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The properties of the generalization of a Regge-behaved dual amplitude with Mandel-
stam analyticity (DAMA) to production processes are studied. A procedure of analytic
continuation of A4s into the physical domain is suggested. The amplitude has necessary dual,
asymptotic and resonance properties.

Recently an amplitude belonging to the class of dual models with Mandelstam analy-
ticity (DAMA) [1] has been suggested [2]. This amplitude has a number of attractive
features, which make it a good candidate for an input in the analytic S-matrix theory [3]
The amplitude [2]

A(s, 1) = gdz(zlg)~a(s,z)—1[(1__Z)/g]-a(t,l-z)—l )

with g = const. > 1 and Regge trajectories depending on the Mandelstam and the inte-
gration variables multiplicatively, i. e.

afs, z) = a(s(l1 =z)),
(Z(S) = [@(S, Z)]:=0, (2)

has Regge asymptotic behaviour along any direction in the s-plane for all 7 if [2, 4]

la(s)/(y/5 In s)| T const. = 0. )
Besides, if the condition
LOING o const. = 0 4)
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is fulfilled, then the amplitude has a polynomially bounded double spectral function [5}
and satisfies the Mandelstam representation with a final number of subtractions [2, 4, 5].
In the present paper we consider the generalization of the amplitude (1) to N-particle
reactions [6-8] and study its properties. Preliminary results were published earlier [8].

We note that in the case of reasonable homotopies different from (2) all results presen-
ted below, possibly besides the factorization, will hold if g = 1 {and, of course, (3) and (4)
hold). Since this case is technically more complicated we shall assume below that condi-
tion (2) is fulfilled.

1. N-Point amplitude

There is a straightforward generalization of DAMA to N-point functions [6-8]
1 N~2
Ay = .g Hz dzy (117) 1;[ (zp/g) 207" )71, Q)
=

where

J=JlG@y ' i=23.,N-2; j=3.,N-1

i<j
Here P runs over all pairs of indices (7,j) of Mandelstam channels and
Sij = (Pitpis+ ... +Pj)2-

The variables zp satisfy dual conditions

zp = 1- ]z ©)
4

where P is the channel dual to P. Dual conditions (6) for the independent variables Zy
read

= (1 _wp,q~ 1) (1 =Wy l.q)
i (l—mp—l,q—l) (I—wp,q)’

z

N

where @, , = 2y ,2y,p+1 --- 21,4 a0d 2, = z; y_y = 0 by definition.

Amplitude (5) is 1) dual; 2) crossing-symmetric; 3) analytic. For Re a(s;;) < 0 the
integral (5) converges, i. e. it is an analytic function of the variables s;;; 4) cyclically and
anticyclically symmetric; 5) has poles on physical trajectories. At z, = 0 the amplitude
has a pole lying on the phvsical Regge trajectory, since a(sp, 0) = «(sp); 6) is free of
simultaneous poles in dual channels (due to condition (6)).

Other properties of the amplitude Ay will be demonstrated in the particular case, 45.

For the five-point function we have

1
As = £d212d213(1/224) “(212/g) I Tz, gy A T

& oy o

X (223]8) X (234 [g) I Tz, g) T ®)
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With dual Conditions 212 = 1—223224, le = ] —'234224, 223 = 1—212 234, 224 = 1—212213,
Z3q = 1 =243 224.
By introducing cyclic variables s;;,, and inserting x = z,,,y = z;; we get

11 5

As(5i41) = (I/g)g {dxdy ,-Ul @i%, ¥, 8j,541)s  Ss6 = Ssp ©)
where
Pi(x, ¥, 8) = (x/g)T*D 7,
P2(x, ¥, 8) = {(1—x)[[g(1 —xy)]} = ~DA=oM=1,
P3(x, ¥, 5) = {(1—y)[g(1—xy)]} QA /=mD=1
pa(x, y,8) = (y/g) 4P,
@s(x, ¥, 8) = [(1—xp)/g] 7= 772, (92)

2. Analytic continuation of As

The integral representation (9) converges for all Re a(s;;+,) < 0. However, in the
physical regions for the reactions shown in Fig. la, b, the conditions

Re afsy,) > 0, Re afs34) > 0, Re afsy5) > 0, (10a)
and

Re a(s;,) > 0, (10b)

hold respectively. Below, ws present a procedure for analytic continuation of the amplitude
(9) into the region (10a) (the analytic continuation into the region (10b) is a particular
case of this procedure). Without loss of generality we shall assume that Re a(s;;4,) <0
is equivalent to s;;,, <O0.

