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Production processes of multihadron systems leading to the excitation of the discrete
nuclear levels are studied in the framework of the distorted wave impulse approximation
model. The influence of the nuclear absorption of the outgoing multiparticle system on the
effective mass and momentum transfer distributions is examined. Amplitudes for the process
7*2C > nnn'2C* (4.4 MeV) are derived and the results compared with experimental data.

1. Introduction

Multiparticle production has been extensively studied in the coherent processes on
nuclei [1]. Identification of the coherent events requires a separation of the nuclear ground
state from the excited states. This is very difficult to achieve using high energy hadron
beams. However, the fact that angular distributions of the coherently produced multi-
hadron states are very sharply peaked in the forward direction and dominate over the
incoherent production differential cross sections, helps in isolation of the coherent events
(see for example Ref. [2]). This experimental procedure cannot be used in studying the
multiparticle production with simultaneous excitation of some final nuclear state. There-
fore a new experimental technique has been developed in which one detects photons
emitted by excited nuclei. This technique was applied by two experimental groups working
at Berkeley and Argonne in the study of the inelastic pion scattering [3, 4] and the coherent
three pion production [5]:

1 12C — mtan 12 C* (4.4 MeV). m

The 4.4 MeV level of 12C has isospin 7 = 0 and spin parity 2+ therefore only isospin
zero can be exchanged in the #-channel of reaction (1).

Choosing experimentally different excited states of the nucleus makes possible the
application of the isospin and spin-parity selection rules which may help to obtain various
parts of the production amplitude on nucleons. Such selection rules have been discussed
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by Stodolsky [6] in the distorted wave impulse approximation model (DWIA). In this
model one assumes that the production and the nuclear excitation process takes place on
a single target nucleon, while the remaining nucleons scatter elastically the incoming and
outgoing particles. The DWIA model has been applied to the description of the inelastic
scattering of pions on carbon [4, 7, 8]. Proton inelastic scattering on different nuclet
was also studied in Refs [9-14] and reviewed in Ref. [15].

The distorted wave impulse approximation may be considered as a special limit
of the Glauber multiple collision model [16]). The assumption that the transition has
a direct character (one-step process) plays here a crucial role [7, 10, 14]. The Glauber
model has been successfully applied to the description of the high-energy elastic and
inelastic hadron scattering from nuclei [17]. It has been further extended to the analysis
of the particle production in nuclei [18] and has yielded very important information about
the interaction of the unstable particles (resonances) and group of hadrons (for example
three- or five-pion systems) with nucleons [2, 19, 20]. Almost all the experimental data
suggest that the absorption of multihadron systems in nuclei is the same as that of the
single hadron; for example the total cross sections of 3n or 5z systems on nucleons are
of the same order as the pion-nucleon total cross section. Experiments on the production
of resonance on nuclei provided a similar conclusion, though this fact was expected.
Recently a preliminary spin-parity analysis of the 37n system produced coherently on
a variety of nuclei yielded some evidence that the 0~ final state is absorbed in nuclei about
twice as strongly as the incoming pion [21]. If this observation is confirmed, the present
theoretical attempts to explain the low absorption of the multiparticle systems in nuclear
matter will have to be modified.

In the production processes with the excitation of the final nucleus as in the re-
action (1) the problem of the absorption of the outgoing hadron system appears similarly
as in the coherent production process. Therefore these reactions may serve as an inde-
pendent source of information on the propagation of hadronic states through nuclear
matter. Our present experimental information about these processes is still very scanty,
hence in the present paper we shall use a simple model to describe them. The model is
presented in Sect. 2. In Sect. 3 we derive the amplitudes for the process (1). Sect 4 con-
tains an application of the model to the analysis of experimental data of Ref. [5], and
conclusions are summarized in Sect. 5.

2. The model

The model used here is essentially the distorted wave impulse approximation model.
We can apply it to the following high-energy reaction

1+A > 2+A%, )

where 1 denotes the projectile particle, A is the target nucleus in the ground state, 2 is
the outgoing particle or group of particles produced in coincidence with an excitation of
the discrete nuclear level.

