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A theorem on obtaining exact solutions for a particular field structure from those of
vacuum field equations of general theory as well as from some simpler solutions of unified
theories is derived. With the help of this result the most general solution for the particular
field structure is developed from the already known simpler solutions. The physical implica-
tions of this theorem in relation to some of the parallel work of other authors is discussed,

1. Introduction

In general theory of relativity certain problems which are connected with generating
solutions from well-known simpler solutions have been tackled by various authors, such
as Datta Majumdar (1947), Misra and Radhakrishna (1962), Harrison (1965), Buchdahi
(1959), Janis et al. (1969), and others. From the point of view of obtaining the solutions,
the problem seems to concern exploring the devices for tackling highly nonlinear equations

Ruv"' %Rguv = _KTuv’ (1)

for certain types of energy-momentum distributions. Ingenious attempts have been made
by various workers over this problem. We now briefly review the work of the above-
-mentioned authors to highlight certain aspects providing the background of our present
investigation.

Datta Majumdar (1947) has shown that if 7, represents Einstein-Maxwell source-
-free fields, the static line-element

dSZ = gyvdx”dxv+g44(dt)2a (Au, V= 19 2’ 3)
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with the help of (1), gives the relation
8sa = A+BP+ 1 9%,

where & is the electrostatic potential and, 4 and B, are arbitrary constants. The problem
has been further generalized by Misra and Radhakrishna (1962), and later by Harrison
(1965) to the case of non-static Weyl-fields.

Buchdahl (1959) has obtained a similar result in the case of zero-rest-mass scalar
meson fields. He has shown that given any static solution of Einstein’s vacuum equa-
tions Ry =0, a one parameter family of pairs of solutions of the field equations
with scalar field, viz.,, R,, = —«V,V,,, 8"V, =0, where V is the scalar potential
of the field, can be constructed from the already known vacuum solutions. Thus, for every
vacuum solution, with the help of this result, a solution can always be constructed which
corresponds to the presence of some zero-rest-mass scalar ficld. This result has further
been extended by Janis ef al. (1969) to the case of static coupled electromagnetic and zero-
-rest-mass scalar meson fields. Here again, with the help of the result obtained by them,
they have been able to generate a coupled system in two stages. In the first stage a zero-
-rest-mass scalar meson field is generated and then the coupled system is developed.
This can also work vice versa, i.e., in the first stage the electromagnetic field is generated
and then the coupled field. It may be mentioned here that all the above physical situations
have been developed primarily from the empty-space solutions of Einstein’s field equations.
Thus, given any static solution for the empty-space field equations R,, = 0, with the
help of these results, it is always possible to build up the solutions in the case of non-
-vacuum fields at least of the types mentioned above (viz., zero-rest-mass scalar fields,
source free electromagnetic fields, a coupled field). An analysis of these investigations
shows that a physical situation described by a certain state of energy-momentum tensor
on the right-hand side of equation (1) can be generated from a physical situation of
some origin in which the present physical state (the one which is generated) is completely
absent.

In unified theory (Einstein and Schrodinger) a similar result has been obtained
by Bandyopadhyay (1963) in the case of static spherically symmetric fields given by

—a 0 0 w
0 — sinf 0
8 = A f s VA
0 —fsinf —Bsin’*0 0
-0 0 0 Y

where «, B, v, fand w are functions of r only. The result states that for the field structure (2),
if a solution is given for the case @ = 0 for the “para-form” field equations of Schrédinger’s
unified field theory, a corresponding solution for the case w # 0 can always be constructed
from the above-mentioned solution for the case w = 0. This result holds well for Einstein’s
version of unified theories also. This theorem shows that a physical situation (solution)
corresponding to the presence of electric field (w # 0) can be generated from a physical
state when the said field is completely absent (@ = 0). The result is true in the presence
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as well as in the absence of magnetic field (i.e., the term f). The interesting feature of this
theorem is that when the magnetic field is absent (f = 0), a physical state corresponding
to the presence of electric field can be developed from gravitational mass (Schwarzschild’s
solution) of general theory of relativity (when the cosmological term A is present).
It has been observed by one of the authors (Tiwari (1971)) that a similar conclusion can
be drawn, under a special restriction, in the case of magnetic fields also.