Let us write 4, in the form

As(siiv1) = (1/g) !} dx(x/g) ¥ 1 F(x, Sii+1)s 11

where F(x, s;;4,) is an integral over y from O to 1 with the integrand containing the re-
maining part of the integrand (9). Consider now the function

5
F(x, 5;;4+1) =cj' dy H X, y, Sii+1) ¥
1 i=2

x {1 —exp [~ 2nia(s34, (1= p)/(1=xp)]} ™" x
x {1—exp [ —2mia(sys, )1} 7S (12)

where the integration contour C; is shown in Fig. 2a. Now we show that this function



540

is the analytic continuation of F(x, s;;,,) in 53, and s, for every x € G, where
G={-0<Rex<1;|Imx| <é¢}, (13)

d,¢ # 0 are positive numbers.
The integrand of (12) for x € G contains the following singularities in y:
1) fixed branch points y =0, y = 1;
2) moving branch points

Y23 = (533 —x8523)/[X(535 —523)], (14a)
Vs = 594/[534+%(s34—534)], (14b)
Yas = 1—545/54s (14c)
Ysi = 551/(x551)s (14d)

defined by the relation a(s;;,q,2) = a(s,ffiﬂ). In each variable s;;,; <0 we can find
restrictions on the domain G (13) such that for x € G the points (14) will not fall inside

2 3 2 3
4 1<4
1 5 7 5
a b

Fig. 1. Diagrams for the five-point function

the contour C, (alternativelly, that they will miss the segment y, [0,1]) being able only
to press the points r, and r, of this contour to the point y = 1 from the right as x - 1
along the real axis. The severest of these restrictions will define the domain G in which
the procedure of the analytic continuation is valid.

‘ 1 1
(TN M)
NEa/E = ’

G

a b

Fig. 2. Integration contour C; in variable y

Other branch points (as well as singularities of other type caused by the form of the
trajectory a(s; ;1)) can appear for a more complicated parametrization of the trajectories
only on the second (nonphysical) sheet in s;;, ;. Therefore these points are complex, i.e.
they can only impose additional restrictions on the domain G without affecting the pro-
cedure under consideration.
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3) Simple moving poles at y = y,, and y = y, defined by
(S34s Zm) = M5 KS45,2,) = n; myn=0,+1, £2,...
Hence
Vm = [1 “Zm(534)]/[1_xzm(534)]a Vn = Z,(S45)-

The motion of these poles is determined by z,,, (5;;44), i.e. it depends on the choice
of the trajectories. However, it is clear that when constructing the contour C, they can be
encircled if there are no poles at y = 0 and y = 1. For y, these poles will correspond
to solutions z,(s,s) = 0 and z,(s,s) = 1, and for y, = O to the solutions z,(s35) = 1.
If z = 1 then «(s, z) = a(0) = const i.e. there are no solutions. If z, = 0 then a(s,s,2) =
= a(s,s) and we can find such a subdomain of the domain 5,5 < 0 in which the physical
trajectory does not pass through integers. For poles at y, = 1 the situation is more com-
plicated: this condition is satisfied at x = | for any z,(s3.). The study of the behaviour
of such poles for x — 1 from the left along the real axes shows that for Im z,(s34) # 0 or
Re z,,(s34) ¢ [0, 1] the poles miss the segment on the real axes y € [0, 1], they can only
press the points r; and r, of the contour C, to the point y = 1. Actually, by putting x = 1 - 4,
A>0and z, = a,+ib, we get for 1 -0

Re y,, ~ 1+ AaZ+bl~a,) Imy, = —b,i,

which gives the above-mentioned restrictions on the imaginary and real part of z,(s3,).
For the realization e.g. of the second of these restrictions at arbitrary m we can chose
— < 534 < 0, where y < 0 is a sufficiently small number. Here a(s3,, z,,) substantially
differs from a{s34, 1) = a(0) = const only for sufficiently large |z,(s4s)].

