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GENERALIZED MECHANICS AS A REPRESENTATION OF THE
ORDINARY MECHANICS
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It is shown that the generalized mechanics of one masspoint may be interpreted as
a special representation of the ordinary mechanics of a system of masspoints. The homo-
morphism of both representations is shown in the case of two masspoints coupled by a har-
monic force. The new representation is applied in the special relativistic mechanics of mass-
points.

1. Introduction

1. Weyssenhoff (1951) and recently Riewe (1971, 1972) have interpreted the generalized
mechanics of Ostrogradsky (Borneas, 1959) as the mechanics of a spinning particle, i. e.
of a particle with inner structure. In the present paper we show that the mechanics opera-
ting with higher derivatives of the coordinates of one masspoint may be interpreted as
another representation (or description) of the ordinary mechanics of a system of mass-
points. This interpretation is a generalization of the interpretation of the above-mentioned
authors.

2. The indicator representation

2. Let us consider a system of N interacting masspdints in the one-dimensional case
(for the sake of simplicity). The equations of motion of the system (which may or may
not be deduced from a Lagrangian) constitute a system of coupled differential equations
of the following form (dot = d/dt):

ﬁi =f;(x1, ey xN, il, saey xN), i = 1, asny N. (1)
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Let us extend the system (1) by its derivatives up to orders 2N:

x; = fi(xl’ sees 5‘1\')?

xgzN"l) = fi(ZN-3)(x1, cnry xN)’ (2)
and

x(IZN) = fl(ZN_Z)(xb (XL x'N)’ (3)
where in the last equation (3) the label of fis “one™.

Among all possible mechanical systems (1) there is a subclass (“class ") where x,, .
(2N~1)
s X3 s

vy

XNy Xy oees Xy oo V7D can be eliminated from the system (1)~(2) and can be
explicitly expressed as functions of x,, X,, ¥;, ..., x{*™. Substituting these functions into
(3) one obtains a single equation of a single variable x,(¢) of order 2N

XV = F(xy, Xy, %y, ---ax(12N_l)) G
which has the form of the equation of motion of one masspoint in the generalized mechan-
icst. It can be seen from the above derivation that in many cases the mechanics of one
masspoint with higher derivatives is nothing else than the description of the motion of
a single member of system of coupled masspoints belonging to the class I.

Besides the equation of motion (4) the linear momentum, the energy, and other
properties of the systems of class I can be expressed by the single variable x,(¢), as it
will be shown below.

3. Within the class I there is a subclass (““class IL”") where the equation of motion (4)
can be derived from a Lagrangian. Let us see whether this one-masspoint-Lagrangian
contains any information about the system of masspoints too. This will be studied by an
example of a system of the class IL.

Let us consider two coupled masspoints in one dimension. The equations of motion are

MK+ k(x;—x,) =0, myX,+k{x,—x,) =0, S
whose Lagrangian is
Ly;=1% [mlif—i-mzi‘g—k(xl—,\'2)2]. (6)
Let us eliminate the second masspoint, i. e. x,(r). Then (4) becomes

mym
—2 x4 kx? = 0, o
my+m,
for which one of the possible Lagrangians is (the Lagrangian is always determined only
up to some additive and multiplicative entities):

nm,

C .2 2
L, = 5 (m; +my)xi— - e X1, (8)

P4

where C is a dimensionless constant, which will be “adjusted” later.

! If the elimination of coordinates is stopped at x;, X2, ..., x, (n < N) then one arrives at the gener-
alized mechanics of n masspoints. This case belongs to another subclass (*“class »**) which will not be
treated here.
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Let us now see what information is contained in (8).

