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THE MULTIPLICATION LAW IN QUANTUM PHYSICS.
PART II. THE RELATIVISTIC QUANTUM FIELD THEORY

By E. KAPUSCIK
Institute of Nuclear Physics, Cracow*
(Received January 31, 1974)

A new construction of the quantum field theory is proposed. The general multiplication
law for relativistic quantum field theory is discussed. The method is illustrated on the exam-
ples of the free field theory and the interacting fields in the so-called one-particle approxi-
mation.

1. Introduction

Recently, we have shown [1] that the Heisenberg quantum theoretical multiplica-
tion law is only a particular case of some more general multiplication rule. In the case
of the usual non-relativistic quantum mechanics the new generalized multiplication law
leads only to some numerical changes in the final results. In particular, our formulation
throws some new light on the zero-point energy problem. The situation is, however,
completely different when we pass to the cases of physical systems for which an infinite
number of transition amplitudes are equal as a manifestation of some internal symmetries.
In such a case the conventional Heisenberg multiplication law is meaningless while the
generalized law evidently works.

The aim of the present paper is to extend the idea of the generalized multiplication
law to the case of relativistic field theory. First of all, we show that the conditions of Lo-
rentz invariance and local commutativity require an equality of an infinite number of repre-
sentatives of the field quantity. We restrict our discussion to the case of field theories
with one scalar field describing one type of particle. Such a restriction is made mainly
for the sake of simplicity but it is not easy to generalize our results.

After pointing out the much more complicated nature of the multiplication problem
in the case of field theory, we limit our attention to the case of the free field theory,
leaving the other cases for a separate paper. Our construction of field theory fully avoids
the introduction of creation and annihilation operators for particles with sharp values of
the momenta nor do we use any element of the Hamiltonian approach to quantum field
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theory. This is not accidental, since already in the domain of classical field theories the
Hamiltonian approach does not have a unique meaning. Of course, our final results are
completely equivalent to the usual results of quantum field theory but the way of obtaining
them is quite different and in contradistinction to the usual formalism is always meaning-
ful. Therefore, we may avoid the infinite renormalization procedure which is highly
questionable from the logical point of view.

2. The passage from classical to quantum field theory

We start our consideration with the description of the way in which we pass from the
classical to quantum field theory. By classical field theory we mean here the wave mechanics
of the first quantized theory. Consequently, our basic object is the wave function p(x)
describing some collection of elementary particles. This wave function obeys some non-
-linear wave equation of the type

(D+m?)p(x) = F(y(x)), 2.1

where the non-linear term on the right-hand side describes the interaction between the
particles which are present in the considered collection of them. In general we may write
the solution of (2.1) in the form

va(x) = €M pp(x), (2.2)

where P is the vector of the total four-momentum of the system under consideration,
@p(x) describes the relative motion of the particles constituting the system and, as usual
in the exponent, we have the Lorentz invariant scalar product of P and x. For all non-
-linear wave equations (2.1) the explicit form of ¢p(x) is unknown but, assuming some
reasonable restriction on its form, we may write @p(x) as a Fourier integral

pp(x) = [ pp(Q)e'%%d*Q. (2.3)

In the case when the system under consideration consists only of a single particle the cor-
responding @p(x) is a constant (depending on P) and the below presented analysis must
appropriately changed [2]. This case is described in the Appendix.

We shall have an equivalent amount of information considering instead of (2.2)
and (2.3), directly the set

{pp(Q)e"F P}, (2.4)

where the role of the two four-momenta P and @ is completely unsymmetric. Following
the Heisenberg reinterpretation of all mechanical quantities {3}, we now make the same
reinterpretation of the field quantities (2.4) and from now on we shall replace the classical
field y(x) by a set of representatives

{p(P, Q)e'F =9}, 2.5)

where both P and Q are now possible experimental values of the total four-momentum
for the considered system and (P, Q) is connected with the amplitude for the transition
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probability between the states of the system with these four-momenta, respectively. In order
to write down the precise form of the connection between ¢(P, @) and the corrésponding
transition amplitudes we must further specify some details. First of all, for the sake of
simplicity, we shall assume that our field theory describes the collections of only one type
of scalar particles with mass M. Then, since both P and Q are true experimental values
of the total four-momentum and the particles may be observed as individuals only when
they asymptotically become free, we must assume that both P and Q are elements of the set

