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A model of multiparticle production in high energy hadron collisions developed by
Heisenberg more than 20 years ago is reexamined and compared to recent data on multi-
plicities, dispersion of multiplicities and partial cross-sections. It is found that, contrary to
popular belief, the behaviour of the multiplicity predicted by his strong coupling model
is still consistent with the data. Predictions about the intimate connection between the so-
-called KNO-scaling, and the constancy of the inelastic cross-section are discussed in the
light of the present experimental resulits.

1. Introduction

Multiple particle production is one of the most interesting features and sources of
new information which have come from high energy collision processes. A large number
of models have been developed over the years in an attempt to analyze and explain the data.
Some of the earliest models were those pioneered by Heisenberg [1-6], Fermi [7] and Landau
[8]. Their semiclassical models, which are deeply rooted in physical intuition, were gradually
discarded as more sophisticated models were developed. Recently Carruthers and co-workers
have revived Landau’s hydrodynamical model and have shown that, when recast in a more
modern form, it describes the data consistently [9]). Fermi’s simple phase-space model,
on the other hand, does nor agree with the data.® Heisenberg’s model which is based
on a shock-wave-like expansion of very strongly interacting meson fields has fallen into
disrepute, mainly because of its asymptotic prediction of a linear growth of the meson
multiplicity with the energy in the center of mass system (cms). Continuing the reanalysis
of the older models, we have taken another look at the physical ideas and intuition of
Heisenberg, and have found that his strong-coupling model is still consistent with the
present data.

* Address: Max-Planck-Institut fiir Physik und Astrophysik, Fohringer Ring 6, Miinchen 40,
Germany.

! There are two important consequences of Fermi’s model which are not satisfied in nature. First
the ratio of heavier secondaries to pions comes out too high; second, the prediction for the transverse
momentum distribution of secondaries is wrong. The thermodynamic model of Hagedorn tries to improve
on both points [10].
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508

Heisenberg, over the 16-year period from 1936 to 1952, carried out what are probably
the first attempts to describe a multiple particle production from high energy proton-proton
collisions and finaily developed a definite predictive model based on a combination of the
classical and quantum mechanical ideas [5]. He assumed that the energy released during
the collision process could be described in terms of the geometric overlap of the meson
fields of the two nucleons, i.e. a space integral over the Fourier transforms of the hadronic
form factors. The latter depend directly on the classical impact parameter. The energy
goes into a meson field which propagates outwards as a shock wave whose amplitude,
it is assumed, can be determined by a classical non-linear Lagrangian. As the field
spreads out, its self-interaction dies away and particles (mesons) coalesce. From a descrip-
tion of the interaction, one is able to derive a meson spectrum which can be compared
with the data.

The Landau model is similar to the Heisenberg model in many respects except that
transport of the energy released in the collision occurs through the relativistic hydrodynam-
ical expansion of a hadronic fluid. The energy dependence of the particle multiplicity
is given by the square root of the cms energy. The Heisenberg model may be regarded, in
some respects, as an extreme version of such a Landau fluid model. Adopting a *““phenom-
enological” point of view, we shall discuss in Section 2 a class of models labeled by the
strength of the mesons’ self-interaction; at one extreme we have the weak coupling
or bremsstrahlung model, at the other Heisenberg’s strong coupling model [4]. We shall
also revive the concept of the overlap function which allows for a natural explanation
of the observed “leading particle” effect. In Section 3 the models are compared with
the data on the average multiplicity, its dispersion and the n-particle cross sections; the
latter are approached from the standpoint of the recently discovered KNO-scaling.

2. Theoretical aspects of Heisenberg-like models

The models of high energy collisions, which we are considering, exhibit two important
features: The interaction dynamics determine the production mechanism of the secondaries
from the energy &, and the geometry of the collision determines what fraction y(b) this
energy is of the maximum available cms energy Q,

e = yb)Q, (1a)

where
Q= s—my—mp. (1b)

We have included the assumption that the incoming particles retain their identity (and
masses m, and my), except for a possible change of their charge states. The ansatz (la)
accounts for the empirical leading particle effect in high energy hadron collisions. We
also assume that the amount of energy released can be described by the overlap of the two
hadrons in the cms, so that the inelasticity is a function of the impact parameter b of the
collision.



