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THE MULTIPLICATION LAW IN QUANTUM PHYSICS
PART 1. THE NON-RELATIVISTIC QUANTUM MECHANICS
By E: Karuscik
Institute of Nuclear Physics, Cracow*
( Received December 7, 1973)

A generalization of the Heisenberg quantum theoretical multiplication law is proposed.
What kind of modification this introduces to the usual results of quantum mechanics is shown.
The large domain of applicability of the generalized product is indicated.

1. Introduction

In relativistic quantum field theory with contact interaction it is necessary to use the
products of field operators at the same spacetime points. It is, however, well known that,
owing to the distributional character of the fields, such products are ili-defined quantities.
Although considerable efforts have been made recently to obtain some satisfactory defini-
tion of the product in the framework of the perturbation approach [1], this does not
solve the fundamental problem for the theory to be well-defined and self-consistent from
the beginning.

It is known that the multiplication law for the representatives of physical quantities
was a cornerstone for the non-relativistic quantum mechanics. The lack of such a law in
field theory makes it difficult to speak of quantum fieid theory, since at the beginning these
two theories are different from the logical point of view. It is necessary, therefore, to
investigate why these two theories are so different and the discovery of the origin of this
difference should give some hint of the solution of the multiplication problem.

In the present paper, which is the first of a series of three, we discuss the general
multiplication law in non-relativistic quantum mechanics. Our approach is a direct gener-
alization of the original Heisenberg approach to quantum mechanics [2]. It is shown
that by using the same kind of arguments as Heisenberg did it is possible to construct
a much more general quantum theoretical scheme, which, as a particular case, contains
the conventional quantum mechanics and at the same time works for a much larger
class of physical systems. In the second paper of the series we shall show that quantum
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field theory is an element of such a larger class, which is beyond the conventional quan-
tum mechanics. This explains the above-mentioned difference between these two theories.

The last paper of our series is devoted to the perturbation theory applied to the inter-
acting fields. Detailed calculations performed for the usually adopted ig® and Ag* the-
ories up to the second order in the perturbation are then compared with the conventional
renormalized perturbation series.

2. The generdalization of the Heisenberg quantum mechanical scheme

The crucial Heisenberg discovery was that in the quantum case all kinematical quanti-
ties shouid be represented by a double indexed set of the form

X(1) = { Xy "™} 2.1
where n, me Z and Z is the set of all natural numbers. For these representatives of kine-
matical quantities Heisenberg next discovered the fundamental multiplication law given by

(X Y)mn = Z kaYkn' (22)

keZ

In proposing this multiplication law, however, Heisenberg made an important reserva-
tion that this type of combination is “an almost necessary consequence of the (Rydberg-
-Ritz) frequency combination rules” given by the formula

WD+ Oy = Dy 2.3)

for all m, n and k. It is therefore interesting to look for more general multiplication laws
which agree with the Rydberg-Ritz combination rules as well.

To find the solution to this problem we shall follow the method of Dirac [3] applied
in the derivation of the general expression for the derivatives in Heisenberg quantum
mechanics. First of all we write the most general expression for the representatives of the
product of two quantities X and Y in the form

(XOY)mn = Z amnklqukl Ysu' (24)

k,l,s,ueZ
Requiring now that the mn-th representative of the product after using (2.3) shouid be
accompanied only by the right w,,, frequency when we insert into (2.4) the representatives
of X and Y together with the time factors, we may reduce the general case (2.4) to the
following one:
(XOY)mn = Z (AmnkakY;m"*_ankakYmn'{"Cmnky}rkan'i'DmnkYkakn)s (25)
keZ

where the 4, B, C and D’s are the corresponding non-zero values of the previous coeffi-
cients in (2.4). The multiplication law (2.5) is therefore the only necessary consequence
of the Rydberg-Ritz combination principle (2.3) and the restricted character of the Heisen-
berg definition (2.2) is obvious.