In the present work the above result of Bandyopadhyay (1963) has been further
extended to the case of the field structure (the plane-symmetric field) given by

1 0 0 IX
[ 0 G(x) K(x) 0
0 —K(x Gx) 0
—I(x) 0 0 H(x)

It has been shown that, given any solution for the case I = 0 for the “para-form™ field
equations of Schrddinger’s unified theory, it is always possible to obtain the solution for
the case 7 # 0. Further, the set of the solutions obtained for the case /# 0, when X = 0,
can be generated from the already known empty-space solutions of general theory
of relativity. The problem has a well-defined physical meaning, similar to the one given
in the case of the results obtained by Bandyopadhyay (1963). Thus, it can be seen that the
solutions of the field equations R,, = 0 of general theory of relativity play a very
important role in the construction of all the above solutions, i.e., the solutions developed
for certain types of energy-momentum distributions in general theory of relativity and
the solutions of unified field theory, given above. The authors have also found these results
to be true for more general types of field-structures considered by Ghosh (1956). Summa-
rising, we may say that we can pass from a special empty-space solution of general theory
of relativity to the solutions of unified field theory. It is indeed highly gratifying to
be able to build physical solutions either in general theory of relativity or in unified
theories from the empty-space solutions which form a solid base of Einstein’s gravitational
theory.

In Section 2, the necessary preliminaries, as required for the proof of the theorem,
have been worked out. The statement of the theorem has also been given in the same
section. Section 3, deals with the application of this theorem to the construction of the
general solutions for the field structure (3).

8 = €))

2. The field equations and the theorem
The “para-form” field equations of Schrodinger’s unified field theory are:
s — &l n—8isl ik = 0, 4)
r fg =0, *)
Rg -lg_if =0 ©)
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and
(Rgc,t + ng,i + Rg,k) - ﬂ'(ggc,l + 8iik + gy,i) =0, ™
where

Ruv = _FZv,a+FZa,v+F:aFZv_F:ara (8)

vy
The symbols — and - below the indices denote symmetry and antisymmetry, respec-
tively, and a comma followed by a subscript denotes partial differentiation. Obviously,
the “‘weaker form” equations of Einstein’s unified field theory can be obtained from the
above set of equations when A — 0.
The only surviving field equations (4) to (7) for the field structure (3), are

Ry —A =0, ©)
Ry,—AG = R33—AG = 0, (10)
R,3—AK = m, (11)
Ry, —AH = (12)

and

13)

HI'— 1 H'I GG + KK"\?
r,=rI% = (_—2._> ( ) =0,

H+I? G*+K?
where m in equation (11) is an arbitrary constant and an overhead dash denotes differen-

tiation with respect to the x only. The nonvanishing components of R, are given in the
Appendix.
I

Let R,(G, K, H, I, 8) denote the expression for R, in terms of G, K, H, I and their
0

derivatives and R, (G, K, H+17,0, §) denote the same when I is zero, H replaced by
(H+1I?) and H' by (H+I?). The term 6 denotes the derivatives of G, H, K and I.

We have
d (1 I' H'+2Ir
Ry +IPRy =P —(-T, ) +I|= - ry)+
44 11 dx(I 4) I Ht1? (I's)
il +1II'
+ d (H ) + 1/H T GG'+KK' 2
dx \ 2 2\ 2 G*+K? H+1?
[}
= R44(G, K, H+12, 0, 0). (14)

I
If the left-hand side is denoted by L (G, K, H, I, 6), we have

1 0
L(G,K,H,1,0) = R,,(G, K, H+1%,0, 0). (15)
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The following observations are true as may be verified from the expressions given

in the Appendix.
I 0
Rll(G, Ka H, I: 0) = Rll(G’ Ks H+12’ 03 0),
I (4]
R,,(G, K, H,I,0) = R,5(G, K, H+1%,0, 0),
I 0
R33(G, K, H, I,0) = R35(G, K, H+13,0, 0),

I 0
R,5(G, K, H, I,0) = R,5(G, K, H+1?,0, 0).

From (14), we have

I I
L(Ga K5 H: Is 9) = R44(G’ K’ H9 I: 9)+IZR11(G’ K’ H’ I’ 6)'

This, in view of (9) and (12) reduces to

I
LG, K, H,I,0)—MH+I*) =0.

(16)
an
(18)
(19)

(20)

@1

It may be seen that the equation (12) can be deduced from the set of equations (9)
and (21). Hence the set of equations (9) and (12) can be replaced by the equivalent set
of equations (9) and (21). The equations (9) to (13) are, therefore, replaced by the following

equivalent set of equations
I
Ry —4 =0,
I I
RZZ_AG = R33'—‘AG = 0,

I
R23 "lK =m,

I
L(Gs K, H’ I: 0)—A(H+Iz) =0

and
F4 = 0.

