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Monte Carlo phase space calculations of the overlap function for Chan-Eoskiewicz-Allison
and Chew-Pignotti models were performed up to laboratory momentum 1500 GeV. The
slope of the overlap function was found to be about four times smaller than the experimental
value. Shrinkage of the elastic peak does not exceed the value found in experiment. The
qualitative explanation of these results is given and the discrepancy with recent estimates
obtained by Hamer and Peierls, Hwa, and Henyey is explained. Finally, it is argued that
the random walk picture of the multiperipheral models is not valid for the realistic particle
density in the rapidity scale.

1. Introduction

The measurements of the elastic and inelastic scattering cross-sections at NAL and
ISR energies have stimulated a new interest in the problem of the Van Hove overlap func-
tion [1]. In particular, several authors have recently discussed this problem in the frame-
work of the multiperipheral model [2-4].

In the present paper we also study the overlap function in two specific versions of the
multiperipheral model, namely the Chan-Loskiewicz-Allison and Chew-Pignotti models,
Our arguments and conclusions are based on exact Monte Carlo calculations performed up
to energy 1500 GeV, and taking into account energy and momentum conservation. These
calculations show that the slope of the overlap function is much smaller than that of the
elastic amplitude. Thus they agree with earlier calculations at lower energies but are in
strong disagreement with conclusions of Refs [2-4].
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In order to introduce the reader to the problem let us write down the equation for the
imaginary part of the two body (elastic) amplitude which is a direct consequence of the
S-matrix unitarity:

Im AZ(papb; pa‘pb’) = 22 j dTAn(papb; pla pZ: “evy pn)A:(pa’pb’; Dis P2s «-es pn)’ (1)
n=

where A, is an elastic scattering amplitude a+b — o' +b’, 4, is an amplitude for produc-
tion of n particles a+b — 1+2+...+n, and dr, is the Lorentz invariant phase space
element.

An adequate model of particle production inserted into the RHS of Eq. (1) has to
generate the correct amplitude of the elastic scattering, which is believed to be dominantly
imaginary in the high energy limit. Thus Eq. (1) provides a test of models for particle
production. As has been shown by Michejda et al. [S-8], this test is rather severe and many
models do not satisfy it.

The problem can be formulated as follows [5]: is it possible to generate the correct
forward diffraction peak, starting from a realistic description of many particle produc-
tion in terms of a given phenomenological model?

Throughout this paper by realistic description we mean the production amplitude
which, inserted under the phase space integral, is able to reproduce the main features of
inelastic scattering data; that is to say, at least the mean values of transverse and longi-
tudinal momenta (nucleon inelasticity).

The first attempt to solve this problem was made by Michejda et al. [5-8] for the
ntp reaction at 8 GeV. It was found that neither the Uncorrelated Jet Model nor the Multi-
peripheral Models (CE.A, OPE) generate an overlap function with a slope comparable to
the one expected from elastic scattering data. The resulting slope of the overlap function
appears to be too small by an order of magnitude. It was concluded that the unitary model
of multiparticle production at the energy 8 GeV should provide either a momentum de-
pendent phase of the matrix element or some correlations stronger than those in MPM
(the spin of produced objects we regard as some sort of correlations).

The authors of papers [2-4] came to the conclusion that the situation is different at
very high energies. In their opinion the Multiperipheral Model in this simplest version
(CP) gives a too steep overlap function and predicts a too rapid shrinkage of the diffrac-
tive peak.

In the present paper we show that the conclusions in Refs [2-4] are based on approx-
imations which are not justified for the experimentally observed average density of par-
ticles in the rapidity scale.

Exact Monte Carlo calculations with Chan-toskiewicz-Allison and Chew-Pignotti
models lead us to a result very similar to that found at 8 GeV [7] — the overlap function
appears to be very flat and the estimated shrinkage of the elastic peak appears to be rea-
sonable. Furthermore, we found that the random walk picture of the multiperipheral
model [12] is not valid for the realistic particle density in rapidity scale. Calculations were
made for pp collisions at p,,, 50, 300, 1500 GeV, and multiplicities up to 30.