Our further steps consist now in imposing some reasonable restrictions on the general
multiplication law (2.5).
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First, since all physical constants are represented in the theory by a special set in the
class (2.1) given by a matrix proportional to the unit matrix and the multiplication by
a constant should not change the character of the set representing a given kinematical
quantity, we shall require that the unit matrix be a unit for the algebra defined by the
multiplication law (2.5). This gives us rather a weak restriction in the form

By = Copie = 0 (2.6)
and
Amnm+Dmm| =1, Amnn+Dmnm =1, (27)

for all m and n.
Second, we shall require that the square of any hermitian set (2.1) should be hermi-

tian, which gives
A+ Dy = Apic + Doy (2.8)

Our last restriction has a strong character and is based on the following physical fact.
Born and Jordan [4] have shown that the quantum mechanical commutation relation

[p, x} = —ih 2.9)

is a consequence of the experimentaily verified Thomas-Kuhn sum rule

, N
Z Do X i ™ = M (2.10)

k

Furthermore, all commutation relations in the conventional quantum mechanics are
closely related to the invariance properties of the physical system under different symmetry
operations. Since we do not want to change this part of the theory we shall require that
the commutation relations of two arbitrary quantities calculated according to the law
(2.5) are exactly the same as the corresponding ones calculated according to the law (2.2).
This gives us the condition that

Amnk = 1'*"Dmnk' (211)
Summarizing, we obtain the general multiplication law in the form

(X ° Y)mn = (X Y)mn+ Z Dmnk(kaYkn+ Ykakn)’ (212)
keZ

where D, are arbitrary coefficients satisfying the relations following from (2.7) and (2.8)
and by XY we denote the usual matrix multiplication.

The multiplication law (2.12) is distributive with respect to addition but in general is
neither commutative nor associative. The associativity requirement has only one solu-
tion

Dy = 0, (2.13)
but since this requirement is not implied by any physical fact we do not impose it. This,

however, gives some difficulties in defining the repeated products of more than two fac-
tors. In order to see how to proceed in this case, we shall illustrate our method on the
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example of the product of three factors. First we start with the most general expression for
such a product given by

(X oY o Z)mn = 2 amnklsuerlesquw' (214)

k1, s,u,r,weZ

Proceeding now in a similar way as above we may reduce this expression to the following
one

(X oY oZ)py = (XYZ)p,+
+ Z Dmnkl(ka YklZln + kazkl Yln +

k,leZ
+ YkaklZln + YmekIX!u +
+Zi X Yin+ Zoi Ya X 10)- (2.15)

The condition that in the case when one of the factors is a unit matrix this product should
reduce to the already defined product (2.12) gives a connection between the coefficients
in (2.15) and (2.12) in the form

Dmnkn + Dmnkk + Dmnmk = % Dmnk' (216)

We get a further connection between coefficients by requiring that all powers of a given
matrix X calculated by means of our definitions of products should commute with X.
This gives

(X" = Y (X)X, (2.17)
j=0
where : X": denotes the n-th power calculated by our definition and a,(X) are homogeneous

numerical functions of order n-j of the matrix elements of the matrix X with the normaliza-
tion a,(X) = 1. Then we get

X% o X = Xo: X% (2.18)
and we may impose the condition
(X3 =X o X, (2.19)

We may proceed similarly in the case of higher powers. Instead of elaborating such cases
we now switch to some special examples which perfectly illustrate our method.

3. The harmonic and anharmonic oscillators

As a first example we consider here the harmonic oscillator dynamics with mass M
and frequency . It is well known that the solution of the equation of motion is given by

Xmu = xmom-k- l,n+xn5m,n+ 1s

h
2
= — = h . .
X 5 w(m-{-l), E, = Ey+nhw G.1H
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In the conventional formulation
Ey = 1 ho, (3.2)

which, as we shall see in a moment, is a consequence of the usual definition of the product
{2.2) rather than of the canonical commutation relation (2.9) [5]. In fact, let us insert the
solution (3.1) to the Hamiltonian

H = 1 .P2.+w2M.X2. (33
=om B 5 X 3)
We then get
ao(P)  ao(X)w*M 1
= E,— -ho. 34
oM T 2 0T QN G4

