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An approximative method consisting in combining the procedure of iteration with
the best fit of a free parameter is discussed. This method is shown to be particularly simple
and exact in a wide range of values of the coupling constant. It deserves to be called a “Re-
fined Born Approximation”. The problem of transition from the case of scattering on an
external potential to the case of a mutual scattering of two particles is discussed anew.

1. General procedure

A viable method of computing cross-sections from field equations or from the Schro-
dinger equation in the strong coupling case is unknown except for the phase shift analysis.
This method is, however, cumbersome except for the limits of very low and very high
energies where one may either restrict the investigation to the first few terms of the
expansion into the Legendre polynomials or use the asymptotic expansions.

We shall discuss some alternative methods of approximative calculations valid for
arbitrary values of the energy, and having nothing to do with the assumption of a weak
coupling. Generally speaking, these methods consist in a best fit of some free parameters
introduced into the expression for the scattering amplitude. The general idea of such
procedures will be explained on a simple example of elastic scattering of particles within
the framework of non-relativistic quantum mechanics, but these methods may be also
extended for the case of relativistic field theories.

Let us look for a stationary solution of the Schrédinger equation

(- 1 V34 V) w(r) = op@). (€)}

2m

Assume, as usual, the wave function to be of the form

W) = ¢+ x(P), @
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with
2
14
— = . 3
m 3
The lack of a (dimensional) factor in front of the exponential function means that the
plane wave has been normalized so as to describe one particle per cm?® in the incident
beam.
It will be convenient for our purposes to find an integral equation for the scattered
part x(7) (but not for the total wave function » nor for the scattering amplitude f). Intro-

ducing (2) with (3) into (1) we get

(V242 = 2mV (P +¢). (4)
The use of the Green functions
1 e
G"/’( )= 47t r ®)
or, in the Fourier representation,
N 1 ei;r;
G'"(r) = — S —
(r) (27[)3 J p2 _ k2 i i8 (6)

enables one to replace the differential equation (4) by an integral equation. If y is to
represent the outgoing wave, we have to use the retarded Green function G*. Thus,

r -r 1
16 = - ~j o U [T 4] ™

where
U=2mV. ®)
Writing the asymptotic solution for r — oo in the form

ipr

1) - e—,;f, ©)

one obtains the scattering amplitude £,

Putting the problem in the form of an integral equation for x in the x-space has
considerable advantages: If the potential is short-ranged then it is seen that the right-
-hand side of (7) depends only upon the values assumed by x for small r. Therefore we have
only to make a proper fit of () for small values of r so that, introducing this x into the
integrand to the right and performing the integrations, we shall get a correct result for
the left-hand side of (7) for any r, small or large. Hence, the scattering amplitude and cross-
-section can be inferred.

By putting to the right-hand side of (7) x© = 0 one obtains Born’s approximation
which, however, is legitimate only if the interaction is weak. A possibility of improving
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the approximation consists in introducing to the right-hand side of (7), instead of zero,
a function dependent on a certain number of parameters

X(O) = 5(;, ;’7 Ogy veey aN) (10)

and trying to make a possibly best fit of the parameters.
The equation (7) is of the form

x = Fx), amn
where F means a linear functional. Let us consider, more generally, the linear relation
n = F(&). (12)

The function # may be regarded as an approximate solution of the equation (11) if it differs
little from . Of course, one has to define properly the sense of “y differing little from £”.
If these functions were square integrable, then we could use, as a criterion, a small quadratic
deviation in the whole space but, unfortunately, the outgoing wave, being a solution of
(11), is not square integrable. The way out of this difficulty is possible due to the short
range of the interaction. In fact, 5 depends only upon the values of £ in the region of small
r, of the order of magnitude of the range of interaction (unless one assumes ¢ to increase
unreasonably with r). Therefore it is sufficient to secure

AG,m = [ drin-¢p? (13)
r<R
to be small, where R denotes the range of interaction, in order to guarantee 5 to be an
approximative solution of (11), provided ¢ has been chosen to be a decreasing, or at
least, not increasing function for r > R.
Thus, a multi-parametric function of the type (10) should be introduced and the
parameters extremalized from the equations

0A®
= 0 where AY = [ drjyV -3, (14)
aj r<R
with j=1,2,3..., N and
=& = (15)