First of all, (8) gives the equation of motion (7). Secondly, according to the Noether
theorem two conserved quantities exist:

. mm, ...
Q.=C|(m+myx,+ " X1 |, ©®
and
C mym, .
Q.= 5 l:(m1+m2)5‘f+ _1](_2‘3‘%] — Q% 10

Q. has the dimension of the linear momentum, Q, that of the energy. Let us compare these
quantities with the properties of the original system (5). The solution of (7) is

x,(t) = a+bt+csin (0t + @), (1)

where a, b, ¢ and ¢ are arbitrary constants. According to (11) the linear momentum of
the masspoint “one” is

Py = mib+m, cw cos (wt+ ¢). (12)

If we compare (9) and (12), we see that they are different. (9) is conserved, (12) is not.
The non-conservation of P, and the conservation of @, are the proof that Q. does not
belong to the masspoint “one”, although Q, is expressed by x,(¢) and by its deriva-
tives. Substituting x,(¢) from (5) into (9) we get

m
Q.,=C l:m15‘1+m2 (x1+ 713%)] = C(m %, +my%,). 13)

This means that in spite of the fact that (9) is expressed by x,(¢) and x,(#), the quantity Q,
belongs to the system. Taking C = 1, Q, is the linear momentum of the system.

Similarly, it may be shown that Q, is proportional to the energy of the system (5).
Therefore the Lagrangian (8) besides the description of the masspoint “one” describes
properties of the system too.

4. Thus the generalized mechanics of one masspoint may be interpreted as a special
representation, or description of a system of masspoints of class L. In this description the
higher derivatives of the coordinate x,(¢) of the “distinguished’ masspoint appear instead
of the coordinates of the remaining masspoints of the system. Since the properties of the
system are described by x,(¢), X,(¢), ..., the masspoint “one’” may be called the “indi-
cator” of the system. According to this interpretation the generalized mechanics of one
masspoint is the mechanics of the indicator masspoint of a system. It may also be said
that the generalized mechanics is the indicator representation of the ordinary one.

The examples of Weyssenhoff and Riewe belong to the class IL. It is understandable
why their indicator masspoint rotates. In these examples at least one further masspoint is
included implicitly, and they both (or all) rotate about the centre of mass of the system.
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3. The relativistic case

5. The relativistic many-masspoint problem may be treated by means of the Fokker
action principle. In the 141 dimensional spacetime in the case of two coupled masspoints
this action reads (Staruszkiewicz, 1967)

A= —my, j (dxidxu)l/z—mzo f (dx;dxzs)llz“‘” G[(x1—x3) (x15—x25)]dx1dx,,, (14)

where G represents the force by which the two masspoints are coupled. However, the
functions G are known in a few cases only (Ramond 1973). E. g., G is not known in the case
of the harmonic force, which will be treated below. In addition to this, the Euler equations
for this type of actions are not solvable in general, but in very exceptional cases only
(Chern and Havas, 1973). Therefore there is a need for new methods.

In what follows we will treat the relativistic many-masspoint problem by the indicator
representation, which leads to a solvable Euler equation. The prescriptions for the applica-
tion of this method are the following:

(i) One takes the non-relativistic Lagrangian, or the equations of motion (1) of the system
in question.

(i) From (1) the equation (4) should be derived, which is the non-relativistic indicator
representation of (1). If the Eq. (4) can be derived from a Lagrangian, then this non-
-relativistic indicator Lagrangian should be constructed.

(iii) The next step is the relativization of this Lagrangian, or of equations of motion (4).
(iv) Thereafter, the usual steps of the mechanics should be applied, which yield the mo-
tion of the indicator masspoint, and some information about the dynamical properties
of the system.

How this can be performed will be illustrated by an example of a system of the
class IL.

6. Besides the introduction of the indicator representation the relativization of the
Lagrangian is the crucial point of the method presented here. Therefore we will shortly
look over the relativistic theory of Lagrangian functions.

