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The photon propagator in the compensating current dependent quantum electrodynam-
ics, formulated previously, is investigated. In particular, it is shown that the vacuum
polarization tensor can be defined in the same way as in conventional quantum electro-
dynamics. Since the theory is fully gauge-invariant, this tensor is a transverse quantity before
renormalization and therefore there is no trouble with the quadratically divergent term
in II*¥, The problem of a proper definition of the current operator is also considered. It is
shown that the definitions proposed by Heisenberg and Euler, Schwinger and Brandt can
be generalized to the case of an arbitrary compensating current, described previously. The
definition of the current gives a certain prescription of the regularization, which ensures
transversity of the vacuum polarization tensor at every step of calculations. We also discuss
the difference between this method of regularization and other methods. A perturbation
expansion of the current operator is calculated up to the third order and it is shown that
it is independent of the compensating current.

1. Introduction

In the previous paper [2] a general outline of the gauge invariant formulation of
quantum electrodynamics has been given. We have shown that local charge conservation
can be explicitly expressed by means of a certain kind of a c-number current o*, the
so-called compensating current, which can be thought of as a model of the sources and the
detectors of charged particles. Due to the presence of such a current all the propagators
and field operators become gauge-invariant and renormalizable in the state space with
positive definite norm squared.

Since the compensating current dependent quantum electrodynamics is a fully gauge
invariant theory, it would be interesting to investigate properties of those objects, which
are gauge independent also in the usual formulation. Some typical examples of such
objects are the vacuum polarization tensor and the current operator. It is known [6] that
the unrenormalized vacuum polarization tensor, when calculated in a most straightforward
way, contains a quadratically divergent term which violates the transversity condition.
This term occurs as one of the consequences of the violation of charge conservation law
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and it can be removed by means of, say, the Pauli-Villars regularization. Then, the regular-
ized polarization tensor can be renormalized with the help of the charge renormalization
constant.

In this paper we shall investigate properties of the current operator and the vacuum
polarization tensor in quantum electrodynamics with compensating current. In Section 2
a general expression for the photon propagator is given together with the differential
equation fulfilled by this object. Similarly as in the usual theory, the right-hand side of
this equation contains a propagator with two arguments equal. A correct definition of
such a quantity can be given in terms of the current operator. Its definition is a natural
generalization of the expressions proposed by Heisenberg and Euler [1], Schwinger {3},
and Brandt [4]. Namely, we replace the linear integral of the potential by an integral con-
taining the compensating current a*, just obtaining the expression given already in [2]:

j"(x) - léin:} e[a(x)e-iefd“Z[a"(z-X~§)—a"(2~x+§)]Az(Z)w(x_é)]. (1.1)

In this section we also introduce the vacuum polarization tensor IT** which is defined
in the same way as in usual quantum electrodynamics:

guv = AFuv+AFyAHlagav5 (12)

where %, is the photon propagator and 4g,, is the free photon propagator. We show
that the correct definition of IT*" can be given in terms of the limiting procedure strictly
connected with j#. In Section 3 we consider the problem of the quadratic divergence in
the vacuum polarization tensor. It turns out that the quadratically divergent term either
fulfills the transversity condition or does not appear in II**. In particular, it can be shown
that IT" is free of the quadratic divergence for the current @* equal to [7]:

nl

atk) =i

, n*=1 1.3
nk—ig " (1.3)

and for the compensating current describing the Coulomb gauge [2]. For other forms
of the compensating current the transverse quadratically divergent term is present in the
vacuum polarization tensor. In Section 4 we calculate the renormalization function which

cancel the singularities of (1.1). Finally, in Section 5 we calculate the perturbation ex-
pansion of the current operator up to the third order.

2. Vacuum polarization tensor and current operator

The starting point of our considerations is the formula for the perturbation expansion
of a general propagator obtained in [2]:

Gul,..uk[xlb LERE) xm ym meey yla Zl’ rery Zk]ad] = exp(_ieja'ﬂ)x

o* - i @ O
X 50 (zy) - 60 (zy) {(VWD e""(‘ ngAFJ) exp(-— JJDF Q) X

i{é S
X eXp (— —2~J 5 gF 5_;> CLATKE[ X1, -oos Xy Vs -5 yllad]}

(2.1)

J=0
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The notation is explained in detail in [2]. We will only remind here that D}“,Zv and @f,
are the free photon propagators corresponding to the external and' the internal lines
respectively. The photon propagator is defined as:

G2y, zalasl] = iGS[zy, z;5lasl], 2.2)
where the index C means that only the connected part of G,, must be taken into account.
From (2.1) we obtain:

52
Gu.lz1, zlad] = exp| —ie | ast ) i? ———— x
wlz1> 22la] P( f ) 52,180 (2,)

x {(V[sz])-l exp(- éJJAFJ) exp< [JAF 5(;)
(= [ L2t

Replacement of D{” and 2* by the Proca propagator 4 Fuv 15 justified owing to the gauge
invariance of C[sZ]. Therefore, the compensating current dependent gradient term will
not appear in D{” and @ (cf. formulae 2.14 in [2]). Performing the indicated functional
differentiation over J and using the following formula [8]:

(2.3)

J=0

é
= H .
35 %) Clo] = e Tr (Y K[x,x|#/])C[ ] 2.4)
we obtain:
gm[zl, zlael] = Apfz1—22)+e I d4WAFp}.(ZI —-w) Tr ('}’ZGv[W’ w, Zzla&(])c‘ (2.5}

This equation can be easily converted into the usual differential equation obeyed by the
photon propagator:

[~ g™(O., + 1) +0:,0. 19021, 22la] =

= 8;6W(z,—z,)+eTr (}’AGv[Zn zy, Z3las]). (2.6)
Since we shall investigate further the photon propagator in the absence of an externat
electromagnetic field, the propagators in (2.6) must be written in a form independent

ongf,. In this case G,,[z;, z,/a] contains no disconnected part. The right hand side of
(2.6) is expressed by the formal expression of the following form:

Tr (y*G\[2y, 241, zalasf]) = i Tr (OIT(y(z)P(z)A(22)) 10> =
= —iKO|T(@(z,)y"v(z1)A(z2)) 10). 2.7

Since this propagator, as it is written in (2.7), has no mathematical meaning (it contains
the product of two operator-valued distributions in the same space-time point) we must
be careful about its proper definition. It is obvious that the right-hand side of (2.6) is closely
connected to the current operator. The problem of the proper definition of this observable
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has been widely considered in literature [1, 3, 4, 9] and therefore we adopt these definitions.
Namely, we will use a generalization of the expressions given by Schwinger [3] and Brandt
[4], writing:

J4(x) = lim j*%(x; &), (2.8a)
&E—0

x: 8 = — g Tr [Y“F (x, x + &)+ P"F (x, x — &)] — CH(&) —

— C5(9)B,(x) ~ C5H(E)B, ()~
— C3M (OB, 10(x) — Co(E)"(X), (2.8b)
F(x, y) = T(p(x) exp (—ie | d*z(a"(z~x)—a*(z = y) A(2))F())- (2.8¢0)

It can be easily seen that main difference in our expression as compared with expressions
used up to now [3, 4] consists in using exp ( -iefas/) instead of a linear integral of the
potential. Singular renormalization functions C!*"(&) cancel the singularities which occur
in the first term in (2.8b) after putting £ = 0. Finally, the B,-field is given as the compensat-
ing current dependent gauge transformation of the Proca field A4,:

~

B,(x) = A,(x)— j d*z L @z =) A2). (2.9)

oz"
Therefore, if only the functions C, are chosen in a gauge-invariant manner, gauge independ-
ence of the current operator will follow from gauge independence of every term in (2.8)
separately. Although in the usual theory the singularities of the current operator depend
on the choice of gauge, we will show that due to presence of the compensating current
our renormalization functions are gauge invariant. On the other hand, since j*(x) is an
observable it should not depend on the compensating current, and we will show that
this is actually the case, all the a*-dependence being contained in the singularities which
are removed in the process of renormalization. It is clear from (2.8) that the right-hand
side of the photon propagator equation (2.6) should also be defined in terms of the limi-
ting procedure. We put therefore:

Tt (y*G,[21, 21, 2,0a)) = fim G Tr (G2, 2+, z2laD)+
é—b

+9*G,[z1, 2, =&, z,la])+ ...} (2.10)

The dots denote here the renormalization functions which must be taken into account
in (2.10) and which are, of course, closely connected to C; of (2.8).

The vacuum polarization tensor IT* is defined in our formulation of quantum electro-
dynamics in the same way as in the usual version of the theory:

Gulzi, 221a] = Ap,(zi—22)+ jd4w j d4UAFu;.(21 —w) X

x 1% [w, v|a]¥,(v, z,la]. (2.11)
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To separate the IT** tensor from (2.5) we must express the propagator G,[w, v, zla] in
terms of the vertex function. It can be written in the same form as in usual quantum
electrodynamics apart from the propagator corresponding to the effective external photon
line. It follows from the formula (2.13) in [2] that the free propagator connected with
an external photon line is given by:

DE(z—w) = [ d*2' 25z’ —w)dg,(z~2'), (2.12a)

)
A2 —w) = gu‘,&“)(z' —w)— P a(z' —w). (2.12b)

We can therefore write:
G,[w, v, z,la] = ie | d*x'd*y'd*v'GD[z,, v'|a]G[w, x'|a] x

xI*[x', y', v'|a]G[y’, vla], (2.13)
where:
GOz, v'a] = [ d*2" 22" —0)F [ 25, 2" |a). (2.14)

Perturbation expansion of the compensating current dependent vertex function I"®[a] can
be obtained with the use of the same Feynman diagrams as in conventional electrodynam-
ics. The only difference consists in the fact that expressions corresponding to the internal
photon lines are given by (formula 2.14 of [2]):