Now from (2.12) we get

aO(X) = 2(Dm,m,m-&‘ lxri + Dm,m,m— leu— l)a

aO(P) = ZMZwZ(Dm,m,m+1x31+Dm,m,m—lx:a—t)’ (3‘5)
and
Dm,m+2.m+1 = Dm+2,m,m+1 =0,
Therefore
D xp+D X2, = L Ey— 1hm (3.6)
mmm+1-vm mmm—1%m~1 2M0)2 [} 2 ’ .
and we get
2E 2E
2o(X) = (X (= —1),  ao(P) = (PP (57— —1]. 3.7
hw hw
Thus for :X2: and :P?: we finally get
2E 2E
(X2 = X2 (XD [ 22 —1),  PEi=PP(PD |52 —1). (3.8)
ho hw

Now we see that by choosing (3.2) we get the conventional multiplication law and calcula-
ting with this choice the energy levels we again get (3.2).

Generalizing the above treatment for N harmonic oscillators, we get essentially the
same result with a factor

2E,
Nho

1, 3.9)

where E, is now the total energy of the ground state. If we pass to the limit when N is
infinite with finite E, we see that the multiplication law has the form

X2 = X2— (XD, (3.10)
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which strongly resembles the Wick ordered product used in field theory. We get exactly
the same result, however, if we put E, = 0 in (3.9). In fact, when calculating (3.3) with
such a choice of E, we get the result that the only possible finite value of the ground state
energy for an infinite number of oscillators is the zero value.

The obtained values of the coefficients D, do not however allow the calculation of
higher order powers of X, since for these powers different coefficients from those in (3.5)
are needed. In order to get some information on them we must consider dynamical prob-
lems into which such higher powers enter. Examples of such systems are the anharmonic
oscillators. In order to know how to calculate the third power of the harmonic oscillator
matrix X we have to consider the anharmonic oscillator

H——I—'P2'+g2—M'X2'+%'X3' (3.11
ToaM T 2 3T 1D
in the first order of perturbation theory. The zero order approximation to (3.11) is the
harmonic oscillator and this gives us the shape of : X?: in the zero order. This is, however,
sufficient to solve the equation of motion in the first order. The answer is

xa h E, 5
()mn_—m m+ A};w) mn T

+ 3M(02 (xmxm+ 15m+2,n+xnxn+ 15m,n+2)9

w(l)m,m+l = w(l)m+1,m = 03 w(l)m+2,m = 20) (312)
Having this we may calculate : P2: and : X'2: in the first order in A. From the requirement of
commutativity of these matrices with P and X, respectively, we get the conditions
Dm,m+3,m+1 +Dm,m+3,m+2 = Oa

2 2
Dyt tm=1%m—1t Dmm+ 1,m42Xm+1 = 0,

1 2E
Dm,m+l,m+l = 5(] - 'h_c:)' (3'13)

Calculating now :X3: from (2.19) we get
2E
(X3 = X3 43¢XD, (Z-‘-’ —1) X, (3.14)
)

which again reduces to the Wick ordered product in the case of E, = 0.

Completing the result for : X3:, we may find : X*: either from the second order pertur-
bation theory for (3.11) or more simply the first order of approximation to the anharmonic
oscillator

1 o*M

H=—'P2'+———~'X2'+»;"X" (3.15)
TV R R S D St
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After a few tedious calculations we get then
2E 2E
(Xt = X6 D [ 2 -1 ) X33 x (=0 —1). (3.16)
hw hw

4. Application to physical systems with internal symmetries

It is obvious that for the validity of the multiplication law (2.2) an implicit assump-
tion must be made. This assumption consists in admitting in the theory only such physical
systems which are represented by some restricted class of sets (2.1) for which the right
hand side of (2.2) is finite. For all known examples of quantum mechanical systems this
assumption is satisfied a posteriori. It is not satisfied, however, if independently of any
dynamics we consider a system having some internal symmetry properties manifesting
themselves in the equality of an infinite number of the representatives X,,. For such
systems the Heisenberg law (2.2) cannot be applied nor can the problem be formulated
directly as an operator formalism in a Hilbert space. Later on we shall show that quantum
field theory belongs indeed to such a category and it is therefore necessary to construct
it in an analogy to the situation described in this section.