509

2.1. Dynamics and the energy spectrum

The main idea of Heisenberg’s theory (1952) is that the energy ¢ is converted into
a meson field which is described by a nonlinear (classical) Lagrangian. The field then
expands as a shock wave from which, after it has dissipated, free mesons emerge. The
number of produced mesons is proportional to the intensity of the wave front and, therefore,
to the amount of energy deposited in the meon field. Thus by solving the equantions of
motion for the nonlinear meson field, one is able to obtain the meson multiplicity.

Heisenberg treated two special cases: a weak coupling model {(WCM), which is
representative of a renormalizable theory with a small coupling constant, and a strong
coupling model (SCM), in which the mesons have maximally strong interaction [5]. A partic-
ular example of an equation cf motion which leads to the WCM is

Ty+rigtng’ =0, )
where ¢ is the meson field, x its mass and n a coupling parameter. When solved in one
space dimension, Eq. (2) has the solution

g(&) = afl —0.25(k2+na®)é+...] 3)

with & = (¢ct)>*—x* In Eq. (3) a is an arbitrary constant because of the quasilinearity
of Eq. (2). To leading order the field amplitude close to the light cone £ = 0 is constant
and identical to the free field case (# = 0).

As an example of strong coupling Heisenberg took Born’s nonpolynomial Lagrangian

a 8 . 1/2
L =1"*1-r 95F )| C))
0x, ¢x

with a length parameter / [11]. Integrating the equations of motion in one space dimension
yields

g(§) = \,E[] +a'l+..], (5)

where ¢’ is an arbitrary constant [5]. The strong interaction of the meson field is reflected
by the initial ,/¢-growth of the field amplitude close to the light cone.

One is able to calculate the number of mesons n and their energy ¢ by taking the
Fourier transform of the classical meson field amplitude ¢ (&) {6]. The meson spectrum
in the SCM is given by

dn C

kg K2’ (62)
and

de  C .

T (6b)

dky Ky

where k, is the energy of a meson and C a constant. Integrating the energy spectrum Eq. (6b)
from the minimum rest mass x up to the maximum energy fixes C; then Eq. (6a) is integrated
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to obtain the number of produced secondaries

-1
"o = —. (72)
og x
where
<=2 ®)
K

Asymptotically the multiplicity (7a) rises linearly with the reaction energy Q, but at present
machine energies this behaviour is partly masked by the log x denominator. The average
energy of the secondaries in the SCM is

xK log x

= ~klogx for x> 1. (7b)
x—1
In the WCM the spectra
dn C' %)
— =, a
dky ko
and
de
—= ' 9b
ke (9b)

are obtained. Hence we find for the multiplicity

nQ) = —— log x. (10a)
x—1

In the case of electromagnetic coupling this model corresponds to a bremstrahlung theory.
Note that the bremsstrahlung spectrum Eq. (9b) determines in Eq. (10a) the factor in front
of the logarithm which is essentially unity. The average energy of a secondary in the
WCM becomes
k(x—1)
log x

g ==

: (10b)

i.e., it Increases nearly linearly with the energy Q for x> I.

These two examples represent limiting cases for the expected strength of meson
field interactions. Since we expect to construct Lagrangians leading to a meson field
of any intermediate self-coupling strength, we generalize Eqs (6) and (9) to [4]

dn c’
e = 11a
dk,  k§*® (H1a)
and
d F7
L 0<a<t, (11b)
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from which the multiplicities

n(Q) = x"(l—a)( l—f:ia) (12)
o 1—x

are derived. In a model with a = 1/2, the “medium-strong” coupling model (MSCM),
one finds

n(Q) = /x = (yQ/x)'/?, (12a)
and
&= (xyQ)"% (12b)

Formally this energy dependence of the multiplicity is the same as that in the Fermi-Landau
hydrodynamical model. However, we note that the constant factor in Eq. (12a) is completely
determined by the energy spectrum of Eq. (11b).