The paper is arranged as follows. In the following Section 2 we describe the results of
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our calculations with the CL.A model and we show explicitly the origin of the difference
from the calculations in Refs [2-4]. In Section 3 we discuss the Chew-Pignotti model,
which enables us to discuss more directly the approximations used in Refs [2-4], and the
validity of the random walk picture. The effects of clustering in the rapidity space on the
overlap function behaviour are qualitatively discussed in Section 4. The paper ends with
conclusions.

2. The Chan-Loskiewicz-Allison model

We analysed two types of multiperipheral parametrization for the matrix element.
One of them was the Chan-Loskiewicz-Allison model [9, 10], widely studied at accelerator
energies. In this model, the modulus of the matrix element for »n particles production is
of the form:

n—1

|4, = (gisi+ca sita\" (si+b\!
" s;+c¢ a bi ’
i=1

i=

si = (Dit Piss)” — (mi+myyy)?,
K
L= (p,— kZ1 Pk)z. ¥)]

Parameters g, ¢, a, b were taken from the original paper [9]'. The kinematics is shown
in Fig. 1.
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Fig. 1. Kinematics of the multiperipheral chain

1 1t is remarkable that parameters adjusted to fit the data at accelerator energies enable us to re-
produce average transverse and longitudinal momenta at ISR energies.
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The following formulae, taken from Ref. [11], were used to calculate partial overlap
F,(t) and its slope I',:
F(1) = § d1,|4,|*H,(1),

n—1
H
H, () = exp{—~4(1—— \/1-— ‘“’E:‘ﬁ) Pff‘}’oq(s, Siy cens s,,_l)} ,

4p, Z
i=1
I, = §du,|A,S,,

n—1

1 M
Sn = 2—p'av[" PL,iai(s9 815825 «00s Sn—l)’
;CM :
GRLRY ®

for the amplitude A4, of the general form:

n—-1

Au(papb; Pis P25 +-os pn) = F(S, S1s 825 ey Sn-l) €Xp (; a,(s, S1s 825 ey sn—-x)ti)' (4)

In the particular case of the CLA model:

S
oS Sy oy Sqq) = In1 <1+ F) ()
To obtain the full overlap function and its slope at t = 0 we must average them over the
multiplicity distribution.

o0

F() = Z 2% F),

We have performed Monte Carlo calculations of the inelastic overlap function for the
whole total muitiplicity spectrum at 50 and 300 GeV, and for multiplicities close to the
average at 1500 GeV (estimated from logarithmic fit).

We considered only one multiperipheral graph, shown in Fig. 1, and only with meson
exchanges, with intercept 0.5. We disregarded all other graphs with permutated positions
of the final particles.

In our calculations we used a new method for generating multiperipheral Monte
Carlo events, developed for high energy calculations. A detailed description of the meth-
od will be published in TPJU preprints.



681

ok

=2

1
) -2. -3, t[GeVe]

Fig. 2. The partial overlap function for the reaction pp— 107pp at pjap 300 GeV, in the CLA model
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Fig. 3. Partial overlap slopes versus total multiplicity in the CLA model at piay: 4) 50, £) 300, ¢) 1500 GeV

In Fig. 2 we show the partial inelastic overlap function against ¢ for pp — 107 pp,
at 300 GeV, calculated in the CLA model.

In Fig. 3 we have slopes of partial overlaps against the number of particles produced.
As we see, in general they are small in comparison with the slope of the elastic amplitude
{6 GeV—?) and do not increase with multiplicity » of the intermediate state, as the random
walk picture would predict.

In Fig. 4 we show slopes of partial overlap functions calculated for n = {(n).,
versus In (s). 1t is seen that the obtained shrinkage is comparable to the experimental one.

