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SCALING OF MULTIPLICITY DISTRIBUTION IN HADRON
COLLISIONS AND DIFFRACTIVE-EXCITATION LIKE MODELS
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Multiplicity distribution of secondary particles in inelastic hadron collision at high
energy is studied in the semiclassical impact parameter representation. The scaling function
is shown to consist of two factors: one geometrical and the other dynamical. We propose
a specific choice of these factors, which describe satisfactorily the elastic scattering, the
ratio of elastic to total cross-section and the simple scaling behaviour of multiplicity distri-
bution in p-p collisions. Two versions of diffractive-excitation like models (global and local
excitation) are presented as interpretation of our choice of dynamical factor.

1. Introduction

la. Scaling hypothesis of multiplicity distributions

The scaling hypothesis of multiplicity distributions for hadron-hadron collisions [1]
states that

Oy

(ny = = ¥(z, ) - ), (1)
inel
where
, - (2)
T Any

is a scaling variable and {(n) is the average multiplicity which is a function of s, the c.m.s.
energy squared. As usual o, and o, denote the cross-section for producing n particles
and total inelastic cross-section, respectively. The function ¥(z, s) must satisfy two normal-
ization conditions

3’ dz¥(z,s) = :j? dzz¥(z,s) = 1. 3)
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In writing (3) we treat n and z as continuous variables and replace the summation over n
by a corresponding integration over z. In doing this we commit in general a relative error
of the order ~1/{(n). In the special case, however, where ¥(z, s) vanishes for z = 0, it
is reduced to 1/{n)2. The same is valid for the scaling function discussed below [2].

In describing the empirical data it is convenient [3] (see below) to use, instead of (2),
a new scaling variable

W=EZ2 = ~n—)2 4)
4 4\<nd/

Then the scaling function is given by

2 2<nd* 1 doy. 1 dog,g
D(w;s) = — Y(z,5) = — —— = 5
s 5) nz (z5) T N O,q dn Oinat AW ©)
with normalization constraints corresponding to (3)
fee) oo
2 1/2
dwd(w; s) = —= | dww '“P(w, s). (6)
Jr
1] ]

The last two expressions in (5) follow from our treating of n and w as continuous
variables.

The original derivation of (1) concerns the asymptotic region ({(#)> » 1), but it has
been shown [4] that (1) is already in a good agreement with recent data of p-p collisions
at 50-303 GeV/c (5.3 < {(n) < 8.9). On the basis of the above data we have emphasized
[3] that a simple expression

®(w) = exp (—w), )

which combines scaling and the empirical formula obtained by Bozoki et al. [5] gives
a good approximation at least in the energy region considered. A similar formula (in
terms of z) based also on Ref. [5] has been proposed by H. Weisberg {6].

This early “scaling” of multiplicity distributions can be interpreted in various ways.
One cannot exclude even the picture of purely short range correlations [7], as has been
carefully remarked in Ref. [4]. Many authors introduce, however, long range correlations
in one way or another, in order to understand the situation. Some of them [8, 9] regard
this “scaling” behaviour only apparent, while others [10-16] take it more seriously and
try to find a clue for the production mechanism, even though most of them admit possible
change of the scaling function at still higher energies. We feel at present that the latter
point of view is more attractive, although we realize that the former may well turn out
to be the reality. (Recent papers by A. Wréoblewski (Warsaw preprint, June 1973) and
A. J. Buras, J. Dias de Deus and R. Mgller (Niels Bohr Institute preprint NBI-HE-73-14)
indicate a very slow change with energy of the scaling function between 10 GeV/c and
300 GeV/c. Nevertheless, we could regard (7) as a good approximation to the available
data on multiplicity distributions.)
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In Ref. [3] we gave a sketch of a naive model which led to the formula (7). In this

paper a substantially generalized version of our arguments will be presented, including
an alternative interpretation.

1b. Outline of the model

Our picture consists of two parts. This is reflected in the general structure of the
scaling function (see (22) below) which is a product of two factors, one geometrical
and the other dynamical.

i) Geometrical part

We regard the elastic scattering of hadrons at very high energy as pure shadow

scattering and describe it in the impact parameter representation [17]. Then a real non-
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pp—=n charged particles

50 GeV/c ]
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205 Gevic
303 GeV/c

Fig. 1. Plot of @ as given by (5) vs w for the reaction pp — » charged particles (50, 69, 102, 205 and
303 GeV/c). The straight line represents @(w) = exp (—w). This figure is taken from Ref, [3]

-negative function g(b?, 5), which is the imaginary phase of the reduced S-matrix elements,
determines the elastic differential cross-section do,/dt [18]. Through the local unitarity
relation (valid at each impact parameter b), it also determines o,/0,,,. The first factor
in (22) is fixed by the function ¢(b? s), too.