The mass k determines the energy scale for meson production. Heisenberg took
k = 0.14 GeV. However, there are some empirical facts which are not taken into account
by the theory. First, the production mechanism does not consider the different pion charge
states. In addition to the obvious constraint of charge conservation, recent high energy
data exhibit correlations between pions. One can roughly say that pions tend to be created
in clusters, which contain on the average about two or three pions. Secondly, the derivation
of the present theory is strictly one-dimensional so nothing can be deduced about the
angular or transverse spectra of the secondaries. Taking advantage of the empirical fact
that the average transverse momentum of the pion is approximately energy independent
and of the order of 300 MeV, we use an effective (longitudinal) pair mass x which is in
the range of 0.5 to 1.0 GeV.2

2.2. Overlap function and inelasticity

Because quantum effects and other possible sources of fluctuations were not included
in this semiclassical approach, the number of secondaries in a reaction with fixed (yQ)
is uniquely determined. For collisions at a given energy Q, the variation in the multiplicity
is obtained by equating y with the overlap function, which is defined as the space integral
over the product of the two nucleons’ Fourier-transformed form factor. The physical
picture is that the overlapping parts of the meson clouds are stripped off of the nucleons
(Fig. 1). Thus the fraction of the total energy which goes into the meson production is
given by the overlap function’s dependence on the impact parameter b.

The average multiplicity is calculated by simply averaging Eq. (7a), (10a), or (12a)
over all impact parameters, 0 << b <C b,,,,, where b, is determined by requiring that there
be just enough energy in the meson field to produce one pion or pion pair. This minimim
multiplicity is obtained in all our models (WCM, MSCM, and SCM) by equating x = yQ/x
to unity.

max?

2 Of course it is possible, in principle, to extend this one-dimensional analysis of the Heisenberg
model to obtain the angular distribution of the secondaries. We expect that the result is, to thefirst approxi-
mation, described by a similar calculation in Landau’s liquid drop model [8]. As has been demonstrated
recently, the rapidity data can be fitted well with the old prediction [9].
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The total inelastic cross-section, average multiplicity and dispersion are given by 3

o = nb2,,, (13)
bmax
(ny = byl g db*n(Q), (14)
and
bmax
n*y = byl g db*[n(Q)]. (15)

We have considered three different kinds of hadronic density distributions for the
overlap function which we feel illustrate different qualitative features in Heisenberg’s
semiclassical approach.

Fig. 1. Schematic illustration of two colliding hadrons: The region of maximal overlap, which is shaded,
determines the amount of energy which is available for particle production

We assume first that the hadronic density is proportional to the strength of a static
Yukawa meson field with mass p. Intergration over the space at fixed b yields

yy(b) = e, (162)
and

w=§mwﬂ © = /). (16b)

A Gaussian distribution is also reasonable since it is a good approximation to the
proton’s electromagnetic form factor [12]. This gives

yo(b) = e™H%, (17a)
and
i A
og = — log Q. (17b)
i

3 Here we have assumed that all of the energy ¢ is used for particle production. It is straightforward
to generalize this ansatz by introducing a new “overlap function” I'(), I'(b) = y(b) p(b), where p(b) is the
probability of an inelastic collision at an impact parameter b.
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Although they decrease exponentially, the overlap functions in the above examples extend
to arbitrarily large impact parameters. This leads to an increasing b,,, and therefore to
a total cross-section that grows with the energy.

Another possibility is to assume a finite extension for the nucleon so that

ye(b) =0, for b = by, (18a)
and
oy = nhl, by = 2/u. (18b)

Since b, is finite, the asymptotic cross-section is constant.

We have no convincing theoretical reasons to prefer one overlap function or the other.
If one believed in the meson cloud structure of high energy hadrons one would prefer
the model of Eqgs (16), but measurement of the electromagnetic form factor yields a different
distribution of the charged proton density. As long as there is no reliable theory we look
to the data for suggestions as to the correct structure of the overlap integral. We only
assume that it is a falling function of b.* The overlap functions lead directly to an average
inelasticity, defined by

(O = byl fj) dby(b). (19)
We obtain
P = (oa g L1~ (14108 QV0] =1 :Q) (16¢)
1 1 1
50> = |- ¢l eting e
6> = f(bmax) mconst., (18¢)

where f(b,,.,) is an algebraic expression with no Q-dependence and Y, G, F refer to the
Yukawa, Gaussian and finite overlap integrals, respectively. Combining Eqgs (16b), (17b)
and (18b) with (16c¢), (17¢), and (18c¢) respectively, we find that the quantity {y)a is constant
for not too low energies. Since the cosmic ray data always measures this product, informa-
tion about the two quantities separately would be most useful [14].