Di(w—w) = [ d*2d*z' 3, (z— WA, (2 —W)A¥(z—2). (2.15)

A vertex function defined in such a way obeys the generalized Ward identity in the usual
form:

% 2P, y, 2la] = [89(c—2)~ 89y~ 216~ [x, yla]. (2.16)

i 9z*

However, it is necessary to stress that equation (2.13) does not define the vertex function
unambiguously, the ambiguity being connected with the projective nature of the 4,,-opera-
tor. Using the divergence condition for the compensating current

k*akk) = i
it is easy to verify that 1, is a projector:
=1

and therefore its inversion does not exist. Thus, the vertex function I"°[a] cannot be defined
by simply cutting external photon lines in corresponding Feynman graphs, since this
operation is equivalent to multiplication by the inverse of gf{‘v). In spite of that it can
be shown that it is possible to define the a*-dependent vertex function in an unambiguous
way. This problem will be considered in a separate note. All we need here is the Ward
identity (2.16).
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We are now in a position to obtain an integral expression for the vacuum polarization
tensor analogous to the one given in the paper of Brandt [4]. It follows from (2.10), (2.11),
(2.13) and (2.14) that cutting the photon propagator ¢,, in (2.5) we obtain:

i
n*[w, vla] = lim {12— Jd“x’d‘*y’d‘*v' Tr (y*G[w, x'|all[x, ¥, v'|a] x

=0
x G[y', w+¢lal+7y'Glw, x'|aJl*[x', y', v'la] x
x Gy, w=¢&la]i, (v—v')+ } . 2.17)
Since we have assumed that ./, = 0, the vacuum polarization tensor is, in fact, a function

of one argument equal to w—v. Treating now x'—y’ and x'—v¢" in I'? as independent
variables we are led to the following expression for the IT*°-tensor in momentum space:

. ie* [ d*q . .
1*Tkla] = lim{— a8 4 et
el gio{z J o T

x Tr (y*G[q + kia}[4q, kla]G[an])L"(—-k)%— } . (2.18)

Formulae (2.17) and (2.18) are basic for further considerations.

3. Singularities of the unrenormalized polarization tensor

In this Section we consider in detail the problem of the singularities which appear
in the unrenormalized vacuum polarization tensor. It is well known that this tensor in
the theory without a compensating current, when calculated in a most straightforward
way, does not fulfill the transversity condition and can be written in the following form:

Hpv = Aguv+(guvk2_kukv)B‘ (31)

The gauge-dependent term proportional to A is quadratically divergent and we can see
that the transversity condition k*IT,, = 0 does not make sense. This difficulty can be over-
come by imposing the transversity condition only on the renormalized (i.e. physical)
polarization tensor.

In the charge conserving theory with a compensating current we hope that the
transversity condition is fulfilled from the very beginning, no matter by which method
the I1"-tensor is calculated. To show this explicitly we must write (2.17) in the following
form:

',e2
m*[w—old] = 1—2— lim fd‘*x’d“y' Tr (P*G[w—x'[a][x" —y', x' —vja] x
-0
x G[y' —w—£&a]+y*G[w—x"1a]l’[x' —y', x' —vla]G[y' —w+Ela]) +
2

+ % lim [a®@—w+&)— a®(v—w—&] Tr (*G[Ela]) + .., (.2)
&0
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where we have used the following formula:
Tr (y*G[¢[a]) = —Tr (y*G[—¢&la)). (3.3)

Using the generalized Ward identity and the divergence condition for the compensating
current a* one can easily show: that:

a,, n*w—vla] = 0 (3.4)
ow

and therefore the transversity condition is fulfilled from the very beginning, before renor-
malization. The difference between the vacuum polarization tensor in our theory and in
the usual one can be easily seen from (3.2). The a*-dependent tensor is constructed of two
terms, first of which has the same form as in the conventional theory and the second
one being linear in a*. It is this last term due to which (3.4) is fulfilled and it can be thought
of as a remainder of the gauge dependence of the unrenormalized tensor in the absence
of the compensating current. Since I7*’ is transverse from the very beginning, it is interesting
to verify whether it contains quadratic divergence, or not (by quadratic divergence we
mean a singularity of a &-2-type). It is known [7] that IT** is free of such a singularity if
the current a” is created by a point particle i.e. when:

+&
a“(v—w+E—a"(v—w=&) = [ dp’sP(n+v—w). (3.5)
=&

The Fourier transform of II"*" can then be written as [7]:

« 2 0 34

M*"[kla] = lim —

tim 5 [ 4 e {10 Gl + k) L, KalGlala) -

0 ~ 1 0 0 \? .
- %;Tl‘ (v*G[qla])~ p é:l;(k- b%) Tr (y’lG[an])} ... (3.6)

The &-2-singularity is cancelled by the second term in the large bracket in (3.6). To investi-
gate the quadratic divergence for an arbitrary compensating current we will add to (3.2)
and then subtract from it the linear current expression (3.5). We will therefore deal with
the following tensor:

0™(8) = %{[a“(v—W+¢”)—a”(v~W~é)]f

—[agy(v—w+E—afyw—w—O]} Tr (¢*G[¢la]), 3.7

where a;, is the point particle current:

aifz) = | dn’dDn). (3.9)

If Q*°(¢) —» £-2 when & — 0 then also the vacuum polarization tensor possesses a singularity
of this type, and if Q* is less singular (e.g. like In &) at ¢ — O then the IT** tensor is free
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of the quadratic divergence. Nevertheless, the quadratically divergent term, if present

in IT*°, fulfills the transversity condition. The tensor Q*° can be written in the following
form:

d*k . -
Q*(¢) = ie* JW e” "I g°(— k)~ dgy(— k)] sin k& Tr (y*G[¢|a]) =

_ Fa(w—v—é);iF“(w—vi-f) Tr (*G[¢la]), (3.9)
where
d4k —ikx[p o, ~a
Fo(x) = ie® (27)49 k [a (—-k)—a(,,(—-k)]. (3.10)

Since Tr (y*G[¢[a]) ~ &3 for & — 0, the singularity of (3.9) is determined by the first
factor in this formula. We shall now confine ourselves to the following class of compensating
currents:

~ Hnk)— ok*
a‘(k)=i’(l—(:)2)—iz—, =1, 0<p<l G.11)
nk)*—o
Using:
i
afok) = i —— (3.12)
we obtain:
d*k k°(nk)—nok?
F'(x) = &* itk . 3.13
0 =e "J @n** (nk—ie) [(nk)’— k"] G5

The four-momentum integration can be easily performed by contour integration-in the
ko-plane. A prescription for omitting the singularities of the integrand is not needed,
since for 0 < p < 1 poles appear only for purely imaginary k,. We obtain:

oo _ Vel X7
ER L [ (e o

(3.14)

It follows therefore that in general Q*(£) and the vacuum polarization tensor behave
like &2 for & - 0. However, for ¢ = 0 (point-particle current) and o = 1 (Coulomb
gauge current) F°(x) is equal to zero and IT*’ contains a singularity of logarithmic type
only. But, in contrast to the usual theory. the vacuum polarization tensor always fulfills
the transversity condition, no matter whether renormalized or not.

To end this section we add a few words about the problem of regularization in quantum
electrodynamics with a compensating current. One can see from (2.17) and (2.18) that
the limiting procedure needed for the definition of the current operator gives also a pre-
scription for the regularization of the divergent expression for the vacuum polarization

tensor. In contrast to the usual, say Pauli-Villars regularization method, this prescription
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has not been introduced to the theory “ad hoc™, but it is a natural consequence of properly
defined fieid equations. It is obvious that this method will work also for other important
quantities in quantum electrodynamics like the self energy part or the vertex function.

4. Renormalization of the vacuum polarization tensor and current operator

To find the renormalization functions Ci(¢) introduced in (2.8) we will use the following
identity:
e Tr (v'G,[z1, 2y, 2,0a]) = —KO|T(j*(z,)4z,)) 0). “.1

Thus, the limiting procedure in (2.10) is closely connected to the limiting procedure en-
countered already in the current definition (2.8). Substituting this definition to (2.5) and
then cutting the external photon propagator %,, (formula 2.11), we get:

. 2
m[w—vla] = lim {12 Jd“x’d“y’d“v') “(v—10') x

-0

x [Tr (*G[w~x'|a]l[x', ¥y, v'la]G[y'—w—éla])+(tf - =]+

. , 0
+ [c;"«:)—c;‘"(c)gf)—, ciney 2. 3 ,,-]A (0= w)— Co(DIT*[w— via]}

4.2)

This expression can be written in a much more transparent form in momentum space:

4
m*[kla] = igx; {[ (‘21 ¥ (€ +e™ ) Tr (y*G[q + k|a] x

x I*[q, kla]GLgia])+ C3(&) — iCR* Ok, —
- ciwﬂ(c)kak,,] A=k — cﬁ(g)ﬁ*"[km]} ) (4.3)

Similarly as in the usual formulation of quantum electrodynamics [4] the renormalization
functions are given by the following requirements:

- o ..
n*[0ja] =0, ——M*[kla]] =0,
ok, k=0
d * = 0. 4.4
5 ak fka)) (44
Thus:
d4

() = ~

—_ o’ (€ +e Y Tr (ylG[qla]F‘?[q, Ola]G[q;a])

- ezef Tr (v*G[¢/a)), (4.52)

2L d%y . . -
C(E) = ¢ J o )4( “‘¢+e“"“) % Tr (y*G[q +klall®[q, kla]G[qla])| , (4.5b)
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d ~ - ~
Tr (y'Glq + kia][*[q, kia]G[gla])

ie? {d* . . J
Ce = f G @

ok, ok, k=0
(4.5¢)
The explicit form of the C3¢(&) function follows from the ordinary Ward identity:
ar o o G[qla
Glqia]l™[g, 0lalG[qia] = 6[(] ] (4.6)
7]

The function C{(£) has been introduced to the definition of the operator just to guarantee
the vanishing of the current vacuum expectaiion value. Therefore:

Ci(¢) = —ieTr (y*G[¢la)). 4.7

The only function that has not yet been determined is Cg(&). However, there is no way
of calculating this quantity on the basis of requirements imposed on the vacuum polariza-
tion tensor only. As it has been shown in [4] this function can be determined with the help
of the renormalization condition imposed upon the vertex function and the same method
can, of course, be applied in the theory with compensating current. This problem will be
investigated in a separate note.