Following Chou and Yang [19] one can imagine that hadrons are extended absorptive
objects and interpret o(b?, s) as overlap of the colliding hadrons when they go through
each other. Because of this geometrical picture, we call the first factor geometrical.
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ii) Dynamical part

In order to derive multiplicity distribution, one obviously needs further specifications
of production mechanism, corresponding to the second factor in (22), which in the present
picture may be represented by a relation between g(b?, s) and the number distribution
of particles produced in a collision at a given b.

In this paper we replace, for simplicity, this number distribution by its average value
a(b?, s) (no fluctuation approximation) and then we find that an ansatz of the form n ~ p'/2
is required for getting agreement with empirical data.

We shall present a kind of diffractive-excitation model which leads to this form.
This can, in turn, be naturally understood when we regard the hadron as composed of
a number of small constituents and describe a hadron-hadron collision of high energy
as an accumulation of “‘elementary collisions’ between the constituents of two hadrons.
More detailed specification of properties of such ‘“‘elementary collisions™ and ways of
decay of the excited hadrons will be discussed in Sect. 5.

2. General formulation

2a. Basic formulae of optical approximation

We shall work in the impact parameter representation [17-19] and assume that the
unitarity relation is valid locally for each value of the impact parameter 4. (This represen-
tation has already been used for discussion of multiplicity scaling and elastic scattering
by Nielsen and Olesen [10] and by S. Barshay [11]. See also H. Moreno, Phys. Rev. D8,
268 (1973) and M. Le Bellac ez al., Nucl. Phys. B62, 350 (1973), which appeared at the
same time as the preprint version of the present paper (Niels Bohr Institute preprint
NBI-HE-73-6).) Then we can define o,(b%, s) and o,,.,(b° s) as the part of elastic and
inelastic cross-section, respectively, which are due to the collision at impact parameter
larger than b, and write

oa(b’,s) = n;i db"?i1—-S(b'?, 5);2, (8)
Cine) = T bf db'*{1—1S(b"?, 5)I*}, )
or equivalently
- ZZ;‘ = 7l —S(b2, 5), (10)
- d;;)‘;“ = n{1—|S(b?, 5){%). an

Here S(b%, 5) is the transmission coefficient at impact parameter b, or the reduced
S-matrix element of elastic scattering. We put it

S(®?, 5) = exp (—a(b? 3)), (12)
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and assume ¢ to be real, non-negative
0<p< (13)

i.e. we regard that the elastic scattering is completely due to shadow of inelastic process.
In a semi-classical picture ¢ stands for the absorption of the incident wave and in Chou-
-Yang’s picture of extended hadrons [19], it is regarded as overlap of incident hadrons
during the collision. We assume that o(b?, s5) is a monotonically decreasing function of b2,

do

db?
(This assumption may break down in the vicinity of b? = 0, where the whole scheme
of this formalism becomes dubious.)

<0 (s fixed). (14)

2b. Multiplicity distributions

We introduce a probability distribution function for producing n particles by a collision
at impact parameter b and c.m.s. energy /s, which is normalized as

[ dnQ(n; b;s) = 1. (15)
0
Then we get
1 dalnel 1 db2 doinel Q( b ) (16)
= - n; b;s).
Gine  dn Ginel db?

This can be expressed, changing the variables #» and 5% to w and g, as

PO

1 daxnel ] dainel
=——|de O(w; 05 5), an
Ginel dW Ginel d@

[}

D{w; s) =

where the new probability distribution Q(w; o;s) is obtained by

Q(w; 05 5) = ~=~ (2<»z>Jw/a b*(0); 5) (18)

\/

with normalization

:f dwQ(w; 0;s) = 1. (19)

2c. No local scaling in general

A sufficient condition for multiplicity scaling (1) is obviously to put

O(w; 05 5) = Q(w; 0). (20)

This amounts to assuming that the multiplicity scales for each value of b, as has been the
case in the naive model of Ref. [3]. In this paper we are going to present an ansatz which
in general violates the local multiplicity scaling (20) and still yields the multiplicity scaling (1).
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2d. No fluctuation approximation

For simplicity we shall neglect fluctuations of multiplicity distributions for a given
value of b (i.e. for a given value of p) around its mean value. Namely, we put

Q(w; o; 5) = d(w—f(g; ), 21
f being a monotonically increasing function of . (Our naive picture is that, in a central
collision with b small and p large, a larger number of particles is produced, whereas in
a peripheral collision (b large and ¢ small) a smaller number emerges. This is in contrast
to the usual impact parameter picture of the multiperipheral model.)