Thus our results agree with calculations at lower energies [7]. They disagree entirely
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with those of Refs [2-4], in which it was calculated that (i) the-slope of the overlap func-
tion in the Multiperipheral Model is greater than that experimentally determined, and (ii)
the shrinkage is much stronger than that observed.
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Fig. 4. Slope of the cverlap function versus In (s) at average total multiplicity a) experimental, b) from
CLA model. ¢) from CP model

As we shall show below, this difference arises from the fact that the authors of Refs
[2-4] neglected the longitudinal part of the four momentum transfer. First, let us discuss
the situation in the CLA model. The parameter

n(14 -
ai = in —
b;

which governs the momentum transfer distribution in the CLA model (see Eq. (2)), de-
pends on the invariant mass of neighbouring particles in the multiperipheral chain. From
Monte Carlo calculations we found for central multiplicities (close to average) average s;
of order 0.5 GeV?, giving {a;> = 0.4. This agrees with the value obtained from analysis
at 8 GeV [9, 10]. For large multiplicities {a;> is even smaller, so the bounds on the four
momentum transfers are very weak. Nevertheless transverse momenta are strongly bounded,
and we get their average values consistent with the data. To see how it happens, let us
write a formula for momentum transfer along the i-th link in the multiperipheral chain
(see Fig. 1)
t; = tr+1],

tt‘L = (Ea_ Z Ek)z—(pa— kzl P}f)z,

1= —(k; P’ 6
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We shall show that the bounds on transverse momenta are provided by the longitudinal
part 1L of the momentum transfer rather than its transverse part ;. For later purpose
it will be very useful to rewrite the longitudinal transfer 7 as a function of rapidities.
Taking into account momentum and energy conservation we can derive (see Appendix):

i n
th = —(me™ = § mie”) (me"= y mie™, ™
=1 =i+

where mf = /m2+p'? is the transverse mass of the k-th particle. To estimate ¢* we shall
calculate it assuming that the particles are equally spaced in the rapidity scale with distance
d, and all transverse masses are equal to average. For links far from the ends of the multi-
peripheral chain we obtain (see Appendix):

—d

€
fa (i
<m> (l_e—d)z

®
The approximate transverse momentum dependence of the amplitude through ¢ is
eXp (— e P12) Where oor = <o) e %(1—e™%)2. Taking d = In (s)/{n), = 0.3, from the
logarithmic fit of the average multiplicity we obtain . = 4.5, i. e. a reasonable descrip-
tion of the transverse momentum distribution. We obtain also |{z/)| = 1.7 GeV? which
is in good agreement with our results from Monte Carlo calculations for multiplicities
close to average.

We would like to emphasize that these estimates of d, oy, and ¢ at average multi-
plicity are approximately energy independent.

The authors of Refs [2-4] write the multiperipheral matrix element in the general
form:

n—1
|44l = _=l_[1f(8z) exp (#t7) )

which is equivalent to Eq. (3), provided that the longitudinal parts of the four momentum
transfer are neglected. In order to fit the transverse momentum distribution using formula
(9), it is necessary to take:

20 ! 2 11.0
N
Kyl — <D

This value is more than one order of magnitude larger than that used in the CLA model.
Such a large value of «} is the main reason for the large value of the overlap slope and
strong shrinkage found in Refs [2-4] (see Eq. (2)). The approximation # = 0 used in
Refs [2-4] can be justified for events of low multiplicity, where the density of the particles
in the rapidity space is very small. Then, the average distance between particles becomes
very large, and as is seen from Eq. (8), the longitudinal part of the momentum transfer is
close to zero. However, as shown above, for multiplicities close to average this approxima-
tion does not hold. On the contrary, the transverse momentum distribution is controlled
by the longitudinal part of the momentum transfer.

(109
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Thus we conclude that, although the calculations of Refs [2-4] correctly estimate the
slope of the overlap function for amplitude given by Eq. (9), they cannot be considered
as representative for the multiperipheral model, which is formulated in terms of the four
momentum transfers, and not in terms of the transverse momenta.

In concluding this Section, we wish to point out that the dominance of the longitu-
dinal momentum transfer in the description of the transverse momentum distribution has
still another important consequence: it questions the validity of the random walk picture
of the multiperipheral model [2-4, 12].

We discuss this problem in some detail in the next Section, using a more simplified
version of the multiperipheral model, namely the Chew-Pignotti model {14].

3. The Chew-Pignotti model

We have performed the same calculations for the simple Chew-Pignotti model (CP)
n—1

i4al = [] e (11)
i=1

at the same energies and multiplicities. This was done so as to make clearer some of the
kinematical aspects discussed previously. This parametrization was used in papers [2—4]
hence our Monte Carlo calculations enable us to perform a direct check of the approxi-
mations made there. In order to reproduce the experimental average transverse momenta
{which are around 350 MeV) we had to take for constant a a value about 0.5-0.4 GeV-?
in rough agreement with the CLA value {(o;> = 0.4 and in strong disagreement with the
approximation a = 1/{p"®) = 5.5 GeV-2 used in Refs [2-4].