According to the basic principle of the relativistic mechanics the action A4; of the
indicator is an invariant, i. e. the Lagrangian L, obeys the equation

L,dt = L,dt, 15)

where L, ,1,%,(t), X,(2), ... denote the Poincaré transformed entities. The explicit function-
al form of (15) is

¥\ 12 vX4 e X—v
f 1—"—2— t——z' +a, 1—'—2 (xl—vt)+b, )
c c c X




whose general solution containing ¢, x;, %;, X¥; only (two masspoint case) is

A et
L,= 1_:“ X1 1—‘6‘2’ s a7

where g is an arbitrary function of its invariant argument.
7. Let us now consider the relativistic motion of two masspoints coupled by a harmonic
force. The non-relativistic indicator Lagrangian L, of this system is (8):

1 mym
Ly = o | (my+m)ii— —— 51| (18)
2 k
The relativistic Lagrangian (17), which for ¢ — oo goes over into (8), will be
x2 172 m m -5/2
Lis = —cXmyo+mao) (1- ~x 1020 (- 5 (19)
c 2k c?

The Eulerian of (19) is
dL,s d o0L,s d* 0Ly

ox, dt ox,  df* 0%,

=0. (20)

Since it does not contain x;, we can operate with its first integral

0L,s d dLs
T _ o 21
o%, dt 3%, Q- @n

where Q. = const is proportional to the linear momentum of the system. The explicit
form of (21) is

Smyom myom
—-1/2 1071020 o—77124 o2 107710 —5/2
(myo+my0)B™ 2% + WB Py %5+ % B~ %%x, = Q,,

B = 1-%3/c?, (22)

where the first term m, %, B~ !/? is the linear momentum of the indicator masspoint.
The second conserved quantity of the system is

ax,  dt 0%, 0%,

—Lys 23

whose explicit form is

Smyomso
2k

it is connected with the energy of the system. The energy of the indicator is ¢2myoB™ /2.

Q, and Q, constitute a Poincaré vector.
8. A particular solution of (22) is

0, = *(myo+my)B~ 2+ B "4 ___{912_2_0(361’:1__33‘1)3-5/2 (29

Xy = Wot'*'xlo (25)
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where w, = const. In this case (22) is

2\1/2
Q.= (m1o+mzo)wo/(1— %) (26)
and (23) is
2\ 1/2
Q= cl(mm‘*‘mzo)/(l“ ‘v:'T()) . 27

One can conclude that both masspoints move together, and the interaction energy disap-
pears.

9. Let us now consider the equation of motion in the coordinate system, where
0O, = 0. Then the first integral (22) becomes

Smyom in . wn . Mo gy
(Myo+my)B~ V2%, + —5%;93 2% %2+ ““1‘(;?2_0 B™3%%, = 0. (28)
Since %3 > 0, from (28) we have
sign x1 = — sign X, 29

which means that the indicator oscillates, as in the non-relativistic case.
The second integral of (20) is

2¢%k(mo+m 2c3(my o+ myo)k
x% - [a%_ ( 10 20) B5/2+ ( 10 20) B3
mMyohize MmyoMze

, (30)

where g, is an arbitrary constant which is just the value of X,(#) when x,(#) = 0, i. e. at
the turning point of the indicator. Denoting the right-hand side of (30) by A2(%,), and
introducing the parameter p, the solution of the equation of motion in parametric form
reads

¥4
t= ghEI(P)dPHo, (€]))
H -1
Xy = 5) pho '(p)dp+x40. (32

10. In the case Q, # 0 one gets the general solution of the equation of motion. In para-
metric form it reads

D
t = [ k™Y (p)dp+1o, (33
0
r
Xy =£ ph™(p)dp+ X0, (34
where
2\5/2 26%k(m o +m 2\ 1/2 20k
K3 (p) = (1_%) {hz(o)__ c“k(myq 20)[1__ (1___19_2_> ]+ Q. p}, (35)
c MyoMygo 4 MyioMyo

and A(0), Q,, ty, and x,;, are the arbitrary constants.
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11. It is seen from this example that in the relativistic mechanics the indicator represen-
tation may be useful, since (/) the relativization of the equation of motion, or that of
the Lagrangian L, of the indicator x;(¢) seems to be an easier method than the ortodox one
(Van Dam and Wigner, 1965), and (if) the indicator representation gives the full informa-
tion at least for one masspoint of the system.

The motion of the remaining members of the system, and some other questions will
be treated in another paper.
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