) 4 4T+ o) =0, (A3)
v H 0 Hp H H

This is a well-defined ordinary differential equation for the function (p).
The above argument is true when H = 1, i.e. in the case of the family III. Then
{4.1)~(4.2) are also consistent with (1.37), (1.38), (2.17), and (A3) reduces to

—+-=0. (A%)

We make vse of this result in Chapter 7.

APPENDIX B

Consistence of the field equations

Substitute (5.4), (5.6) and (5.8) to any of the equations (3.8), (3.9), (3.11) or (3.12).
The result is:

H* (Gx? |, 1, 5
DW exp JT/V-dx —iGH +W2HH,2—‘WH’2+WHH’22 =

2 w

Now find H,, from (5.9) and substitute it in (B1). Then (B]) contains at most the first
derivatives of H. Differentiate that expression with respect to x? and use the fact that
D2 = ¢?pH,,. If we substitute again H ,, from (5.9) in the resulting equation, we obtain
the identity. This means that (5.13) and (B1) define the same function p, exact to an addi-
tive constant which may be compensated by p,.

1 H*¢ Gx? » P
= - kKD — exp de +K =5 +A. (B1)
¢

APPENDIX C

Specialization of coordinates in the family I
We have shown in (6.1)(6.3) that the metric has the form:
ds? = H-2(dx® + x2dx')? — h(dx')? - k(dx?)? —2xo~! H3(dx3)? (CD
with & and k given after (6.3). The group of admissible transformations is given by (1.36)-
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—~(1.38) with T = const and (2.17). After such a transformation 1/u changes to 1/u. We
want t/u to have the property that:

laefl 2 2
= ;F’r«}-uG,l, =o(x"), v, =0 €2)

The equations (1.38) and (2.17) concern the transformation x* — x*. Similarly as in Chap-
ter 4 it will be more convenient to consider the inverse transformation:
x% = x0—s(x', x2), x" = w(x, x?), x¥ = t(x!, x?), x*" = x°. (C3)
The same argument as that vused after (4.1) leads to the following relations:
Fop=13,Fp=—w,Gp=—1,,Gp=w,. (C4)
Thus the set of equations (1.38), (2.17) and (C3) is equivalent to:

1
—t,w+ut w,; =0, (C5)
u
t,2 W’I“'t‘l W’z = 1, (C6)
L, 2
—t+ut; = u(f). ((o1)}
u

If this set has solutions, there exists a function v(¢), i. e. there exists such an admissible
transformation after which 1/u = 1/u(x*), u ;. = 0.

All we demand from u(¢) 1s for it to be a function of one variable. Therefore an arbi-
trary constant may be added to v, and so (C7) is equivalent to two equations obtained by
differentiation of (C7) with respect to x* and x? respectively:

2
t t,t

(zﬁ— —’j) wy+2 222 pout 1 v, =0,
U u

12 t,t
(ri— —§~) u,+2 2222 oy, —0'(Dt, = 0. (C8)
u u
Now, the set (C5)-(C6) may be solved algebraically for w ; and w ,. If we substitute
the result in the integrability condition w,;, —w,; = 0 we obtain:
(“23,21+t,22)—2[(3,22“'“2‘,21) (t22—ut )+
+2ut t 5(u oty —u yt 4 2ut 1,)] = 0. (C9)

The set (C8)—(C9) can be solved algebraically for #,;,¢,, and ¢,,. The conditions
of integrability of the obtained set of equations are 1 ;,, — ¢,y = 0and ?,,, — 1 ,;;, = 0.
Both reduce to:

(L) 22+u 1y = 0"(2). (C10)
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However, in virtue of (6.3) this is a well defined equation for v: v''(t) = Qxg/H)'/? =

= const. Thus we have shown that v(z) with the property (C7) exists, and this completes
the proof.
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