To show explicitly that the bounds on the transverse momenta are imposed mainly
by the bounds on the longitudinal momentum transfers -, we have put in formula (11)
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Fig. 5. Partial overlap slopes versus multiplicity in the Chew-Pignotti model at p),1: @) 50, b) 300, ¢) 1500 GeV
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tF instead of 7;. The resulting average transverse momenta and other average values did
not change more than 109 with respect to. the results of calculations with amplitude
given by Eq. (11). Thus it appears that ¢ rather than ¢ can be neglected.

From the fact that #; = 7 we conclude once more that amplitude does not depend
on transverse momenta directly by ¢’ but mainly by transverse masses in t. Thus the
random walk picture is, for the multiplicities close to and larger than average, completely
false. The situation appears to be similar to that in the Uncorrelated Jet Model, though
transverse momentum is cut more strongly when multiplicity increases. This last property
implies that, when multiplicity increases, a) the average transverse momentum decreases,
and b) the overlap slope increases (see Fig. 5). In the CLA model the dependence of
average p® and slope on multiplicity is different (see Fig. 3) because <{o;> decreases with
multiplicity.

When comparing the results of the Monte Carlo calculations with CLA and CP mod-
els at average total multiplicities for different energies (see Fig. 4), weé can see that there
is no substantial difference between them as far as the overlap function and its shrinkage
are concerned. We conclude that flatness of the overlap function cannot be attributed
to the particular CLA parametrization but (in the framework of the models with single
emission from each vertex) is a general feature of the multiperipheral kinematics.

4. Cluster formation and the overlap function

Let us summarize what we found when investigating Multiperipheral Models with
single emission from each vertex.

We found that for multiplicities close to average: (i) invariant masses of particles
neighbouring in the multiperipheral chain are small with respect to momentum transfers
{sp» = 0.5 < [K#;>]; (i) momentum transfers are much greater than transverse momen-
tum square {p;2y < [Kt>| = 1.5 GeV2.

Both these results were already known from earlier analysis at lower energies [9, 10].
We would like to emphasize, however, that since these results come from high density
of particles in the sapidity scale, they are expected to be energy independent for multi-
plicities close to average.

The slope of the overlap function is approximately proportional to {n)/|<#;>|. Since
[Kt;>] = 1.5 GeV?, the resulting values of the slope are rather small, much smaller than
required by comparison with elastic scattering data.

On the other hand, we can see from formula (3) that at 300 GeV even two peripheral
exchanges with negligible 7 and «; of order 1/(p")? = 5.5 would give a slope of the right
order of magnitude. Therefore it is possible that in the model in which particles form a few
clusters in the rapidity space, we would get better behaviour of the overlap function. In
such a model with many particle emission from one multiperipheral vertex, we would
have a few really peripheral exchanges, instead of having many pseudo-reggeon exchanges
with peripherality killed by the longitudinal transfer. In fact, cluster formation is the
only way of obtaining really peripheral réggeons.
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Finally in this Section let us notice that the CLA model is not a clustering one as was
suggested by Henyey [4]. He expects a large amount of clustering between particles,
since the matrix element in the CLA model has a minimum when all subenergies are smail
and equal. Such a situation is not confirmed by detailed investigations. A statistical analysis
of event to event fluctuations of the longitudinal momenta applied to 2-, 3-, 4-, and 6-pion
production at 28 GeV for proton-proton collision has shown [13] that the CLA model
is very close to the non-clustering reference (Uncorrelated Jet Model), especially for higher
multiplicities.

This behaviour can be understood as follows. In the dominating factor exp (a; t]),
o; decreases with decreasing difference of rapidity of neighbouring particles. This can be
interpreted as the existence of cluster forming attractive forces. On the other hand, the
longitudinal transfer has opposite behaviour:

e}'(+l =¥

e —(mH? ——
i < > (l_e—d}Z

(12)
(see Appendix), which can be interpreted as a source of repulsive forces in the rapidity
scale. The net result is very close to the Uncorrelated Jet Model.