Thus, the study of singularities in y of the integrand in (12) shows that for a certain
subdomain of negative s;,;,, we can draw a contour free of these singularities and then
we can squeeze it as shown in Fig. 2b for every x # 1 belonging to the domain G. Then

1~¢2 5

F(x, Sii+1) = j dy - 1_[2 odX, ¥, i+ 1)+
et =

5
+ j y- ;I:Iz X, ¥, 5i 54 1) - {1 —exp [ —2nria(s,s, Y)}}_l +

I»I=aex

5
+ 5 dy - I=—Iz @dx, ¥, Siiv1) - {1 —exp [ —2mia(sy4, 1—p)/(1 "x)’))]}_ o)

jt—y|{=e2

and for g4, 0, = 0

j‘ o QIRea(scs) - 0, S oC Q;RCG(Su) - 0.
¥l =e1 [1-yl=e2
Hence
im F(x, si;41) = F(x, 5;;41)- (16)
e1—0

€20



For x = | the integrand contains a complicated singularity at y = 1 (the contour C,
in this case passes through y = 1 due to a pinch).

By setting 1 —x = 1 and extracting the leading term in A in the expansion of (15) in
g, we get

e }»-a(s“’l)-1(()2/}.)_““(’“) 0.

A0
{1—-y[=¢2 22=0(4)
Thus
im  F(x,s;;11) = F(1, 5;;41)- a7
-0
e
@z=o0(1—-x)

Expressions (16) and (17) show that F(x, §;;+1) is the analytic continuation of F(x, 5;;. )
in 534 and s,5 for all xeG.
Consider now the function

jﬁ(si,i+ ) = (I/g)c". dx(x/g)na(s”’x)_l{exP [ —2mia(sy,, )] - 1}_1 : F'(x, Siiv1)s (18)

where C, is the contour shown in Fig. 3a, while C, € G.

Fig. 3. Integration contour C, in variable x

This function is the analytic continuation of As(s;;+) into the domain (10.a). The
proof is similar to that for 4, (in one variable) [9]. Now writing

1
js(si,w )= (l/g)f dx(x/g)ya(su'x)_lﬁ(x, Sii+1)+
+(1/g) | dx(x/g)" ¥~ Hexp [ —2miafsy5, )] —1} 71 - F(x, 51041) 19
|x|=0

and squeezing the contour C, as shown in Fig. 3b we get

j o a.—Reu(sxz) >0
=0
|x|=a

and

As(8i,41) = lim ‘Zi(si,i+ 1)

o0
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3. Pole structure

The study of the pole structure shows that similarly to 4, the amplitude 45 is free
from ancestors and has multifold poles.
Consider, for example, simultaneous poles in the channels (12) and (45)

q(Sl 2 xm) =m, (20&)
«(Sas, yu) = 1. (20b)

The poles in the amplitude in s,, and 545 appear for m, n > 0 when the singularities x,,
and y, collide with the branch pooints x = 0 and y = 0. To determine the structure of
these poles we consider only the integral along the contour |y| = g, (which gives poles
in 545) in the expression (15) and the integral along |x| = o (which gives poles in s,,)
in the expression (19). The residue in the simultaneous pole (20a, b) in variables x and
y equals

R,, = Gmn(p2(xm= Yns 523)‘F3(xm7 Yns $34) %

X @5(Xms Vs S5 1)W(Xms S12)9W (Vs 545)/(xM+1 nt 1),
where

y(z, 5) = [do(s, z)/dz}! n

and the functions ¢; are given by (9a). By expanding w(x,, $12)@2 in X, (Vs Sas)@Ps
in y, and ¢s in (x,y,) we get

. —(m+1) ~(@n+1) 8k¢2
Rmn - Gmnxm Va ckt:(SIb 545) k X
ax x=0

k=0

N [?ifp_la:l [68%8] xf‘n“)’:.ﬂ-
ay y=0 a(xy) xy=0

A further expansion gives

R _ Gmn az¢5 5prl’3
" x:+1y:+l 0(Xy) x=0 axpay x =0
k,1,e=0 y=0 p=Q y=
o ak+q¢

X E [M%l— ciS12 545)9‘“2”}1“”

q=0 y=0

Computing the derivatives we get
R, = —m—+'1_yF+_1 B (512)Bi(523)B((534) v c ux:‘:”p AR (22)

k1,e=0

where B,(s) is a polynomial of n-th degree in s.
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Finally, by extracting the resonance contributions we get the residue at the pole
a(s12) = iy dSas) =Jj
min (i,j)
Res A5 o Z Cu(su, Sqs) (55 1)”Bi—u(523)Bj—u(534)s (23)

n—0

which is a polynomial (the powers of the polynomial indicate the absence of ansestors).
One can also see from (22) that the amplitude has multifold poles, the (m+ 1)-fold pole
appearing first on the m-th daughter level.