Before writing the final formula we shall pass a set of intermediate steps showing
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a link of the DWIA with the Glauber model and serving also as an explanation of the
assumptions needed in the DWIA model. The main assumption of the model is that the
cross section of the production process on the nucleon N

14N > 2+N 3)

is much smaller than the elastic cross section for the scattering of particles 1 or 2 on the
nucleon. Then, similarly to the amplitude for the coherent production process (cf. Ref.
[18]) the amplitude of the process (2) is given by

A
Q) = = j et Z f Bry . Er Gy o P X
T
j=1
X kI;I [1 —7’22(3 _Ek)o(zk* Zj)]vlz(,l; —Ej)eiquj.l;I, [1 —%1 1(3 —Ei)e(zj—zi)] Y’i(?l ;A),
J tFJ

)

where p is the incoming particle momentum, gr and g; are transverse and longitudinal
components of the momentum transfer g, ¥ (+; ... 74) and ¥(r; ... 7,,) are the final and
initial (ground state) wave functions. The vector b is the impact parameter vector and § B
is the position vector of the j-the target nucleon in the plane perpendicular to the momen-
tum p chosen along the z-axis. The functions y;,, 711 and y,, are the profile functions relat-
ed to the production amplitude f1,(¢) and the elastic scattering amplitudes f,(g) and
f22(q) of particles 1 and 2 on the nucleon. This relation is the following Fourier-Bessel
transform:

1
yxy(b) = 2— J‘dzqfxy(q)e—lqb H (5)
Tip

where g is the momentum transfer and x, y = 1, 2. The ordering of functions vy, in Eq. (4)
given by the step functions 6(z) means that the particle 1 first scatters elastically on a certain
number of target nucleons having z;-coordinates smaller than z;, then produces the par-
ticle 2 on the j-th nucleon, and finally scatters elastically on the nucleons having the z,
coordinates greater than z;. When more than one particle is produced on the j-th nucleon
we treat the scattering of the whole system in the same manner as the scattering of a single
particle.

The amplitudes f1,, f22, and f;, may be treated as operators acting in the target
nucleon spin and isospin space. In order to simplify our considerations we neglect the
nucleon spin-flip parts of these amplitudes and their dependence on the spins of incoming
and produced particles. Because at high energies the interactions of hadrons with proton
and neutron are very similar, we take only the isoscalar parts of the elastic scattering
amplitudes f;; and f,,, which means that we use averages of the proton and neutron
amplitudes. When calculating the reaction (2) amplitude we use the isospin selection rules,
choosing the appropriate isospin parts of the production amplitude f;,. For example,
in the process (1) only the isoscalar part of this amplitude can participate. When the final
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nuclear state has isospin 1 while the ground state has isospin 0, only the isovector amplitude
contributes to the process.

Evaluation of the transition matrix element (4) needs a detailed knowledge of the
initial and final state wave functions. At this point we have to choose some models of these
wave functions. In the calculations of the elastic scattering or the coherent production
processes on nuclei the following approximation is often made:

A

rEss oo TP (Frs o ) = ] olrp, (6)

i=1
where the single particle density in the ground state is
o) = [@ry . &r Pi Gy s TP s T Q)

Correspondingly we may assume that
A

‘IJ:‘ (-':u ooy ;A)‘I’i(;u cees ;:A) = Z in(’:j) H Q(;k) 8
i=1 k#j
defining the transition density g,(r) as
0ii(F1) = [ d%ry o Pr WLy s TP(Frs oy T o) )

In Eq. (8) we have neglected any difference between the ground and the excited state
single particle density distributions and the two or more particle correlations. We assume
further that the production of particle 2 and excitation of the nucleus takes place on the
same j-th nucleon. In this way we get the following expression for the amplitude:
- i S -, - - -
TG) =4 f d2bdzd*se e o, (7yy, (b—3)G(B, 2), (10)
n

where the absorption factor G(l-;, z) is
G(B’ z) =[1- j dz’ j dZS’Q(E'a 21)711(3“;')_

— [ d2' [ &5 o(F, 2 W2 (B30 n

In the limit of large 4 we approximate G(b, z) as
G, 2) = exp{—(A-D[ | dz'f a*s'g(s', z')y11(3—§')+
—~®

+ [ dz’ [ @ o, 2)22(b~3)]} (12)

Going further, we define the folded transition density distribution éﬁ(-l;, z)

2, 10 = 5 J @506, Dr1a(b-3), (13)

assuming that the forward production amplitude f;,(0) differs from zero.
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Finally we get

T(G) = Af120) | d°re™§(F)G(r). (14)

Let us now discuss the case of the negligible absorption, i. e. G(r) = 1. This is the case

of the elastic electron scattering in which the transition form factors F,(g) are measured
[22]. They are related to the densities 0¢;(7) by means of the Fourier transform