This procedure may be still refined by combining it with higher orders of the procedure
of iteration, i. e. performing n iterations and requiring

aA('l)
P 0, where 4™ = [ &riy®—yx"" V2% (16)
(Xj r<R

Alternatively, starting with an N-parametric function (10) the parameters may be fitted
at the point r = 0 by performing N iterations and demanding

212(0) = DO = ... = x™(0). amn
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It should be stressed that for large values of the coupling constant the convergence of the
iterations to a solution is not guaranteed. Nevertheless, the conditions (16) or (17) do
provide us with approximative solutions. The question whether this approximation is
good or poor depends essentially upon the proper choice of the starting-point function
(10). This choice is limited by the requirement of obtaining a viable procedure. To this
end the function (10) must be chosen sufficiently simple for the integrations to be perform-
ed effectively. Moreover, in order to get simple conditions (16) or (17) for the parameters
it is advisable to introduce (10) in the form of a linear function of the parameters. In the
case of spherically symmetric potentials a plausible and sufficiently flexible form of the
function (10) seems to be

xOr,cosH =Y ¥ oc,,ve"“; '_"r”, (18)
v

where p=0,+1, ... +M,v=0,1,... N.

A drawback of the above described procedures is that they do not provide one with
estimates of the limits of accuracy of the approximations but, at any rate, they vyield
a criterion enabling one to estimate which one of a set of approximations is the best.
Considering two starting-point functions ¢ and & of, say, quite different form and com-
puting n and # form the (general) formula (12) it may be claimed # to constitute a better
approximation than # if

AE, 7) < A, ), (19)

with 4(¢, n) defined by (13). Then also the value of the cross-section computed with the
help of 7 will be more reliable than that computed with the help of y. Thus, 4(¢, n) may
be called the “index of reliability”. The existence of a criterion (19) enables one to under-
take a more systematic search for suitable forms of starting-point functions.

2. One-parametric fits

With the lack of any better guess of the function (10) or (18) we recall that the first
Born approximation yields, in several cases, surprisingly good results, especially as regards
the angular dependence of the scattering amplitude. Therefore, we may introduce into the
right-hand side of (7) the first Born approximation multiplied by an, at first, arbitrary
coefficient

2 = B (20)

and compute the left-hand side, to be called y*. The easiest way to fit the parameter f
is to equate the resulting function y'® with the starting-point function ¥'*) at the point
r =0, i.e. to require

_ L f @ U [EF 4+ B = B0) (1)
4n r

as a condition upon f.
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Having computed the parameter  from (21) we may use again the equation (7)
and compute its left-hand side for r - oo with the known term (20) substituted for y
into the right-hand side. The result may be called the “Refined” (second) Born Approxi-
mation” (RBA).

The above described procedure may be still simplified by limiting oneself to something
that may be called the “Refined (first) Born Approximation” consisting in the following:
we may introduce into the right-hand side of (7) instead of yx, the plane wave

1OF) = ae'?". (22)

The result, i.e. the left-hand side, becomes in this case nothing else but the first Born
approximation multiplied by the factor f = a+1. The parameter « may be adjusted by
equating both, the zero-order, and the first-order approximation at the origin » = 0

2 (0) = x(0), (23)
whence
(x+125%0) = a. (23"

In this case the angular dependence of the scattering amplitude is the same as that known
from the first order Born approximation, but the amplitude appears to be (x4 1)-times
larger.

3. Scattering of extremely slow particles on the square well potential

We shall discuss this simple example in detail because in this case the exact solution
is known so that the reliability of our method may be checked and compared with other
methods of approximations.

Let

y-a a-r<l1
V = for (24)
0 a-r>=1.

For negative values of the constant y it represents a well of radius = and depth aly|.
For large positive values of y it represents a repulsive hard core.
Denoting

G=-"" (25)

. Ga? 1 .
6 = 5% f B e (142G} 26)
7 jr—r'|
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Introducing a plane wave a exp i pr into the right-hand side of (26) we get, always in the
limit p —» 0,

Ga? 1
D7) = — 1+« ‘- a3r —— 26
ORI I (26)
(ar<1)

whence

G (ar)?
5 (l+a) (1 -3 )

ar <1
1@ = for @7
G 14u ar > 1.
3 ar
The self-consistency requirement (23) for « yields
% 1+a) ¢ (28)
— )=a Oor oa=-—.
2 2—-G

The asymptotic form of y for ar > 1 yields the following expression for the scattering
amplitude

=1 S0 . (29)

Thus, for p —» 0, the scattering amplitude becomes real, independent of the scattering
angle, and possesses a pole for G = 2.