3. Data analysis of the models

When comparing the models of Section 2 to the data we differentiate between those
data for which one does or does not need to specify the detailed nature of the overlap
integral. An example of the latter is the average multiplicity of the secondaries. Although

4 This means that higher multiplicities are created in collisions with small impact parameters, con-
trary to the assumptions of the muitiperipheral model. An indication in favour of the overlap integral
hypothesis might be found in a recent experiment of A. Ramananskas et af [13] which gives higher multi-
plicities to impacts where the incident proton obtains a large transverse momentum; we interpret the latter
fact as due to a more central collision.
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the inelasticity function y(b) enters the calculation of the average multiplicity via Eq. (14),
it can be approximated by a constant 7 which is then absorbed into the mass factor x/7.5.
On the other hand, in calculating the n-particle cross-sections and the dispersion of the
multiplicity, the detailed structure of the overlap integral enters crucially. Some illustrative
examples for particular choices of y(b) are given in Section 3.2.

3.1. Average multiplicity of the secondaries

We deviate from the normal line of approach by attempting to remove the incident
particles’ final state parameters, i.e. mass and charge, from the data before comparison
with the model predictions. Instead of the energy variable /s, we use @ which is defined

* 2 S 10 20 S0 100 200

Fig. 2. Fits to the average charged multiplicity of the secondaries: The models and data analysis are de-
scribed in Section 3.1 of the text: Q is the reaction energy, the parameter z is defined by Eq. (12). The
data are from the complications of Ammosov er a/. [24] and Ganguli and Malhotra [18]

in Eq. (1b). Wroblewski found that in the different reactions n*p, K=p and pp the
average multiplicity is a universal function of @ [15]. Since Q is the maximum energy
available for the production of secondaries, their charged multiplicity is used rather than
the total charged multiplicity. The experimental determination of the former is difficult,
so we make a guess which seems to be consistent with the data. In pp collisions at 12 and

* Since this effective inelasticity y differs from the average inelasticity <> in Egs (16c), (17c) and
{18¢c) by only a few percent, we use, with negligible error, {y> in the following calculations. As a first approxi-
mation we choose y = (> = 0.5 independent of the primary energy Q. This seems to agree with the re-
sults of the cosmic ray studies reported in Ref. [14] which show a roughly constant (¢~ = 0.5+(0.10 to
0.15) over a wide range of energies. However, one should note that in cosmic ray experiments, the product
o{y> is observed rather than <y, separately.
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24 GeV/c lab momenta the average number of final state protons is 1.27+0.02 and
1.24+0.02 respectively [16]; at the ISR energy of 52 GeV, a typical event contains 1.5
protons and 0.2 antiprotons [17]. Thus we conclude, with necessary reservations, that
a good energy-independent approximation to the average charged multiplicity of second-
aries is

{nep™™ = {nep)™ —1.3. (20)

The (Wréblewski) universality of the dependence of {ny>*° on Q indicates a production
mechanism which is more or less independent of the incoming hadrons.

We make the standard assumptions that the produced particles are mostly pions
and that their charge states are equally accessible to obtain

n> = 1.5¢n > = 1.5((ng > —1.3). 1)

TABLE I

Fits to the average charged multiplicity of the secondaries: Columns 6, 7, 8 parametrize results for the

three models (WCM, MSCM, SCM) which are obtained from Eq. (7a), (12a), (10a), respectively. Column

5 gives the “effective’” energy x scaled to a cluster mass of 0.6 GeV and average inelasticity of 1/2. The

factor 4/3 appearing in the theoretical predictions accounts for the facts that only charged particles are

considered (2/3) and that the secondaries occur in clusters of two pions. The data are from the compila-
tions of Ammosov er al. [24] and Ganguli and Malhotra [18]