It is, however, not difficult to give an example of the system with the above-described
property in the framework of non-relativistic physics. In fact, let us imagine a system
consisting of an infinite number of harmonic oscillators with different frequencies w;
such that the ratio of any two of them is never a rational number and such that

M;w; = const. 4.1y

Since the transition amplitudes for an oscillator depend only on the product Mw, we see
that an infinite number of them are equal.

To see how our generalized product works in such cases we shall start from the for-
mula

(X ° Y)mn = Z (Amnkak ),kn + Dmnk Ymk an)‘ (4 2)
keZ

In general we cannot reduce this expression to the form (2.12), since in the present case
the commutator algebra has a different meaning. We cannot here have the usual commuta-
tion relations owing simply to the fact that already the Thomas-Kuhn sum rule is not
valid because it is meaningless.

Let us now assume that the set of all integers Z is divided into at most a denumerable
number of disjoint infinite subsets Z, and

an = aps Ymn = Yuﬂ’ (43)

for meZ, and ne Z;. Since the equality of representatives is a manifestation of some
physical symmetries, the multiplication law should not violate such symmetries and there-
fore we assume here that

Amnk = Aaﬂb Dmnk = D afik- (4'4)
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It is then easy to see that

(X ° Y)mn = (Xo Y)aﬂ’ (45)
where

(X ° Y)aﬂ = Z (ZaﬁyXaVYvﬂ+5aﬁvn7X?ﬁ)
b4
and
Agy = Y Aups Dugy = Y, Dopre (4.6)
keZ, keZ,

From these formulae we may extract the following method for treating systems with an
infinite number of equal representatives:

First, we pass from the original set of representatives (2.1) to the set of equivalence
classes where each equivalence class is specified by the pair («, f); Second, we may apply
the quantum multiplication rule to these sets of equivalence classes, and finally we enlarge
the set of equivalence classes for the product to the originally indexed set of type (2.1).
By this we see that it is not necessary to know all coefficients in the multiplication law
but only the corresponding sums in (4.6). The values of these sums may be chosen from
some additional requirements, e. g. the requirement of some form for the commutation
relations.

It must be noted that although the representatives of X and Y do not correspond to
operators in some Hilbert space, the smeared representatives

§ X @'t = Xy f (@) @mn

owing to the choice of the test function f{), may do so. This is very similar to the situation
in quantum field theory.

It must also be noted, however, that the above-described procedure is not quite unique.
The non-uniqueness appears when the contracted set of equivalence classes of the represen-
tatives for the product contains non-zero diagonal elements. The passage to the original
indexing may then be performed either in the way described above or simply by
enlarging only the diagonal equivalence classes to a set of purely diagonal representa-
tives in the original indexing. Such non-uniqueness is, however, always present in any
quantum multiplication law, since we may always add to the diagonal terms in the product
a term

Y A X Y (4.8)
k,leZ
which is not exluded by the Rydberg-Ritz principle. We shall show in the second paper of
this series that the above-mentioned non-uniqueness has an important application in the
case of quantum field theory.

5. Application to systems with finite number of energy levels

It is known that the usual formalism of quantum mechanics can be applied to systems
'with a finite number of energy levels only for some special potentials. On the contrary,
‘we shall briefly prove that our formalism can do this without apny restriction on the forces.
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We shall not, however, develop the general case but only illustrate this on the example
of the harmonic oscillator having only two energy levels £, and E,. From the equation
of motion we get then

El = E0+hw. (5~1)

The first obstacle to the application of the formalism of quantum mechanics to the present
case is the commutation relation (2.9). It is, however, only superficial, since in the present
case we have no commutation relation of that type as the analog to the Thomas-Kuhn
sum rule reduces here simply to the normalization

xoal? = (52)

T 2Mw '

and does not lead to (2.9). This change is not sufficient, however, for the applicability of
the conventional formalism to the present case, since the Hamiltonian is conventionally
proportional to the unit matrix and this implies that w = 0. It is easy to see that in our
formulation of the multiplication law we may have a solution with arbitrary w. The nega-
tive feature of such formulation is, however, that fact that the higher powers of a given
matrix never commute with the original matrix but may anticommute. This obviously
requires a change in the conventional measurement theory constructed on the basis of
such formalism.
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