2e. The basic formula
From (17) and (21) we obtain

Q( ) i dainel dQ
w;s) =  _ ]
» Tinel d@ dw o=f~1(w,s)

w = f(g; s). (22)

It is seen from this expression that the distribution function ®(w; s) consists of two factors.
One of them, 1/o;,.; do;,/do, is determined by specifying the geometrical distribution of the
transmission coefficient or opaqueness, or by the matter distribution inside the hadron;
this we shall call geometrical factor. The other, do/dw, which is determined by the
production mechanism (21), will be called dynamical factor.

It turns out to be more convenient to specify the geometrical factor in terms of a func-
tion &(b?;s) which is defined by

1—exp (—20(b%; 5)) = exp (—&(b*; 9)). (23)
After simple calculation we obtain
2n [dE? do
P(w; s) = — —20) —— . 24
(w3 5) LM [ dbz] exp (—2¢) dw]‘,:,-x(w,s, 29

3. Geometrical and dynamical ansatz leading to multiplicity scaling
We propose to make the following ansatz for the geometrical factor

d&(b?;
PO - (s exp (s)etb; ) 25)

which determines, together with (23), the function ¢ or £. Here B(s) and A(s) are functions
of s only. (The simple case of Ref. [5] corresponds to A(s) = 0.)
Since (25) gives, taking into account (11), (12) and (23),

o

. db? n 2
Oinet = T JdC —d—é'eXP(—f) = E(s—) l(s)+2’ (26)

o
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we get from (24) and (25)

do(w; s
O3 9) = (H5)+2) exp (= o)+ Datws 9) “ . @
It is now evident that a dynamical ansatz
. 28
® T am+2 (28)

yields the empirically suggested form of the scaling function
P(w; 5) = P(w) = exp(—w).

Notice that both the geometrical and the dynamical ansatz, (25) and (28), depend
explicitly on the energy, unless 4 and B are constant. Thus the local scaling of multiplicity
assumed in Ref. [3] does not hold in general. Nevertheless, energy-dependent factors are
cancelled in the distribution function so that the latter scales. In the non-asymptotic
energy region, it is rather likely that the slope of the elastic scattering and the ratio o,/0,,
change slowly with energy. Thus a compensation mechanism, such as illustrated here,
may give an explanation of early scaling of multiplicity.

4. Geometrical factor and elastic scattering data

The ansatz (25) together with (10), (11), (12), (23) and (26) leads to the following
expressions for o,/0,,, and A(s, 0), the slope of doy/d|t] at t =0

1
LN (29)
G0t ZT(;L) (). + 2)
A(s, 0) 1 T(2A+4+2v)
S " (30)
Ot 4rT*(A) 2v4+24+4
v=0
where we introduced
z (-’
T(A) = - 31
@) A4+24v (31)

v=0

The values of o,/0,,, for various A are given in Table L. ¢,,/5,,, and A(s, 0)/s,,, are monot-
onously decreasing and increasing functions of A, respectively.

In order to establish the energy dependence in our model we have to estimate empirically
the dependence of A on s. To this end we first assume o, to be constant (this is a good appro-
ximation for say, 50 GeV/c < p,,, < 1000 GeV/c for pp scattering) and take o, = 39 mb,
the value measured at 303 GeV/c [21]. (Being interested only in a rough estimation
of the dependence of 1 on s we neglect the recently observed slow rise of g,,, with energy
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TABLE 1

Oet and Als, 0)

The values of for various A

Gtot Gtot
. Oel A(s,0)
A —_————
Ctot Otot
—-0.6 0.233 0.086
—-0.4 0.215 0.096
-0.2 0.199 0.105
0.0 0.185 0.115
0.4 0.163 0.135
0.8 0.145 0.156
1.2 0.131 0.177
1.6 0.119 0.198
2.0 0.109 0.219

at ISR energies.) Next we use (30) and the empirical formula [20] for the energy dependence
of the slope A(s, t) for pp scattering at very small [¢] (0.05 < [f| < 0.09) to obtain

A = 0.152 In (s)—0.864. (32)

By means of (32) and (29) we can now estimate the energy dependence of 6,/0,,, in this
model. As can be seen from Table II this dependence is consistent with the empircal
values of Ref. [22].

TABLE 11
el doej . ey
The values of and the slope of — at ¢+ = 0 for different values of ppap. has been evalu-
Otot dr| ( Olot )exp
ated by means of the empirical fit from Ref. [22]
PLab[ Ge¥ ] 2 A(C) [GeV?] el < Ue‘>
[ Giot Otot /exp
25 —-0.28 9.87 0.205 0.209 £0.03
50 —0.175 10.36 0.197 0.191 +0.02
100 —0.07 10.86 0.190 0.180 +0.02
200 0.036 11.37 0.183 0.172 £0.015
300 0.098 11.67 0.1795 0.169 +0.014
400 0.14 11.88 0.177 0.167 +0.013
500 0.175 12.05 0.175 0.1655+0.012
1000 0.280 12.57 0.169 0.1626 +0.011