To simplify expressions (4.2) and (4.3) for the renormalized vacuum polarization
tensor we use formula (3.2) for its unrenormalized part and then separate the Q*-tensor
(3.7). Writing the difference between compensating current a* and the point-particle
current ag, as:

aA’w—w+&—a’(v—-w-8~-[ag(v—w+&)—ajv-w—E)] =

+¢ +¢
F] =
= f dn? [6_11" a"(n+v—-w)—g;5(4)(n+v-—w)] = — j dn®Ad;(n+v—w) =
—& -¢
d*k ~ik(w—v)ge sin k¢ e d*k —ik(w—v) ze (ké)z PR
B _.[(27:)4" N e [1_ 6 JA“(_k)’

(4.8)
we obtain for the IT*°-tensor:

~ic _ ie’ [ d*q iqt , —ig¢ i |7 e ey
1*"[kla} = — W(é +e” )| Tr (y*G[g +kla]l[q, kia]G[qla]) -

2 . 19 a\? ~
- é:]— Tr (YAG[CIIa])— 6 5{;0 <k : 5;1‘) Tr ('}’lG[‘Ila])] +

a

k& .
+ [—e2 (1 _ (——?—) £ Tr (AGLEjal)+ C2(E) — IC(Ekom

—C¥? (é)kakp] A7(— k)= Co(O)IT*[K|a]. “.9)
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The first term in this expression can be easily recognized as (3.6), which is equal to the
vacuum polarization tensor with the compensating current equal to the point-particle
current a‘(‘,). Using now the explicit form of the C,-function (4.5a) we obtain:

~ ie? 4 . . -
*[kia] = lim {—5 j (—2-72)14 (€ + e [Tr (v*G[q +k|a] x

-0

g ~ 0 N 10 2\’ ~
<L alelala) - - TrGPGlalal- ¢ oo (k- 2o) Tr6/GLala) |+

+[—iCE(O)k, — (CF(E) — § &P Tr (y*G[E]a))k ks] x
x 4, (= k)= Co(OIT “’[kia]l - (4.10)
J

It has been shown by Brandt [4] that the C2*_function can be written as a sum of two
terms, one of which is symmetric in g, « and g, B and the second one is antisymmetric
with respect to the permutation of indices in each of those pairs. The symmetric part is
equal to (e%/6)&e&*Ef Tr (y*G[¢]a)) and does not fulfill the transversity condition when
multiplied by k,k,. It follows from (4.10) that our expression for the vacuum polarization
tensor contains only the skew symmetric part of this function, which is connected with
the charge renormalization. Similarly as C,, the C3%* function can be split into parts
that are symmetric in ¢, « and antisymmetric in these indices. The symmetric part has
the following form:

4

d ; 0
Gy @) a—~ 34, T 0*6l4ia)

and is equal to zero due to the antisymmetric character of the integrand as a function of q.
Further:

(e ~

CHUhh, (— k) = CH* .
The transversity condition k°IT,,[kla] = O fulfilled by the renormalized tensor can now

be easily verified.

The vacuum polarization tensor can be finally written in the following simple and
transparent form:

d4
H’“’[k‘a] = hm {ze f(2 ‘)14( 8 4 e inty

x Tr (*G[q+ kia]F “[q. kia]G[gla]) + C5 (&) —iC5*(E)k,—
— CEB( &Yk g — Co(EYIT* [ K| a]} (4.11)

where (9/0q,) Tr (y*Glg|a]) has been denoted by C5° and the third derivative of Tr (y*Glg|a])
has been included into the symmetric part of C,. Expression (4.11) is of exactly the same
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form as in quantum electrodynamics without a compensating current. This result is not
surprising, for quantum electrodynamics with a compensating current, being explicitly
gauge invariant, cannot change expressions which are gauge independent in the usual
theory.

5. Perturbation expansion of the current operator

This section is devoted to the verification of the current definition (2.8) in the perturba-
tion theory. In particular, we will show that the renormalized current operator can be
obtained with the help of the renormalization functions given by (4.5) and that the only
compensating current dependence is contained in the singularities of unrenormalized
j*-operator.