4. Factorization on the leading trajectory and threshold behaviour

For the study of the factorization properties of 45 we restrict ourself to the analytic
continuation in s,, only:

As(siiv1) = (1/g)éf dx(x/g)—a(m’x)‘l{exl’ [ —2mio(s;,, -")]—1}’”1 " F(x, 854 1)

where F is defined in section 2.
Consider factorization of 45 at the pole afs,,} = m belonging to the leading trajectory.
It is evident that only the pinch resulting from the collision of a moving pole at x = x,,
(see (20.a)) with a fixed branch point x = 0 contributes to the resonance term. The residue
at the pole x = x,, equals
R, = Gmxy;:(m+ !)S(Xw Siit1)

where

1 5
E(xm’ Si,i+ 1) = W(xm5 512) '(E dy ]:_-[2 (pi(xma y9 si,i+ 1)'

The resonance contribution corresponding to simpler poles in s, is

G ‘m— it N 4
R =" [-,__(M] (24)
X = O

m! Oxp,

or

i m-—k ~k— !
=) W Z( “
" m! M 6xk ’
al—-n an
x ] (24a)
1] ox,, " oxp )y, =0
)

Terms of this expansion containing the powers (ss,)"(s23)" ", u = 0, 1, 2, ..., m correspond
p p H P
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to the leading trajectory. Noting that

ak~1¢z al_"@s
fd B - s ——— = B —n 'y
[axk l]x,,so % 1(823) [axin—" ]xm=0 1 (351)

we obtain the following relation for the summation indices
(k—D+(—n)=k—n=m.

Hence n = 0, k& = m, since n < k <, m. Thus, on the leading trajectory

Am -1 ]
z " gy Op
Res A5 o G,(s52) de¢4 Cim(523+ S51) {_‘_12 ”x 2 (}’3} N
a(s12)=m m Xm=0

and after evaluating the derivatives

Res 45 o }: Gmn(SIZ9S23S Ss)Ag(—a(s34) —n, ~a(s45)). (25)

a(sy2)=m n=0

In particular, for a(s;,) = 0

As = *’G_ A4($345 S45)- (26)
a(s12) .

Thus, on the leading trajectory the amplitude A4; factorizes: the 1esidue at the
pole is expressed through a sum of amplitudes of lower multiplicity. To prove this we
have used the analytic continuation in one variable which holds for 4y at arbitrary N.
Therefore our results concerning the factorization properties hold for Ay as well. This
is not the case on the daughter levels. Even for simple poles of A5 we obtain by removing
(24.a)

m

R, o« k=0 {Ck(si,s‘ﬁ)A‘t( —Us34) T Ky —as45)+

k ) . —a(sgs,¥)+k—n—1 Fid 1__3, ~a{s34,{1 — ¥}/ (1 —xy}) -1
Cral S; o(1 —xp) .
kn( Lit1 y 5)(7" g(l"x)’) x=0

n=1

Besides terms containing A, here appear also other terms, which can not be reduced to A4,.
Their presence is associated with the introduction to the trajectory of the dependence on
the integration variable (and, thus, with the appearance of multifold poles in the amplitude).

By using the factorization properties of the amplitude it is possible to reduce the
threshold behaviour problem of A4, to that of A,. Actually, the threshold behaviour in
one variable is independent of other variables. Therefore by considering 4, near the
poles on the leading trajectories in these variables we can reduce the amplitude and thus
use the results obtained for 4, (Ref. [10]).
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5. Asymptotic behaviour

A five-point amplitude must have two asymptotic limits, namely, single (a) and
double (b) Regge limits (Fig. 4):

a) As ~ f1(523: 534, S515 1) (845)"*"
for sy, 845 = 00, N = s4s/sy, = fixed;
b) As ~ fy(s23, 551, 0) (534)01(”3)(545)“(551)
for sy7, 534, Sa5 = 0, { = S35 845/8;, = fixed; 53, 55; — fixed

The proof of the asymptotic behaviour of the amplitude (9) requires special attention
(see a similar proof [1 1] for 4,). Here we present only arguments supporting the existence

2 3 2 3
4
4
7 5
7 5
a b

Fig. 4. Single (@) and double (b)) Regge limits for a five-point function

of this behaviour for trajectories that increase not faster than the square root. For this
purpose we rewrite (9) by using cyclic symmetry in the form