Let us compute the second iterative approximation. By introducing (27) into the
right-hand side of (26) we find the following asymptotic value for r - 0

WW=§P+%mmﬂ (30)

and fora-r» 1

= G [1+ %(14.&)(;] (€13)
3a 5
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respectively. The self-consistent fit
220) = x1%0) (32)
of the parameter « yields

= —, (33)

1
¢ 176
@~ 34
s 3a 5 (34
1—EG

Comparing this result with (29) it is seen that both are very similar to each other provided
G < 25. But more interesting will be the comparison of our result (34), or equivalently,
of the scattering length, with the exact result as well as with the results of the usual Born
approximations and with Schwinger’s variational method. This comparison is given in
Figure 1. It is seen that our refined (second) Born approximation agrees exceedingly with
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Fig. 1. Scattering length as a function of the depth of a square well U

the exact result, up to the values of about G = 18. In particular, it describes correctly
the first pole appearing in the exact solution. The same advantages are exhibited by Schwin-
ger’s variational result (up to the values of about G = 16). However, Schwinger’s varia-
tional computations are much more difficult and must be performed separately for each
partial wave whereas our method, similarly as Born’s procedure applies to the full amph-
tude without necessity of performing any expansion into Legendre polynomials.
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4. Scattering on the Yukawa potential

Let us discuss briefly the scattering of a *‘nucleon” with mass m on a Yukawa poten-
tial

—ar

e 2m g
U= -Ga , G=——, (35)
r

where a denotes the pion mass. Introducing this potential into the integral equation (7)
and assuming, as a zero-order approximation, the function (22) it is immediately seen
that the first order function ¥‘!) is nothing else but the function resulting in the first Born
approximation but multiplied by the factor 1+4a. Consequently, the scattering amplitude
will be also proportional to that of Born with the same factor of proportionality

O = +af. (36)

The unknown parameter « may be fitted again by the condition (23). This yields

. Ga s e(ipr—ar+i;;;
270 =0+a0)— | d'r ——5— =g, 37
4n r
whence
iG N
4 =|1- —In(1-ix)| , (38)
X

where x means essentially the momentum of the incident nucleon
X ==, 39

The relation between Born’s and our (differential or total) cross-section is
o = [1+ai’ay”. (40)

In Fig. 2 the total elastic cross-section for a fixed value x = 0.4 is plotted as a function
of G. It is seen that for such a comparatively small value of momentum, Born’s result
is correct only for G much smaller than unity. On the other hand, our result for the cross-
-section is by far better and exhibits correctly the resonant character of the scattering for
G of the order of magnitude of unity.

Fig. 3 describes the dependence of the cross-section on the momentum for a fixed
value G = 10. Our result coincides with that of Born for sufficiently high momenta (x > 25)
where Born’s approximation is known to be quite good. On the other hand, for strong
coupling but comparatively small momenta there appears a great discrepancy between
the two results.
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Fig. 2. Total cross-section for the Yukawa potential as a function of the coupling constant at a fixed
value of momentum
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Fig. 3. Total cross-section for the Yukawa potential as a function of momentum at a fixed value of the
coupling constant

5. Transition to the c. m. s.

In all text-books about scattering problems it is stated that the transition from the
case of scattering on an external potential to the case of scattering of two particles (inter-
acting by means of a potential of the same form) may be achieved simply by replacing the
mass m by the reduced mass. The proof of this fact has been achieved by separating the
motion of the centre of mass from the relative motion. However, an objection may be
raised that in this case one has to do with a description of the motion of one of the two
colliding particles in a non-inertial frame of reference whose origin is fixed at the position
of the other particle which gives rise to doubts as to whether this procedure remains valid
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also for the case of highly energetic collisions in the relativistic theory. Besi
approach is certainly unphysical since one never measures the relative coordin
always coordinates of the particle with respect to an inertial frame of referen

To meet such doubts and objections we shall discuss the problem of transiti
the case of scattering on an external potential to the case of a mutual scatterin,
colliding particles anew in a more methodological fassion. To do so we may st
the Schrodinger equation for two particles

Ly L VI+V(Fi =7, ) ¥(y 72 D Oy
- — Vi— — ry—r TPy, ) =1,
2m, ! 2m, 2 e ks ot

and look for a stationary solution
lP(;l’ ;2’ t) = 'P(;x, ;2)e—imr.