(22)
(23)
4

25

(26)

In view of the relations (15) to (19), the set of equations (22) to (26), is equivalent

to the set
(1]
Rll_l = 0.
1} 1]
RZZ_AG = R33_AG = 0,
(V]
st—'lK = 0,

)
Ryy—MH+I*) =0

@n
(28)
(29)

(30)
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and
r,=0. (31

The equation (31) is identically satisfied when I = 0. The set of equations (27) to (31)
are obtained for the structure (3) when I = 0 and H is replaced by (H+12) (also H’ by

0 0 o
(H+1%)). When I = 0, let the values of G, K, H be denoted by G, K, H. As the two
0 0 O
sets of equations (27) to (31) and (22) to (26) are equivalent, a solution G, K, H of the
I 1 I

former set will determine a corresponding solution G, K, H, I of the latter set of equations

by means of the following theorem:
¢ 0 O

I I I
Theorem: If a solution G, K, H {when I = 0) is known, a solution G, K, H, I can
be constructed by taking

4]
) IH
I" =3 0 > (32)
G*+K?
where / is an arbitrary constant
I 4] I 4]
G=G, K=K 33)
and
1 (4]
H=H-I% 39

The value of [ in (34) is determined from (32). The proof of this theorem runs exactly

along the same lines as that given by Bandyopadhyay (1963) for the spherically symmetric
fields.

3. Construction of general solutions for the field structure (3)

The derivation of the field structure (3) by assuming certain symmetry conditions
has been given by Rao (1972). Exact solutions have been obtained in Einstein’s unified
field theory for “weaker form™ equations by Bandyopadhyay (1951) and Rao (1959)
and in Schrodinger’s unified field theory by Sarkar (1965, 1966) and Tiwari (1971). The
solutions obtained by Sarkar (1965, 1966) are limited only to two particular cases, viz.,
when (i) K = 0, I# 0 and (ii) when K # 0, I = 0. The solutions obtained by Tiwari (1971)
are more general than those obtained by Sarkar, in the sense that they have been obtained
for the case K# 0, I+ 0. But these are not the most general solutions due to a certain
restriction in the field variable K(K = /G, where /is an arbitrary constant). The problem of
obtaining a more general solution remains open. The theorem established in the preceding
section gives the method of obtaining such a general solution from the known solutions
of Sarkar (1966) for the case K+ 0, I = 0. The other solution of Sarkar (1965) for the
case K = 0, I# 0 (when electric term is present, but magnetic term is absent) has been



599

directly generated from the external Schwarzschild’s solution of general theory of
relativity (when the cosmological term A is present).

We now establish the most general solution, so far known, for the field structure (3),
with the help of the theorem stated in Section 2. For this we start with the solutions obtained
by Sarkar (1966) for Schrédinger’s para-form field equations for the case K# 0, I =0,
and build up the corresponding general solution for the case K 0, I# 0.

(@) Case I: K#0, I =0.

Sarkar (1966) has obtained two solutions for the above case. These are

0 b
G = aX?*? cos (ﬂ Y—c)exp (~ Y),
n n

— — c _
X = (c;¢/** 4 ce V3, Y =tan™? (;lv exp (/31 x))
2

11
n «,/3/1c1c2 ’
a?+3b%+16¢,c,4 = 0, (36)

(3%

and

0
G = aU?PyP2P cos (;—1 log V—c) ,
p

0 a
K = aU?3V*?Pgin (5—1 log V-—c) ,
P

0

H = (U*Pla®)y =",
V31 ¥3z

V3ix ~V3% Jbie? —Jb; e *
U= (be***—bye™ 3, V= 5 =

b, e7x+\/b—2 e 2
1 1
p J3ibsb,’
a?4+3b*—16Ab,b, = 0. (39

E0)

Here and in what follows, the small Latin alphabets with or without suffixes, will denote
arbitrary constants.
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By making use of the theorem, the following two solutions are obtained. The first so-
lution, which is based on the solution (35), is

I o a b
G =G = aX*?cos (—-—— Y—c) exp (— Y),
n n

l 2b
I=—X1"Bexp (- et ) 39
a n

The other solution based on (37) is given by
I 0 a;
G = G = qU?Pp*?? ¢os (2—- log V—c) ,
P

I o al
K = K = aU?3y*?Pgin (2— log V—c),
14

U2[3 32
~b/2p —~2/317~2b/p
g VI Uy,

1
I=— U By, (40)
a
Both the above solutions, (39) and (40), are subject to the conditions (36) and (38), respec-
tively.
(b) Case Il: K=0, I#0.