11 5

As = (l/g)_g) '(f)dxdy H odx, ¥, Sit1,i+2)  Se7 = Spa. 27
i=1
If for lsj — oo
|s=Y2a(s)| = ¢, =0, Reas) > ¢, <—1 or Reals) > —w (28)

then the integrand in (27) will be polynomially bounded (for is;;,,| — o) along any ray
on the physical sheet of these variables. Hence in this case the amplitude As(s;;4) will
be also polynomially bounded in the whole 5-dimensional complex space formed by
S;;+1 (and will satisfy a dispeision relation). If the asymptotic condition (28) for Re a(s)
is not fulfilled we can arrive at the same resuit after a final number of subtractions.

In the double Regge limit the main contribution to the integral (27) comes from
the region near the saddle points x = 1/s34, ¥y & 1/s,5. However, in this region the homo-
topies which depend on s,5 and ss, reduce to physical trajectoties and those which depend
On 55,, 534 and 5,5 reduce to linear functions of its Mandelstam variables, i.e. the asymptotic
behaviour of A is similar to that of the Bardakci-Ruegg formula [12]

As ~ G(S23, Ss1s C) (._ g534)a(323)(_gs45)a(sn),
where

e sl o}
G(s33, 851, 0) = g [ | dvdww™26s0 ™ 1ymalas) =~ Lgal=nta(=wytal=om/)
o0

The situation in the single Regge limit is similar.
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6. Summary and discussion

The results presented above show that:

1. DAMA can be generalized without loosing its basic properties to processes in-
volving N particles.

2. By using a Pochhamer-like method one can analytically continue the amplitude A
into the physical region of the Mandelstam variables s;;. However, even for N = 5 the
analytic continuation in all variables into the region Re a(s;;) > 0 is cumbersome.

3. The analytic continuation suggested in sec. 2 can be used for applications.

4. The generalized amplitude has correct factorization properties on the leading
trajectory. Factorization properties on the daughter trajectories require special conside-
ration.

Finally, we mention the important problems, which require further investigation:

A detail study of asymptotic properties of the generalized amplitude is to be performed.
This may yield new bounds on the asymptotic behaviour of the trajectories.

What is Mandelstam analyticity for an N-point function? Maybe the explicit example
of DAMA will answer this question.

Another important problem of immediate interest is connected with the applications
of DAMA to production processes.

We thank Professor V. P. Shelest for his interest in this paper and also drs A. L
Bugrij and N. A. Kobylinsky for discussions.

REFERENCES

[1] A. 1. Bugrij, G. Cohen-Tannoudji, L. L. Jenkovszky, N. A. Kobylisky, Forschr. Phys. 21,
427 (1973).
f2] A. 1. Bugrij, L. L. Jenkovszky, N. A. Kobylinsky, Lett. Nuovo Cimento, 5, 393 (1972).
3] A. I. Bugrij, L. L. Jenkovszky, N. A. Kobylisnky, Lett. Nuovo Cimento, 5, 389 (1972).
[4} L. Gonzalez, R. Hong TTuan, Lett. Nuovo Cimento, 5, 1 (1972).
{51 A. 1. Bugrij, Teor. Mat. Fiz., 16, 355 (1973).
[6] Chan Hong-Mo, Proc. Roy. Soc. (GB), A318, 379 (1970).
{7] G. Cohen-Tannoudji, F. Henyey, G. L. Kane, W. J. Zakrzewski, Phys. Rev. Lett., 26, 112
(1971).
{81 L. L. Jenkovszky, V. V. Timokhin, preprint ITP-72-96E, Kiev 1972.
[9] A. 1. Bugrij, L. L. Jenkovszky, N. A. Kobylinsky, V. P. Shelest, Teor. Ma:. Fiz., 13, 313 (1972).
{10] A. L. Bugrij, L. L. Jenkovszky, N. A. Kobylinsky, preprint ITP-72-44E, Kiev 1972; R. Gaskell,
A. P. Contogouris, Lett. Nuovo Cimento, 3, 231 (1972).
[111 A. I. Bugrij, L. L.. Jenkovszky, N. A. Kobylinsky, Yadernaya Fizika, 17, 614 (1973).
[12] K. Bardakci, H. Ruegg, Phys. Lett., 28B, 342 (1968).