Iy = {0, '21 Pj!Pf' = Mz, Pj,o>0};7=1- (2.6)
j=

This assumption plays the role of the spectrum condition in our field theory. It is easy to
see the difference between (2.6) and the spectrum condition usually adopted in field the-
ories, which is simply a particular case of (2.6) with infinite N. The choice of N — the
maximal number of particles which are present in the considered physical system — is
governed by the maximal value of energy concentrated in the system and for really exist-
ing systems is obviously finite. The choice of infinite value for N is, however, a very con-
venient idealization.

Our next step consists in the introduction of wave functions for the considered collec-
tions of particles. These wave functions of n-particle system, as usual, form the n-particle
Hilbert space H, given by the complex valued symmetric functions of n arguments (being
four-momenta on the mass hyperboloid) and subjected to the condition of square integra-
bility with respect to the Lorentz invariant measure defined on the mass hyperboloid.
For n = 0, H, is simply the set of all complex numbers. Then, for the transition from the
n-particle state of the system to the m-particle state, we could try to define the transition
amplitude by

- d3p d? q .
T (s Dy3 X) = I I | p - I I —'um(pu- PP, QTP (qy ... q), (2.7)
4,0
j=1

where

P=ij, Q=ZQ¢’
i=1 =1

and u, € H,, v, € H,, with an obvious modification when P or/and Q are the zero element
of the set (2.6). This definition cannot, however, be admitted because the expression (2.7)
is not bounded, this contradicting the bounded character of the corresponding transition
probabilities. In order to get bounded transition amplitudes we may use the Bohr and
Rosenfeld argument [4] concerning the measurability of field quantities. Consequently,
we pass to the smeared field representatives given by

PAP, Q) = [ d*xf(x)p(P, Q)" =" = ¢(P, Q)f(P—Q), (2.8

with a suitable choice of the test function f(x). The test functions may be chosen different
for different field representatives and we shall interpret them as wave functions of the
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emitted or absorbed matter associated with the transition from the initial to final states of
the field. The physical transition amplitudes are then defined as

- dp; - dq
Tty U,) = j l | -’| | Uiy - PP Qdrs - 4a)s (29)
Pjo = 410
i=1 =

with an obvious modification in the cases when the field representatives are different
from zero only for some special correlations between the momenta P and Q from the set
(2.6). We shall introduce such changes below on the example of the free field theory.

Each transition amplitude (2.9) defines a bounded sesquilinear form on the Cartesian
product of the Hilbert spaces H, and H,. According to the well-known reconstruction
theorem [5], such sesquilinear form defines a bounded operator with the domain H,
and range H,,, respectively. The set of all such bounded operators is then unified by the
introduction of a single, in general, unbounded operator ¢({f}) defined on some dense
domain in the Fock space

Fy= @ H, (2.10)
n=0

in such a way that the restriction of ¢{{f}) to H, with the range H,, coincides with the
operator defined by (2.9). The operator ¢({f}) we shall call the field operator generated by
the given set of field representatives. Our construction of the field operator is slightly differ-
ent from the conventional construction performed up to the present time. The first differ-
ence consists in the fact that the Fock space (2.10) contains only wave functions for maxi-
mally N-particle states in accordance with the form of the spectrum condition (2.6). The case
of infinite N is only a particular case of our construction. The second difference is connected
with the use different smearing functions for different field representatives. In this way the
field operator depends on a set of test functions which may be reduced to a single test
function in some particular cases. Consequently, our ficld operator has a much more gen-
eral character than the usual smeared operators of the conventional quantum field
theory.