1 ; i r {nepy—1.3 ) $rigp>—1.3

PLGeV/c] | QIGeV] | neny  [<ren>— 13l .= -Q_ | x log x | Sew—13 T

| | X
1 ] 2 3 { 4 s 6 7 8
5.5 162 | 276+.01,  1.46 1.35 0.95 0.94 0.94
10.0 266 | 322+.05 192 2.22 0.99 0.97 0.94
12,0 3.04 | 343+.03] 213 2.53 1.04 1.01 0.97
12.88 322 | 357+.06 227 2.68 1.08 1.04 1.00
18.0 409 | 3.85+.07] 255 3.41 1.10 1.04 0.97
19.0 424 | 402+.02 272 3.53 1.16 1.09 1.02
21.08 454 | 402+.07 272 3.78 113 1.05 0.98
24.0 491 | 425+£.03) 295 4.09 1.19 1.09 1.01
24.12 492 | 415+.07 285 4.10 1.15 1.06 0.97
28.44 555 | 433+.08 3.03 462 1.16 1.06 0.99
50.0 790 | 5.35+.11] 405 6.58 1.37 1.26 1.02
69.0 957 | 589+.07, 4.59 7.97 1.45 1.22 1.02
102.0 1208 | 634+.14 504 | 1007 147 1.19 0.96
205.0 1789 | 7.65£.17] 635 | 1491 1.68 1.20 0.91
303.0 21.88 | 886+.16] 7.56 | 18.24 1.84 1.33 0.96
484 2828 [104+1.5| 910 | 236 2.07 1.40 0.95
1060 4263 |1135+1.6] 1005 | 356 2.05 1.26 0.78
1490 510  [123+18 1 110 425 2.15 1.26 0.74
3000 732|152 +20| 13.9 61.0 2.56 1.34 0.70
10000 1350 163 +£1.11 150 | 1125 236 1.06 0.46
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lllustrative examples of model calculations are presented in Table 1 and Fig. 2. For the
purpose of parametrization we have taken small clusters of two pions with an energy-
-independent scale mass of K = k/5 = 1.2 GeV.% None of the three models (WCM, MSCM,
SCM) describes the data as well as previous empirical fits [18]. We have not made any
attempt to find a “‘best fit” by varying the parameters, trying various models for the
overlap function or considering an energy dependence for 7, but only present the curves
to illustrate the models’ qualitative features. Perhaps the best fit is shown by the dotted
curve which is calculated from Eq. (12) with « = 3/4, i.e. for a model intermediate to the
Fermi-Landau and the Heisenberg ones.

(a) Weak Coupling or Bremsstrahlung Model (WCM):

The curve corresponding to the WCM in Fig. 2 describes the observed multiplicities
rather poorly. Fitting the lower energy values exactly makes the curve fall below the ISR
data points. The WCM can be brought into agreement with the higher energy observa-
tions by assuming that the mesons are produced in large clusters of, say, six pions. In
this case one obtains

(Meyd = 4" (log x). (22)
x—1

We feel that such massive clusters are not in the spirit of a bremsstrahlung type radiation
model.

{b) Medium-Strong Coupling of Fermi-Landau-like Model (MSCM):

Column 7 of Table I gives the ratio of the observed multiplicities to those calculated
in the MSCM, assuming clusters of two pions and an energy scale x = 1.2 GeV. At the
highest Batavia energies the theory gives values which are about 20% below the data
points. The fit can be improved by making x energy dependent or taking clusters with more
than two pions. Although the s/ fits to the charged multiplicity given in the literature
are quite good, we feel that our parametrization (the production of secondaries more or
less independent of the through-going primaries) is more in the spirit of the Heisenberg
and Landau models.

(¢) Strong Coupling or Heisenberg Model (SCM):

As shown in Column 8 of Table 1, a not unreasonable fit to the data up through
Batavia energies is provided by the SCM. At the very large ISR and even higher cosmic
ray energies the predicted multiplicities become too large. This can be interpreted either
as a decrease of the effective average inelasticity y (from 50 9/ to about 30 %), as an increase
of the longitudinal mass x of the produced secondaries (from 0.3 to 0.5 GeV) or most
probably as a combination of both effects. In any case we conciude that the Heisenberg
model is still consistent with the present data. Clearly, a clean separation of the leading

¢ Taking clusters of three pions (preferably «t*zr7°%) does not alter our conclusions very much. With
a scale mass x = 2.4 the WCM curve is raised slightly for higher energies. The SCM curve, on the other
hand, does not rise as fast as in the fit in the text. Generally smaller clusters are more in the spirit of our
models.
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particles’ charges from that of the seconadries, and determination of the energy dependence
of the mean inelasticity would allow for a more definite statement. If it turns out that
the average inelasticity remains constant at ISR and higher energies, an intermediate
coupling model with the parameter « = 0.75 in Eq. (12) yields a good fit to the data.