To find expression for the current operator one must perform the limit y — x in the
following quantity:

F(x, y) = Tly(x) exp (—ie | d*z[a*(z—x)—a*(z = »)]A(2)B()], (5.0

which can be given in terms of incoming field operators as:
F(x,y) = STy ()" () exp (i | d*2z[ —ea’(z; x, y) = ji(2)] AT ()], (5.2
where:
a*(z; x, y) = a"(z—x)—a'(z—y) (5.3)
and ji is the incoming current operator:
Jin(2) = e (20 y"(2):. (5.4)

One can show with the help of straightforward calculation that the singular terms of the
type pu~20,0,4; cancel in every order of perturbation theory. This cancellation occurs
because of the presence of the compensating current. The same statement follows also
from (2.1) since, due to the asymptotic condition, all matrix elements of #(x, y) can be
expressed by propagators.

Perturbative expressions for & up to the second order are given by:

FOx, y) = T(H"(X)F"(D)) = : " (X)P"(¥): — iSp(x— ), (5.52)
FV(x, y) = —i [ d*2T (" x)P"()it(2) A (2)) —
—ie | d*z[a*(z —x)— a*(z — )] T(H" ()P () 4¥(2)), (5.5b)
.2
FH(x,y) = 5 fd‘zd“z’T[w‘"(xw‘%y) (—ea’(z; x, y)—jia(2)) %

x(—ea*(z'; x, y)—jE(ZNAP(2)A(2) ]+ (S PF O (x, y). (5.5¢)
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The first approximation to the ciirrent operator leads simply to the incoming current:
e 3
W) = = S Te o F O(x, x+8)+7,F N x, x=¢)) =

= 3 [e: Ty, 9" (x + &)1 +e: P(x)y, p " (x — &) +
+ie Tr (7,S5(— &) +7,SHEN] ——>e: P (), p"(%):. (5.6)

£-0

Singular terms do not appear in this order of perturbation. Were we performing the limit
in a slightly different form, for instance as:
H(x;8) = —eTr ("F(x+& x—0)),

the unrenormalized first order current would possess the singularity.

Contribution to the second order expression for j* will be given by F1(x, y). Of
course, not every term in (5.5b), when expanded according to the Wick theorem, will
give rise to a singularity after putting y = x. One can easily show that singularities will
appear only in the following one photon-to vacuum matrix element of #F:

ie | d*zAP(D)SHx — 2" Sz~ y)—e [ d*2[a’(z—x)~ "z~ PIA(DSHx—y).  (5.7)

It contributes the following quantity to the current operator:

.2
S8 = - % jd“zAi,“(z) {Tr [, Se(x— 27"’ Sz —x— &) +

2
+7,SH(x—2)7" Sz —x+ )]} + % Jd4zAi"(z) {[a"(z—x)—a"(z—x—¢&)] x

X Tr (3, SH(— &) +[a'(z—x)—~a"(z—x+ O] Tr (7,SHE)}- (5.8)

Expression (5.8) can be represented graphically by the photon self-energy diagram
(Fig. 1) [9].

A in
{2)-:_ o term dependent on a
M A p e Y
Fuvy 12)
Jv

Fig. 1

Using Fourier transforms one can write (5.8) as:

4

sﬂma=—f

2

- % a'(—k) (™" — &) Tr (7,‘5;(5))} , 59

—ikx 4ingg. 2y, . -
(2n)4e AV(k) {H” (k; &)
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where IT,, is equal to the lowest order approximation for the singular expression defining
vacuum polarization tensor (4.11):

2 d4
N@(k; &) = _[(27;4

To separate singularities we expand the integrand in a Taylor series around k = 0:

(e +e ") Tr [3,86a + kmSH@))- (5.10)

2 4
Pk &) =~ f (jn;ﬁ (¢ 4+ 71%%) x

. . P L -
x {Tr [7.SHOSHP ]+ 5 Tr [9,SHq+ky,SHa)]|  ka+
3 k=0
1 & o - .
+3 5 o, Tr [7,5:q +k)y, ) kokg+ ... (5.1

The first term of this expansion contributes a singularity of the type ¢ for £ — 0, the second
one —¢&-' and the third one increases as In &, Further terms, which are denoted in (5.11)
by dots, are regular for £ = 0. It follows from the lowest order ordinary Ward identity
that the quadratically divergent term is equal to:

~ ~ 0 ~
Tr [YuSF(q)vaF(q)] = a; Tr [‘YuSF(q)]s

v

whereas the second one is:

Tr [1,8:@)y*SHa)y.SHD)]

Since its dominant large g part is antisymmetric in g, it contributes nothing to the singular-
ities of Hf,f,’. The logarithmically divergent part of H}ﬁ.) has a much more complicated
structure than the last two just considered. It has been shown in Appendix that it can be
written in the following form:

~3

1 4
§ 3adarda. Tr [v,S(@)] + {~ 4’ [4,(g""q" + V'™ +
4509, 3

1
a B [a v] Bla v _alf
g8l g+ 4’ gt )]+ a* (gl e +glg )}——-——. (5.12)
3 (q2—~m2)4