The field representatives ¢(P, Q) should be calculated from the field equation

[(—(P-0Y+m* (P, Q) = F(g) (P, Q), 2.1

where the meaning of the right-hand side will be elaborated in the next section. Since this
basic equation is non-linear with respect to the field representatives it cannot generaily
be solved exactly and we must be satisfied with some approximate solutions that furnish
adequate information about the system. We shall always assume that the approximate solu-
tions can be obtained by means of the asymptotic expansions of ¢(P, Q; A) with respect
to the coupling constant determining the magnitude of the interaction. Consequently,
we may choose an asymptotic sequence of functions {x,(4)} such that the field representa-
tives (P, Q; /) may be written as

L
PP, Q4= Zo PP, @5 A+ 0(ay), (2.12)
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where we use the terminology of Ref. [6]. We shall later on discuss the technical details
concerning the asymptotic method and in particular the choice of the asymptotic sequence
{o,(1)}. Here we mention only that this choice will crucially differentiate our method
from the vsual perturbation approach to the non-linear field equations (2.11). But this
is not the only difference we propose which will be especially clear from the content of
the next section where we discuss the multiplication problem for quantum field theories.

As has been shown in Part I, before formulating the multiplication law we have to
exploit the symmetry properties of the considered system. As a first symmetry we have
here the identity of particles which is automatically taken into account in the structure of
the set (2.6). The next symmetry is the Lorentz invariance of the considered field theory.
It is easy to see that it gives the condition

P(AP, AQ) = (P, Q) (2.13)

for all Lorentz transformations A. The relativistic invariance condition dictates, therefore,
that an infinite number of the field representatives must be equal and this locates the field
theory in a subclass of quantum theories discussed in Sec. 4 of Part 1.

A further symmetry follows from the local commutativity condition. Since we do not
work in general with an infinite number of particles we must suitably change the formula-
tion of this condition. For finite N we shall always require that

[p({f}) p({gD]w =0 (2.14)

for all y € #y_, and for space-like separations of the supports of the test functions in the
set {f} and {g}, correspondingly. The condition (2.14) gives further relations between
the field representatives which are, however, very difficult to extract in a general case.
The situation improves considerably if we use the asymptotic expansions (2.12) for the field
representatives. Since these representatives are given by (2.12) up to the order o only,
we may require that the right-hand side of (2.14) is, instead of zero, a quantity of order
oz +- This gives us a recursion procedure for obtaining the relations for the coefficients in
(2.12) from the condition (2.14). Instead of elaborating the details of such procedure for
the general case we prefer to do this separately for the considered examples. This is a much
more economical way in view of the compleXity of the condition (2.14).

3. The multiplication problem for quantum field theory

Following the procedure of Part I, we start with the general expression for the repre-
sentatives of the product of two fields ¢ and . This is given by

(e (P, Q= Y [a(P,0;p\...P;4q .. a3 Y . P{54Y ... @)%

k,l,s,ueZ

dsq

x @(P'. QVp(P", Q') (3.1)

Do ‘1.80 Pyo
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where

a=1 7=1

H u
Q=%Ya Q=3a4 (3.2)

=1 a=1

Already at this point we see the much more complicated character of the multiplication
problem in the case of field theory in comparison with the analogous problem in the case
of non-relativistic qQquantum mechanics. Each coefficient a,,,,,, of Part I becomes now a
function of 8+3 (k+/+s+u) arguments.

From the analogy of the Rydberg-Ritz combination principle we get the condition
that the unknown functions in (3.1) may be different from zero only on the manifold
determined by the equality

Q+P'+P" = P+Q'+ 0", (3.3)

which must hold identically for all values of the one-particle momenta present (3.2). This
is possible only when

n+k+s=m+l+u (34

where n and n are the numbers of one-particle momenta constituting P and Q, respec-
tively. We see therefore that the analogue of the Rydberg-Ritz combination principle gives
in the present case rather a weak restriction on the general form of the multiplication law.
In order to proceed further we must know the type of the functional dependence of the
field representatives on their arguments. But even knowing this we introduce a new function
each time we perform the multiplication step. These new functions play an analogous role
to that which the form factors play in the conventional quantum field theory. Conse-
quently, we have here the problem of how to remove the form factors (or rather how to
fix them) instead of introducing them as happens in the usual approach to field theory.
This fact permits the hope that in our approach it should be easier to get an agreement
between theoretical results and the experimental data.

To obtain the field representatives we must solve the field equation (2.11). In order to
do this, however, we must specify the form factors in (3.1) and at this point a specific closed
circle arises. There are many ways of cutting this circle. The first possibility is to assume
a priori the functional shape of the field representatives and of the form factors and with
this to try to solve the field equation. This way, however, is very ineffective and in practice
can be followed only in the cases of the free field theory and the interacting fields in the
so-called one-particle approximation. The details of these cases are discussed in the rest
of this paper. Other models based on such a procedure are practically not solvable.