Let us perform the separation of variables by going over from 7, 7, to ¥ and R,
describes, as usual, the coordinates of the mass centre but 7 does not mean the
coordinates but is defined as follows

- -
myry+myr,
M

>

where M means the total mass of the system
M =m;+m,.
The physical meaning of the new coordinates r becomes clear by remarking t
F = 71— R(F1, 7).

Thus, 7 denotes the coordinates of the first particle with respect to an inertial co
system whose origin coincides with the centre of mass of the system. This has me
gical advantages because one can measure directly positions, momenta, etc. of
with respect to an inertial frame of reference but not with respect to the other
inasmuch as -— in the latter case — we should “sit on the other particle” toget
our apparatus of measurement while this particle itself undergoes an accelerat
motion of the centre of mass being uniform, it may be brought to rest in an inerti:
of reference. If the centre of mass coincided with the origin of this inertial frame
rence, then the coordinates r denote those of the first particle in this system of r.
From (42) we get

o 1/ @ d o om0 0
o, M\™Max T™a%) a, T M\ax  ox

1az+1a2 1az+1mza2
2m, x2 ' 2m, 0x2  2M 98X? ' 2M m, ox*’

and
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whence
1 1 ~ 1 1 m
Vit Vi= _Vi+ vz 45
2my ' 2m, © 2M LA V" (45)
while
. - M., 46
ri—Ft, = —r,
12 mz" ( )

so that the stationary equation assumes the form

vio Lomagz, [ (M R7) = owk 7
[ 5 ¥ 5 2w (o) | w2 = wwii @)

and is separable.

At the first sight the above equation may look strange but it is certainly correct. In parti-
cular, if m, — oo then M/m, — 1 and the above equation turns over into the usual equa-
tion for the first particle in an external potential

[— g+ V(?)] ¥(7, R) = wy(r, R). (47)
2m,
The position of the centre of mass coincides with that of the second particle in this limit,
and we may simply put into the above equation R = 0.
By performing the separation of variables in (47) and assuming the centre of mass
to be at rest (P = 0) we are left with the equation

1 m, V2iy M @ @) A3
- —= —r r)=aw
M m, m P w(r (48)
describing the motion of the first particle, or
Ly 120! 49
— ooe. -—w 3
2m1 1| Y Yy, ( )
where
M . M M
0, =—o0, VE©)y=—V|—r]. (50)
m, m, m,

In order to describe the scattering phenomena we assume a solution of (49) in the
usual form

¥(7) = EF (). (51)

Inasmuch as the total energy is only determined up to an arbitrary constant, we may
choose this constant so that

— = w;. (52)



642

By exchanging the indices 1 +»2 we find the following relation
M
0, +w; = — o, (52"
u

where p is the reduced mass. Introducing (51) and (52) into (49) we obtain an equation
for x

(V+p2 = U (7 +), (53)

where
U=2mV. (54)
It is seen that the equation (53) is identical in form with the equation (4) for the
scattering on an external potential, the only difference being that V is to be replaced by V.
Thus, the rule for going over from the scattering on an external potential to a mutual

scattering of two particles is

Ve ¥V (55)
or
U=2m V- U=2mV. (55"

Now, in the special case of Yukawa potential we have

(56)

where
a. ¢Gn

Thus, the transition from the case of scattering on an external Yukawa potential to the
mutual scattering of two particles consists, originally, in a replacement

M

a-a=—a. (58)
my
In view of the definition (35) of G we have
G_"m_lg_z_.,é=2mlg_2=2m1m2§_2_gfg_z (59)
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so that, indeed, the change of G' may be viewed upon as a replacement of the actual mass
of the scattered particle by the reduced mass. Moreover, the scattering amplitude involves
the parameter a also through the variable x which undergoes a change

2p . _2p 2myp
= — = X = e =

x = = .
a a Ma

(60)

Inasmuch as (in the non-relativistic theory) p, = m,v, the above replacement is identical
with
my mym; H
v

— = - 61
av_) Ma av 61

which again may be interpreted as a replacement of the actual mass m; by the reduced
mass u while keeping the actual velocity of the particle and the value of @ unchanged.
However, the change of mass may be regarded as apparent while the genuine physical
effect consists in the change (57), i. e. in a contraction of the range R = 1/a of nuclear
forces by the factor m,/M for the first particle

R, =—R (62)

R, =—1R 62)