It is obvious that the logarithmically divergent term in (5.11) corresponds to C4** and
its splitting into the symmetric and the antisymmetric part is now evident. Comparing
(5.11) with (4.5) we obtain:

S;20x; &) = CEMOAV) + CE () AV 4(x) +

€

: d4k —ikx 4in ~y —i i
+ EJ\(2R)4 e k Av (k)a (_k) (e ké__eké) Tr [yusp(é)]. (5.13)
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Since we are interested only in the small & behaviour of (5.13), we will expand a*-dependent
term around & = 0:

e MM = _ojkey %(ké)ﬂ—... . (5.14)

Thus, the a*-dependent part of S can now be written as:

d*k - i i
i f Gyt (T TRIAL DA R Te (3,51~

— Lk Tr (3,S6(E)] = CL(E) [BiN(x)— Aln(x)] +
2
+ % L Tr [7,SHE)] [Binp(x) — A%5(0)], (5.15)

where B, is defined by (2.9). Since the antisymmetric part of C4**# gives zero when contracted
with B, ,;— A, .5, We obtain for the singular part of unrenormalized j‘(lz)-operator:

S2(x; &) = CHI(OB(x)+ CEY (B ug(X)- (5.16)

It is now evident that the renormalization performed according to (2.8) and (4.5) leads
to finite expressions for the second order current operator. Moreover, we can easily see
that the only compensating current dependence is contained in singularities of j‘(‘z)(x; &
and it is removed in the process of renormalization. Thus, the final expression for the
second order current operator does not contain a compensating current, in accordance
with the gauge independence of j* in the usual theory.

The next term in the perturbation series for j* is given by #@(x, y). Singularities are
now connected with the vacuum polarization tensor and with the vertex function [9].
In this order will also appear the singularity of the vacuum expectation value of j*(x, £):

2 (T 0,6 [E1a) +Tr 3,6V~ €a))) = CRO. .17
Since <{0/;,/0> = 0, this term will be removed by renormalization. Yacuum polarization
singularities arise from the following two fermion to vacuum matrix elements of j*:
—ie? { d*2d*2' Dy, (2~ 2)Se(x — 2" Sz — y): (@ W y'"(2): +
+e* [ d*2d*2 Dy, (2 2') [a*(z —x) — Xz = y)ISHx — ) P W ") =
= ie [ d*zAV(2)SH(x —2)y"SH(z - y) -
—e [ d*z4(z) [a'(z—x)—a’(z— y)]SHx— ), (5.18)
where:

04 = iV @. (5.19)
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i(3)

Vacuum polarization contribution to j,”’ is given by:

.2
S8 = - j d*zA) (T [1,5,06— 21" Se(z = x = O] +(& > — O} +

e’ 4, (1 v v
+ B} Jd udi(z) {[a'(z—x)—a"(z—x =] Tr (SN +(& - =0}  (5.20)

and can be represented by the photon self energy diagram (Fig. 2).

+terms dependent on a?

AF/uv A
(3)
Jy
Fig. 2

Expression (5.20) is of the same form as (5.8), apart from A4%" which plays now the role
of 4. Thus:

S5(x; &) = CEMOB(x)+ CEIUOBLRX) + ., (5.21)

where dots denote this part of S{3) which is regular at £ = 0. Since terms dependent on

the compensating current contribute only to the singularity, they will not appear in the

renormalized vacuum polarization part of j{¥-operator.

The vertex function part of the current operator can be represented graphically by the
diagram of the vertex type (Fig. 3)

A Dpav
f-;uv

Fig. 3

1t results as a contribution from the remaining part of the two fermion to vacuum matrix
elements of #F3(x, y):

—ie* [ d*zd*z'Dpy(z — 2)Se(x — 2" 19™(2)P"(2): Y SKZ ~ y) -
—e? [ d*zd*z'Dpy(z— ') {Sx — 20 91" (@)P"(1): a"(2' - ) -
— 1y ()P(2): Y Sz — y)a’(z = x)} -
—ie® [ d*2d*z' Dy, (z—2)a (z—x)a" (2’ — y): v ()™ (y):. (5.22)
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The part of j&(x, &) which is connected with the vertex singularity can be therefore written
as:

d*q d*q' d*k

(2m)* 2m* 2n)*
x {i: 9" (g W' SHa + k), SHa+ k' v (g): +

+: 9", SHa + k)y* v (@): a'(k) = : 9™ (@ W' SHa' + k), v (@): a'(— k) +

3
e e e s
SEx: 8 = — = A G e I T

+iad'(k)a"(—k): 9"(q Yy, v"(q): }. (5.23)
Using now the well-known formulae
—vkSe(q + k)i, . = —Sq+kykl,, .. (5.24)
we obtain:
;O = e | L2 oo [ LD Gy i, pr Oy @, (5:29)
@’ @2n* *
where:

ie? [ d*k . .
AP, p; &) = — 7‘[67‘:)_4- (€™ 4 e~y

x P’ SHp+q+k)y, S(qg + k) (k). (5.26)

This formuila can be easily recognized as the lowest order expression for the regularized,
but not renormalized, vertex function. Its singular part can be obtained by putting p = 0
and is given by ng’{f), where:
d4
CEy, = — = an* (€™ + e W SHg + . SHG + kY Pk, . e (5:27)
A more detailed discussion of the renormalization procedure for the compensating current
dependent vertex function will be given in further publication. Here we quote only the
final formula for C{’; one can easily see that by putting formally & = 0 in (5.27) we
obtain a divergent expression for the usual Z${® renormalization constant.