Another way of cutting the closed circle is to use the asymptotic expansions men-
tioned in Sec. 2. Owing to the fact that the zero order of approximation coincides with
the free field theory where the field representatives are completely known, we may calculate
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the field representatives up to an arbitrary required order of approximation and discuss
the corresponding multiplication problem. We shall describe the details of such a proce-
dure in the last part of the present series of papers.

4. The free field theory

As a first illustration of our construction of quantum field theory we discuss here the
free field theory. From the field equation

[—(P-Q)+m?] (P, Q) = 0. CRY;
we conclude that the field representatives of the free field are different from zero only
when

(P—0) = m?. 14.2)

This means, however, that if we do not wish to have any restrictions on the values of the one-
-particle momenta in the set (2.6) we must conclude that the mass of the particles is equal to
m and that the field representatives are different from zero only in two cases. In the first
case, if P is an element of (2.6) with » momenta, then Q is an element of (2.6) with n+17
momenta but among them »# must be equal to those present in P. The second case consists
in reversing the role of P and Q. The physical transition amplitudes are then given by

n+1
[ dSPj *
Tupsy, Up) = —— Uy 1(P1s -oos Pas VPP, Q0u(pys - Pa) 4.3)
L ﬁ;T o
and
n+1
[ dapj *
Tf(um Upy 1) = un(pls A pn)qof(Ps Q)vu+ l(ph veos Pt 1) (4‘4)
v WA A 0
ji=1

and define two bounded sesquilinear forms on the Cartesian products H, ., x H, and
H,x H,,;, respectively. These two forms are mutually adjoint if

nt1l n+1

WX Py ; p) = 9" pp L P 4.5)

In the following we shall assume that the spectrum condition (2.6) is taken with infinite N,
The symmetric field operator generated by the non-zero field representatives is then given
in the Fock space & by

((p({f})u)n(pl’ pn) =

1 .
== E @(P1+ ... Py Pr+ o D5+ o+ PSP 1 (P15 -oe B o P+

i=1

d*p -
+ Jp— @P1+ -+ Pwr Pi oo+ Put P4 s(Dhns 1P - oo D), (4.6)
4]
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where the hat over the momentum p; means that this particular momentum has to be
omitted in the corresponding place. As usual the field operator (4.6) is defined on the
dense domain of all finite vectors in the Fock space.

Having constructed the field operator we may elaborate the restrictions on the field
representatives which follow from the local commutativity condition (2.14). After a standard
calculation we then get

n+1 n

[p('z1 Dj» '21 Py = ¢io \/n+1
i= i=

and

n+1

oL P X P) = o Jn+l, (4.7)

where @, and @,, are the field representatives describing the transition between the
vacuum and one-particle states. According to (2.13), these representatives are constants
independent of the particular momentum of the one-particle state. We see therefore that,
in addition to the Lorentz invariance condition (2.13), the local commutativity condition
(2.14) equates an infinite number of field representatives in the set (2.5) and this further
confirms the statement that the relativistic local quantum field theories belong to the class
of physical systems discussed in Sec. 4 of Part L

From (4.7) it follows that the set of equivalence classes of the free field representatives
coincides with the quantum mechanical oscillator problem. Since this is a result of the
symmetries for the considered field, we may assume that the form factors in (3.1) do not
depend on P and Q. Then the multiplication problem for the free field theory may be re-
duced to the general multiplication problem for the harmonic oscillator dynamics. In Part 1
we have shown that the general multiplication law for the oscillator is parametrized by
the value of the ground state energy. Since we have here to do with an infinite number of
oscillators, the only consistent choice of this ground state energy is the zero value. Then,
calculating the powers of the oscillator matrix X, we get the reduced representatives of
the powers of the free field theory. The mn-th matrix element of :X*: corresponds to
the representatives of the k-th power of the free field attached to the momenta P and Q
such that P is the sum of m one-particle momenta and Q is the sum of » one-particle
momenta. Owing to the non-vanishing of the field representatives of the free field only
for some special correlation between the momenta constituting P and Q, the same is true
for the non-vanishing representatives of the powers of the free field. We do not write down
these correlations since they are easy to obtain in each case. In exactly the same way
as we have constructed the field operator from the field representatives we may proceed
with the representatives of the powers of the field. The operators in the Fock space &
generated by these representatives always coincide with the Wick ordered powers
of the free field operator. This confirms the correctness of our method in the case
of the free field theory.