The solution obtained by Sarkar (1965) for the second case (viz., K = 0, I # 0) can
be constructed, with the help of the theorem, from the solution for the case K = 0, I = 0.
For this case, field equations (9) to (13), take the form

d (G H'[2\ 1/G\* [H[2\?
Ryy—Agy = ;i-; -(‘;7 + _f;— + i '(—;- + —H- —A =0, 41
1, 1 _,(H2
Ry2—A822 = Ry3—1g33 =5 G"+ 5 G (—"H—) —iG =0, 42)

H' 1/HG 1 H?
Rys—Agas = > + S\ ¢ ) i HmH —AH =0, @3



Equation (42), in view of equations (41) and (43) after eliminating H, gives

1 Gl2
2G" — - —21G =0,
2 G

which yields the solution

32 2 31 \*3
G = (acosh\/—x+—_—_bsmh1/2—x) .

NEY

From (42) and (44), on eliminating 4, we get
(H2\ 167
-G —-=— =0,
H
which, with the help of (45), gives the solution

2 32 \?
( \/3 sinh \/2 x+b cosh%—lx)

— 5 =7 .
acosh\ﬁx+ ——-bsinh\—/ﬂ'x
2 V3 2

The solutions (45) and (47) correspond to the solution of

H =

601

(44)

45

(46)

CY)

for plane-symmetric field in general theory of relativity. These solutions, with the help

of the theorem, determine the value of I as

3
< \/3/1 sinh \/2 x+ b cosh \-/Zi x)

ﬁ 5/3
a cosh \/— X+ —=— b sinh — \/3)“
J3A 2

I=

and the value of H as

32 31 \?
( \/ smh\/2 x+bcosh\/7x)

— — X

2 5/3

acosh\ﬂx+ —:bsinh\ﬂx
2 V3 2

e2

32 32 \¥3
(acoshﬂx+ ——-bsmh\/ )

NE) 2

H =

x | f2-

)

(49)

The solutions (45), (48) and (49) are the same as obtained by Sarkar (1965) for the case

K=0,1+#0.



602

(b) Bandyopadhyay (1951) has obtained a solution in Einstein’s unified field theory for
the field structure (3), for the case K = 0, I# 0, as follows
g1 = 1)

G = (k+ 3bx)*7?,

. 16 d?
T ob(k+ /b x)*? {“* (k+ %ﬁx)m}’
. 4d

ENOTE N

This solution, with the help of the theorem, can be constructed from the solutions of
the field equations R; = 0 of general theory of relativity. Similarly, the most general
solution (K # 0, I 0) obtained by Rao (1959) in the case of Einstein’s unified theory
can also be generated from the solution for the case K#0, I = 0.

Remark (1): As everywhere regular solutions, if any, are of paramount importance
in unified field theories, this theorem affords a powerful technique in tackling the highly
complicated and non-linear differential equations of the unified theories of Einstein and
Schrédinger. Of course, this technique is limited to static fields. It still remains to be
verified whether such a result will hold for non-static fields.

Remark (2); The dissatisfaction of Einstein with the artificial concept of energy-
-momentum tensor of general theory of relativity and his consequent elaboration of unified
theories is, in a way, justified since from the theorem we are able to pass from gravitational
situation (solutions of R, = 0) to coupled ficlds as in unified theories without the help of
the energy-momentum tensor.

(50)

APPENDIX

The non-vanishing components of R, for (3) are as follows:

R -4 (GG'+KK’ L PH AN 1[(GG 4 KK 2+ KG'-GK'Y? N
U ax\ G +K? H+1? 2{\ G*+K? G*+K?
11¥! 2
(? +11
Y\Ey e )
d [G*G'+2GKK —K*G’ 1 /KG' —GK’
G*+K? 2\ G*+K?

y K*K'+2KGG' —K'G? +1 H'[2+II'\ {G*G' +2GKK'—K*G’
G*+K? 2\ H+1I? G*+K? ’
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d (H HI'— 3 H'I HI' — 3 H'T\?

Ryy=— |—+2(—2 ")) - (—2—) -

44 dx(2+ < H+I? )) ( H+1I? )
L 2[(66 +KK > (KG'—GK'\?
2 G*+K? G*+K? +

+(H’ ol HI'— $ HI\\ /GG’ +KK' H']2+1II'
2 H+1? G*+K? H+I? )’

d [K*K'+2KGG' —K'G? 1 /KG' -GK'
Ry3 = —Ry, = a

G*+K? 2\ G*+K?
y G*G' +2GKK'—K*G’ +1 H'[2+4II'\ (K*K'+2GG'K—K'G?
G*+K? 2\ H+I? G*+K? ’
R.— R = _ 4(H'-3HI 1, GG’ +KK'\* (KG' —GK’
“eTHM T g\ H4T? 2 G*+K? G*+K>

HI'—- L H'I\ {GG'+ KK’
H+I* G*+K* |’
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