3.2. Partial cross-sections, KNO scaling and dispersion of multiplicities

Recently Koba, Nielsen and Olesen presented an analysis of the n-prong pp cross-
-sections, in which they noted that the data could be described by a “‘universal” energy-
-independent scaling function

an
Y(xen) = {ny —
o
where

"
T ny

is the scaling variable [19]. Slattery made a through analysis of the data between 19 and
303 GeV/c and presented a good empirical scaling function {20]. Assuming that the in-
clusive cross-sections obey Feynman scaling directly leads to the requirement that R =
= {(n)/D, where D is the square root dispersion of the average charged multiplicity, be
a constant and hence to the KNO-scaling {19]; however the question remains as to why
Feynman scaling should extend down to such low cms energies (= 6 GeV).

We have reanalyzed the data of Slattery in terms of {n)** and Q, the variables
naturally preferred by the semiclassical models, and again obtain a scaling distribution.”
In Fig. 3 we present the scaled data expressed in terms of the scaling variable

Xch

(23)

nch—1.3
X = —m——,
<nch>_1‘3

The success of this form for the scaling variable is perhaps not too surprising as purely
empirical scaling functions have been found which use n4,—0.9 as the variable [21].

In the geometric models we invert the expression for n(Q) to obtain the n-particle
cross-sections,?

24

) 5 db?
g, = n(bn—i—bn+-}) A -7 —d—n" - (25)
The scaling function becomes
db®
()~ = S22 (26)
{n) baax dn

7 We mention that we have taken Slattery’s data only for convenience. The improvea analysis of the
recent NAL data prefers a KNO scaling variable x, Eq. (24) rather than the variable x¢n, Eq. (23) [20].
8 A similar approach has been taken by J. Dias de Deus [22].
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Fig. 3. The n-particle cross-sections: The energy-independent scaling variable defined by Eq. (24) in the
energy range from 19 < Pp < 303 GeV/c. Data are from the compilation of Slattery [20]

Since the conclusions about scaling in the MSCM and SCM are similar we shall only cite
examples from the MSCM. The finite overlap function,

) = (1—ab?— pb*)?, (27a)
with «a+B = 1 and b = b/b,,,, yields the universal KNO-curve,
Cla® 4 < n —1/2
Ye=—|—=+ - I—M)C] , (27b)
TOB [ﬁz AR
where
1
C = y'*) = [ ab*[y(b)]'". (27¢)
1

The Gaussian structure for the hadronic density leads to

2@_ 2 <n)>

G=E n —logQT'

(28)

Note that in the first example ¥y scales since C is a constant. There is no scaling in the
second one because the log Q-increase in the total inelastic cross-section causes ¥ to
shrink with increasing @. For the Yukawa potential, scaling fails by a factor of (log Q)=2.
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Thus we predict that KNO-scaling breaks down if the hadronic radius grows at higher
energies.

In order to qualitatively describe the scaling curve the inelasticity function must be
specified more carefully. We note that a mixture of the two examples agrees qualitatively
with the data. That is, for small b we use the Gaussian form factor to get ¥ decreasing with
increasing n, whereas for large b we use the finite range form factor with its constant b,
to get a growing scaling function. In any case, we can state that KNO-scaling, if valid, is
independent of Feynman scaling in our geometrical model [22].

A word should be said about the maximum multiplicity which, in our deterministic
geometrical approach, is slightly less than 2{n). Experiments give events with higher
multiplicities, e.g. 22 prong events in 200 GeV/c pp collisions, which exceed {n) by nearly
a factor of 3. However, since these events are fairly rare, — their cross-sections drop
exponentially with prong number — we interpret them as statistical or quantum fluctuations
which should be introduced into a more realistic calculation.