It is obvious that we could proceed in the reverse way without any reference to the
results of Part I. Having established the fact that the field representatives for the free field
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are constant, we may reduce the multiplication problem (3.1) to the form

<P2(P, Q) = Z aklsu(Ps Q)(pkl(psu’ (48)

k,l,s,ucZ

where
(pmn = Qo1 \/m+1 5m+1,n+9910 \/n+1 5m,n+1a

and ask how to choose a,(P, Q) in order to get a local operator generated by (4.8).
It is easy to find that the answer is exactly the same as above. However, if the generalized
multiplication law in the case of non-relativistic physies did not exist, this would show
that non-relativistic quantum mechanics and relativistic quantum field theory are two
different theories — which is an additional justification for writting Part I of this series.

We have already mentioned in Part 1 that the procedure proposed there in Sec. 4
is not quite unique. We may use this non-uniqueness in order to construct the constants
of motion for the free field theory such as, for example, the operator of the number of
particles. It is clear that the results are quite the same as in the usual approach to quantum
field theory.

5. The interacting fields in one-particle approximation

In this section we give some application of our scheme to the case of interacting fields
in the so-called one-particle approximation. We have already stressed the fact that the set
of all possible four-momenta P and Q for the considered system must coincide with the
real experimentai situation. If we know, therefore, that the total amount of energy concen-
trated in the system does not allow the production of a large number of particles we may
assume from the very beginning that the set (2.6) does not contain terms with a large num-
ber of one-particle momenta. It is also one of the advantages of our approach that it allows
such approximations to be made from the start.

The simplest case is, of course, the system containing at most one particle. Intui-
tively speaking, this problem should be trivial in any theory of elementary particles. On the
examples to the 1¢® and Ag* theories we shall show that our approach fulfills this require-
ment and it is superfluous to display again the difference between our approach and the
usual one.

In the considered example the set (2.6) is replaced by the set

{0, plp*> = M?; p, > 0}. (5.1)

The set of field representatives (2.5) reduces now to a simple set containing four types of
elements only; the representative gy, describing the vacuum mean value of the field,
the representatives go; e "P* and @, ¢'”* describing the vacuum one-particle state transi-
tions, and the representative ¢, describing the mean value of the field in the one-particle
states. The set of equivalence classes of the field representatives, or more simply the reduced
set of field representatives, is therefore given by a 2x2 matrix

(‘Poo, ‘Pm) ) (5.2)
@10s P11
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The Fock space &, is the direct sum
F,=C0® H, (5.3

and the smeared values of the field representatives define in it a field operator given by

d’p ~
(p(S ) = Pootto+ Pos f‘g f*(p)uy(p)

(p(Nw(p) = 9’1of(P)”o+?9xxu1(P)- (5.4)

This field operator is a local operator on the vacuum if

Yoo = Py1- (5.5)

Using the principle formulated in Part I, we may apply to the reduced set of field represen-
tatives (5.2) the usual matrix multiplication law and obtain in this way the reduced repre-
sentatives for the powers of the field (5.4). Although other choices are not excluded we do
so for the sake of simplicity. With an arbitrary choice we may obtain the explicit form
of the solution of field equations. For our choice the solutions are as follows:

The A¢® theory:

—m*+ Vm* =422,
24 ’

Poo = P11 =

M? = & Nm* =42 g,, 2,
and only the upper sign gives a physical solution. This solution exists only for
422 |@oy |2 < mé,

which can be considered either as a restriction on 4% or on |, |>. It is interesting to note
that for very large absolute value of the coupling constant the transition from one-particle
state to the vacuum state must be very weak.
The A¢* theory:
In this case there exist two solutions. For the first
Poo = ¢11 =0,
iMZ = m2+ﬂﬂ,z¢0112,

which is always meaningful for positive values of the coupling constant. For negative
values of this constant we must have