To estimate the z-dependence of A(s, r) for fixed s in this model it is sufficient to
consider the case 4 = 0. Then (25) reduces to

1 —exp (—2p) = Cexp (—Bb?) (33)

the parametrization originally proposed by Van Hove [23] and used in Ref. [3].
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In our model as one can see from (4), (28) and (33) C is related to the maximal value
(b* = 0) of n/{n)

4 1/2
Zmax = <_ ; In (1_C)> ) (34)

and thus C must be at least 0.9995 if we want to take into account all events observed
at present energies (0.2 <{ z < 3.2). Thus we put C = 1. As has been shown by Heckman
and Henzi [24] (33) with C = 1 reproduces recently observed [20] r-dependence of the
slope of dog/d|t| for pp-collisions. This is an improvement compared to Chou-Yang’s
simplest parametrization {19]

I—exp(—g) = Cexp(—Bb?),

where the slope of da,/dlt| is t-independent.

We should, however, emphasize that (33) with C = 1 asrequired by (34) gives a constant
ratio o,/o,,, = 0.185. We therefore have to introduce the general parametrization (25)
in order to describe the slow decrease of ¢,/0,, Wwith energy.

5. Dynamical factor and its physical interpretation

The most important ingredient in the foregoing arguments is the dynamical ansatz
(28) which states that the number of produced particles in a collision at impact parameter b
is proportional to the square root of the overlap .

Without such a square root dependence we do not get the simple scaling function (7).
In this section we present two versions of arguments to justify this ansatz.

5a. Global excitation model

One possible interpretation is the following picture.

When two hadrons collide at a given impact parameter b, they exchange a certain
amount of longitudinal momentum AP and energy AE, both of which are assumed to be
proportional to the overlap g(b?, 5) of these hadrons at this impact parameter. The pro-
portionality factors are in general functions of energy. Thus

AP = h(s)p(b?, 5), 35)
AE| = j(s)o(b2, ). (36)
After the collision the mass of the two excited hadrons M. and M_ will be given by
M, = {(E+|AE)2—(P—4P)}'2. 37)
Except for cases of very high and very low excitation, we can regard
M < |AE| < E, M < AP < P. (38)
Then the increase AM_ of mass of the hadrons amounts to

AM_ = M_—M ~ s"*{AP+AE|}'? 39
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or

AM  ~ s {h(s) £ j(s)}!120"2. (40)

Taking the simplest assumption that the number of pions produced by decay of the
excited hadrons is proportional to AM =AM, +4AM_ i.e.

n=c{AM.+4M_} = g(s)o'" (41
'with
g(s) = csV4[{h(s) +j(s)}V? + {h(s)—j(5)}'/?] (c being constant)

we obtain (28) if we notice the relation

KG o

2
AMs)+2 = g[j(l—e'ze)dbz/j g”’(l—e*"-‘?)dbz] . 42)
0 0

It is possible [25]) in a parton-model of the Kraemmer-Nielsen-Susskind type [26]
where the partons are assumed to scatter only through s-waves, to justify the assumptions
(35) and (36). Such a model, however, suffers from the general Nova-model disease: the
exponential decreasing behaviour of the multiplicity distribution for z > 1 is incompat-
ible with a flat plateau in the single particle inclusive distribution [27].

5b. Local excitation model [3]

In this model, the hadrons are regarded as consisting of a large number of constitu-
ents. When the two hadrons A and B collide at a given impact parameter b, there will
be a number N(b?, s) of constituents from one hadron, any of which can make collision
with any of N(b?, s) from the other hadron.

Let each of such elementary collisions take place with the probability ¢, and suppose
that if any of them takes place an inelastic events results. Then, by definition, the proba-
bility that nothing happens is given by

IS(b?, 5)|2 = e™ % = (1 —g)V 0" 3)
or
20 = — N2 lOg(l—g)_ (44)

Now assume that during the collision only those parts of hadrons which overlapped,
i.e. passed through each other, can be excited. They decay into pions immediately after
the collision takes place, so that the excitation cannot be shared by parts which did not
overlap. Thisis, sotospeak,a fragmentation of hadrons after the local excitation.
In the constituent language this means that only N(b2, s) constituents of each hadron
are excited and decay into final particles so that

n(b?, s) ~ 2N(b?, 5). 45)
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Assuming next that ¢ is independent of » one obtains from (44) and (45)
n(b?, 5) = &(s)o"'(b%, 5).

This has the same form as (41), although g(s) and g(s) have completely different physical
contents.

We are grateful to S. Barshay, J. Bjgrneboe, J. Dias de Deus, R. Mgller, H. B. Nielsen,
P. Olesen and D. Weingarten for helpful criticism and discussions.
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