We add a few qualitative remarks on the dispersion of the average multiplicities.
As was first pointed out by Czyzewski and Rybicki for pp collisions, the ratio of the
average multiplicity to the mean square dispersion of the charged multiplicity (CR-ratio)
tends to a constant for cms energies above 10 GeV, or [23]

R = {(ny»/Dy = 2.0, th = <"3h>"‘<nch>2- (29)

The limit is reached from above. Similar features are shown by the n¥p, K*p, yp and pp
data [24]. Since there is no explicit data for the dispersion of charged secondaries we assume
that the CR-ratio in this case exhibits the same behaviour.

In our geometric models, the CR-ratio approaches its limit from above. Because
there must be enough energy, in the meson field to produce at least one secondary, b,.,, < bo
at lower energies. This removes the fairly flat tail of y(b) from the integration. For example,
in the Fermi-Landau-like model with finite range overlap integral, Eq. (27a), at § =
= 2 (~ 3.5 GeV cms energy) one obtains b, = 0.75 by and R = 2.8. In the brems-
strahlung model with Yukawa and Gaussian overlap functions the CR-ratios are /2
and /3, respectively. However, with a finite overlap function the dispersion D is constant
so the CR-ratio increases with Q,

_ log 0+logy>
[<(ogy)*>+<logy)*]"?
Hence in the WCM the finite range overlap function does not agree with the data.

In both the SCM and the MSCM, the CR-ratio for the Yukawa and Gaussian overlap
functions fall roughly as

(30)

R oc (log Q)" 1)

where n = 1, 1/2, respectively. Although, R is not asymptotically constant in that case,
the Gaussian cannot yet be ruled out. An example which agrees semiquantitatively with
the data is obtained by using the finite range function for y(b) given by Eq. (27a) with
o« = 0.15 and B = 0.85. (The same values for the parameters have been used above!)
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For lab momenta up to 400 GeV/c the available data seem to prefer models with
semistrong couplings and with a finite hadron radius. However, rising inelastic cross-
-sections at ISR and higher energies would demand in our geometric picture models with
an increasing radius.

4. Conclusion

We conclude that, contrary to popular belief, Heisenberg’s 1952 theory of strongly
interacting mesons describes the present data on high energy hadron collisions rather
well. The extra logarithmic factor in Eq. (7a) due to energy conservation softens the linear
dependence on @ at present machine energies. Other power law dependencies of the
multiplicity, e.g. 0% where 1/2 < x < 1, are also consistent with the data. An interesting
feature is that, from the point of view of our model analysis, the logarithmic dependence
of the multiplicity, i.e. the bremsstrahlung-like model, is rather strongly disfavoured.
On the other hand, the SCM requires at ISR energies a decreasing inelasticity.®

In many respects our analysis is crude and qualitative. Because of the one-dimensional
approximation used in solving the equations of motion, we are unable to say anything
about the transverse momentum spectra of the secondaries. Also the production of other
particles, e.g. kaons, nucleons, and hyperons, cannot be described by the nonlinear meson
field; up to Batavia energies neglecting them seems reasonable. The theory can be extended
to include non-pionic secondaries by distributing the reaction energy yQ among the
higher mass modes,

')’Q == 3n+5K+8N cees (32)

where g is the energy of each mode which is to be described by its own equations of motion.
Of course there is still the problem of developing a theory for the relative magnitude of
the vatrious ¢’s as a function of the total available energy. The heavier mass modes can
be incorporated by slowly increasing the scale mass k with energy.

In these geometric models there is an intimate relationship between the finite hadronic
radius and the quantities which either scale or approach a constant at higher energies,
e.g. inelastic cross-section, average inelasticity, KNO-scaling and the CR-ratio. An in-
creasing radius, which reflects a Gaussian or Yukawa type overlap function, results in
a decreasing CR-ratio and average inelasticity. Since the present ISR data seem to indicate
an increase in ¢ of about 109, {y)> should, as is the case for the cosmic ray data and all
forms of the geometric models, decrease at roughly the same rate so that {(y)c remains
constant. Also, since the observed KNO-scaling and CR-ratio depend on a finite hadronic
radius, it would be interesting to see if these quantities continue to scale at higher energies.
Thus data on the inelasticity parameter, its dispersion and energy dependence are crucial
in helping to determine the validity of this approach. One might then be able to draw
further conclusions about the precise structure of the overlap integral and the nature
of the underlying dynamics.

2 An indication of such a behaviour was found earlier in a discussion of cosmic ray data [25].
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