A

Po1 |2 = —m?,

which again may be considered as a restriction either on |g,|? or on 1. Here for very
small negative values of the coupling constant the transition from vacuum to one-particle
states are not restricted but they should be very weak for large negative values of the
coupling constant. It is interesting to note that the form of the field operator coincides
with the form of the free field operator of mass M.
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The second solution exists only for negative values of the coupling constant and is
given by

2
m 3
Poo = @11 = * \/" T "3‘9”01‘2 ’

M? = —2(m?+44|@o1?).
It exists for
m2

2
m
-3 < Mpoy> < - —,

4
which once more gives some correlation between 4 and |go,|>. The maximum value of
M? is here bounded by

2 2
Mmax=%m'

Finally, it should be noted that, apart from the solutions quoted above, there exist in both
cases also noniocal solutions which do not satisfy (5.5). Most of them correspond to the
zero value of the mass M.

APPENDIX

In this Appendix we describe the strictly one-particle problem in the framework of
our reinterpretation of classical field theory. In the first quantized wave mechanics the
wave function of a single particle with mass M is usually written in the form of a Fourier
integral

d’p —ipx i
V() = h—(w(p)e P (g™, A1)
where
po = + VP +M?, (A2)

and the squares of the Fourier coefficients |y(p)|* are interpreted as being proportional to
the probability that the particle moves with the momentum p. We have an equivalent
amount of information working directly with the set

d3
{v@)e"‘”‘lpz = M?; p, > 0; J-—f lw(p)|> = N2 < 00}, (A3)
[0

and strictly speaking only the scheme (A3) follows from the original de Broglie idea [7]
while (A1) has only a limited range of application. The assumption that the first quantized
wave function of a single particle is always represented by a set of type (A3) is in fact
the content of our reinterpretation.
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Having two sets of the form (A3) (with the same N, ), we define their superposition by

o(p)+v(p)

(p@v) (p) = , (Ad)
' ’ \/2(1-{— Re (e, w))
N2
where
t’d3
(9 ¥) = J 22 o+ @)ui). (A5)
Po

The reason for the fixed value of N will be clear from (A9) below. The superposition prin-
ciple (A4) is valid independently of the wave equation obeyed by ¢ and y and has three
important features: First, the representatives of a superposition have the same value of
N; second, if @(p) and w(p) do not overlap in the sense of (AS) then

(9@Y) = ?’(I’)J-—;”@ (A6)

which coincides with the usual linear superposition principle; third, the superposition of
w(p) with itself is equal to w(p).

Now, we shall define the multiplication law for the sets of type (A3). Following the
procedure of Part I, we start with the general expressions for the product and require
that if we substitute into them the representatives together with the exponential factors,
the representatives of the products attached to the momentum p should automatically be
accompanied by the right exponential factors. In this we see an important difference
between the present case and the cases considered in Part I and in this paper. This differ-
ence is caused by the fact that, while we always had the situation that the linear combina-
tions of momenta appearing in the corresponding exponential factors are possible mo-
menta for the considered system, this property cannot be met in the present case owing
simply to the fact that the sum of two one-particle four-momenta is not a one-particle
four-momentum. This fact has serious consequences. In particular, in the present case
it is impossible to represent in the class of the sets (A3) any even function of the set (A3)
while the odd powers are almost uniquely represented by

" (p) = N"y(p). (A7)
This implies that any non-linear one-particle wave equation
(AO+m*) yp(x) = F(p(x), (A8)
with
F(-2) = —F(2)

is trivially soluble. With the definition (A7) it follows from (A8) that the non-zero solu-
tion exists only for

,_ F)
N

M*=m (A9)
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and equation (A8) does not restrict the values of yp(p). It is clear that this is indeed a cor-
rect result, since with the usual statistical interpretation of iw(p)? this quantity should
be determined by the initial conditions and not by the equation of motion. It follows also
from (A9) that any non-linear wave equation (A8) is equivalent in the present scheme to
the Klein-Gordon wave equation with mass M given by (A9). This is in excellent agree-
ment with the one-particle character of the considered system.
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