To sum up this Section let us assemble its main points.

i) The Multiperipheral Model with a single emission from each vertex leads to a much
too flat overlap function because of the high density of particles in the rapidity scale.
In this point we disagree with the conclusion reached in Refs [2-4].

i) Since the introduction of clusters reduces the density of produced objects in the
rapidity scale, it is natural to expect that it will improve the behaviour of overlap function.
This conclusion is similar to that reached in Refs [2-4]. However, our motivation is entirely
different, as can be seen from point (i) above. Furthermore, we feel that, for the time being,
this idea is only a theoretical guess and should be checked by detailed calculations.

ifiy Contrary to the opinion expressed in Ref. |4] the small value of the slope in the
CLA model is not caused by clustering effects but is typical for any multiperipheral am-
plitude with a single emission from each vertex.

5. Conclusions

1t was shown by means of the Monte Carlo phase space calculations for pp collisions
at energies 50, 300, and 1500 GeV that in the Chan-Loskiewicz-Allison and Chew-
Pignotti models without momentum dependent phases, the slope of the overlap function
is four times smaller than was found experimentally. Shrinkage was found close to the
experimental value.

These results are in disagreement with calculations based on the approximation in
which longitudinal momentum transfers are neglected. We proved that this approxima-
tion (which is, incidentally, the basis of the random walk picture) cannot be justified for
multiplicities close to and larger than average. Non-negligible longitudinal momentum
transfers result from the high particle density in the rapidity scale and energy and momen-
tum conservation. '
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Thus we conclude that in Multiperipheral Models with realistic particle density in the
rapidity scale:

i) The slope of the overlap function is much smaller than that in the elastic scattering
data,

ii) The random walk picture in impact parameter space is not valid.

We find it quite possible that the introduction of clusters would improve the
behaviour of the overlap function.

The authors would like to thank Professor A. Bialas for his help and encouragement.
They also thank Dr K. Fiatkowski and Professor K. Zalewski for reading the manuscript
and for critical remarks.

APPENDIX

We shall derive the formulae (7), (8), (10). Let us start from the definition of the longi-
tudinal momentum transfer:

tr=(E.— Y EY-(:— ¥ D% (A1)
k=1 k=1

It can be rewritten in the form:

i i i i
=(E,~ Y E.—p:s+ kZ ) (E,— kZ Ec+pi— Y PO (A2)
=1 =g k=1

k=1

-~

Inserting momentum and energy conservation rules

E,~ Y Ey= —E+ Y E,

k=1 k=i+1
Pi— Y pi=—-pPs+ Y Pb (A3)
k=1 k=i+1}
we obtain:
= —[E—ri= ¥ G-l [Etrb~ 5 (Epb] (A%
o =i+1

Noting that
Ek+p}c‘ = ml;reyk’
Ek_pllc‘ = kae_yk,
where mf = \'mZ +(pl)? and y, is rapidity, we can write the longitudinal transfer in the
form:

tr=—(me "~ Y mle ) (me*— Y mie*). (A5)
k=1

k=i+1
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We shall evaluate ¢ in a specific case, under the following assumptions:
i) particles 1, 2, 3, ..., i are equally spaced in the rapidity scale by the distance d,
ii) the same holds for particles i+1,i+2,...,n,
iy all transverse masses are equal to the average value mf = (m'>.
Under these assumptions the sums in (A5) can be explicitly evaluated:

e.ViH__eYn
m{ey" = <mT> ~—1*:—e-:r . (A6)

k=i+1i

When the i-th particle is far from the ends of the multiperipheral chain, the following
terms in (A5) and (A6) can be neglected:

e—)’a ~ e‘)’l < e'y:,
e}'b ~ eVn < evlfl’

and we come to the approximation:
(A7)

Formula (8) is the particular case of (A7) when y;—y;,, = d.

Note added in proof:

After completion of this work the paper of Yasuo Matsumoto and Fujio Takagi
Momentum Transfer in Multiparticle Production and Validity of Multiperipheral Models (Phys. Rev.
D9, 3127 (1974)) was called to our attention. Their paper contains some of our results, concerning
approximate evaluation of longitudinal momentum transfer.
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