Opposite to the renormalized vacuum polarization part, the vertex function, as
gaude dependent in the usual formulation of quantum electrodynamics, will in general
depend on the compensating current a*. However, this is not the case when p+gq and ¢
are on their mass-shells since it follows then from (5.24) that a*-dependent terms in (5.26)
contribute only to the singularities.

We have shown that the singular part of the third order unrenormalized current
operator can be written as:

SPUx; &) = SEx; )+ SE)(x; &) +<01jP(x; &) 10) = CEE)+
+ COUEBI(x)+ CEHEBY (%) + CE(E) %), (5.28)

where all the a*-dependence is contained in this expression. It follows from (4.5) that
(2.8) gives a finite result for the current operator also in the third order of perturbation.
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6. Conclusions

We have shown in this paper that the vacuum polarization tensor and current operator
in quantum electrodynamics with compensating current can be defined in a way analo-
gous to that in conventional theory. Furthermore, it follows from our considerations that
earlier definitions can be obtained from ours as a particular case, namely this one in which
a = aﬁ,). Since quantum electrodynamics with compensating current expresses explicitly
charge conservation, we have no trouble with the quadratically divergent term in the
IT""-tensor; this term either does not appear at all or fulfills the transversity condition. This
property of the vacuum polarization tensor results from the presence of the compensating
current as well as from the natural prescription of regularization, connected with the de-
finition of the current operator. Our definition of j#(2.8) has been verified up to the third
order of perturbation theory with the renormalization subtractions resulting from the
photon mass, charge and vertex renormalization, similarly as in the usual theory.

It follows from calculations performed in Sec. 5 that the current operator is independ-
ent on a*, at least up to the third order. This result is consistent with the gauge invariance
of this observable. To prove the independence of j* on the compensating current in every
order one should show that equation of the following type is fulfilled:

é

— j'[a] = 0. 6.1
5,00 141 (6.1)
In the formulation without a compensating current, e. g. that of Zimmerman [10] with

ghost states, gauge invariance is equivalent to independence on the mass of the ghost
state m, [11]:

)
o p=o. ©2)

omg

Since the a*-current plays a role in a sense similar to that of ghost states in Zimmerman’s

formulation, it would be interesting to verify whether formulae (6.1) and (6.2) are equiv-
alent.

The author is greatly indebted to Professor I. Bialynicki-Birula for many critical
discussions and comments.

APPENDIX

We shall calculate the following quantity:

. 2
e@mg) = 1 A [7*Se(a+k)y"SH@)] k=0 =
2 ok, ok, =

_ ieZT . J 0 $ V3 Al)
=5 I [Y <;7;; b—q,c F(Q)>V F(Q):I- (
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It follows from the ordinary Ward identity that:

-2

. YOK le N ad K v
CEM™(@) = — Te Sy Sean™SHan"S@)] +
ie*
+ 5 Tr [Y*SHa)y"Se@y’SH@)y"SH9)]- (A2)
The first term in (A2) can be written as:
1 Tr "Sp"SevSe’Sp)+ % Tr (S Sev"Sey*Sp). (A3)
The first term in (A3) can be further transformed:
1 Tr (#8°Sy*9’S) = 1 Tr (*8°(Sy*¢"'S)) — 1 Tr (y"Sy*0°0’S) =
= 1 Tr [y*é¢°0"(Sy*S)]— } Tr [y“é“’(&"Sy"S)] — 3 Tr (y*Sy°6°8"S) =

106 o0 0
=3 34, 39, 2. Tr [y"Se()]~ - Tf [»*0°(6"Sy*S)] — Tl [»Sy*a’0’S], (A4
s

where

S= S~F(q)a av =

q’
Substituting (A4) to (A3), and then (A3) to (A2) we obtain:

CP™(g) = % a%v B_a_ P [ySe(@)]+ C2 (), (A5)
where the antisymmetric part is given by:
CIP ™) = — 3 [Tr (#Sy°Sy’Sy"S) — (v > 1)] -
~ 4 [Tr (7*Sy"Sy“Sy*S)— (v &> k)] — § [Tr (*Sy°Sy"5y°S) — (6 )] -
= 3 [Tr (*Sy"Sy"S$y°S)— (o & W)]. (A6)

Since for the renormalization only large ¢ behaviour of C, is important, it is enough to
evaluate quantities of the following type:
Tr (79aY" 247" 747" 70)-

Straightforward calculation leads to formula (5.12).
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