Fn(?i) = _" dsrei"'eﬁ(?). (15)
Eq. (15) enables us to calculate the unknown transition densities from the electron inelastic
scattering data. One should, however, remember that 0:;(F) must have a definite tensor
character, being a reflection of the spin structure of the final and initial nuclear states.
For example, for the transition from the zero spin ground state to the state of the spin
J and its projection M the transition density has the following form

() = 0s(NY7(2)). (16)
Here Y,,,(Q,) denotes the spherical harmonic function and g,(r) depends only on the
absolute value of 7. The transition form factors are in this case

. .
Fu(q) = Fi(g) \/ﬁg—l Yrm(22,), an
Fi(@) = Nar@I+1) (— i) °f drr?g,(PiAan), (18)

where j;(qr) is the spherical Bessel function and Q, is the solid angle of the momentum
transfer g. Inverting Eq. (18) we express the function g,(r) in terms of F,(q):

0s(r) = P'n T P2r+ 72 {) daq*F {Q)jsqr)- (19)

If the form factor F,(q) is known, then using Eqgs (19), (16), and (13) we can calculate the
amplitude 7(g) given by Eq. (14). The influence of the Coulomb interactions may be in-
cluded in Eq. (14) multiplying the integrand by the factor exp (ix.(b)); x.(b) being the
nuclear Coulomb phase shift.

3. Derivation of the amplitude for the process n+12C — 3n+12C* (4.4 MeV)

We study the 37 production process in which the 2+(4.4 MeV) state of carbon is excit-
ed. The choice of this reaction is motivated by the existencé of the preliminary data [5]
of this reaction together with a set of data for the inelastic scattering of electrons, pions,
and protons with the excitation of the same carbon state.

First of all we have to parametrize the amplitudes for the #-nucleon elastic scattering,
3n-nucleon elastic scattering, and the production amplitude. For the elastic scattering
amplitudes we write
ipo(1—io;) e :;—qz

fii(q) = 4 s i=12, (20)
/(4
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where the indices 1 and 2 stand for the n-nucleon scattering and the 3z-nucleon scattering,
o; are the corresponding total cross section, «;-ratios of the real to the imaginary parts
of the forward elastic scattering amplitudes, and q; denote the slopes of the angular distri-
butions

doy _ 2
g @ = Vu@" (21)

Because we intend to study the transverse momentum transfer squared and the 3z-mass
distributions, the normalization of the production amplitude f;,(m, q) for +N —
— 3n+N reaction is as follows

d’oy
dmdg® 2 = |f12(m, Q)] (22)
For this amplitude we assume
A N L
le(m, Q) = le('na O)e 2 . (23)

Such a dependence is suggested by the data [23] of the n*p — (3r)*p process, a slope
parameter ¢ may also depend on the 3r effective mass m.
In our phenomenological approach we utilize the electron scattering data of Ref. [24]
and parametrize the inelastic form factor of *2C (4.4 MeV) state as
q2

Fa(q) = Bage *, (24)

where B, and d, are constants. Strictly speaking, in the evaluation of the parameter d,
we must take into account the proton electromagnetic form factor F,(g); moreover a correc-
tion factor for the centre-of-mass motion of *?C is also needed. In the analysis [25] of the
elastic proton scattering from carbon this factor has a simple form, Feyy = exp (¢%/4842),
which we adopt here. When comparing our parametrization with the electron data, we
multiply the form factor F,(g) by the proton form factor F, = exp (1/6 <r2> ¢?) with the
proton root-mean-square radius value {r, 25172 — 0,80 fm [26], then by the correction
factor Fy and in this way, using B, = 0.298 fm? and d7 = 0.298 fm~2, we can describe
the electron data up to the momentum transfer squared g2 of about 8 fm~2. This form
of F, is sufficient for our purpose because the maximum value of the transverse momentum
transfer squared in the reaction (1) measured in experiment is about 3 fm~2 [5].
The transition density ,(r) corresponding to form factor F,(g) equals

0x(r) = \/5 Bzdz g%, (25)

The ground state density distribution o (r) is taken from the harmonic oscillator shell
model of the carbon

_.i -3/2p-3 ﬁ 2 R2
o(r) = ) i R 1-%—/3R2 exp (—r“/R"), (26)

where R is the radius parameter and f = (A—4)/6.
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Eqgs (20, (23), (25) and (26) define the functions needed in the calculation of the pro-
duction amplitude (14). The folded transition density distribution is approximately given
by the expression

x 8 7.2 ,—riciy ¥
Gau(r) = — ”\7‘%‘7;3202" € Yom(€2)), @7
where
¢, = (d32+2a)" "2 (28)

The density §,(r) differs from g,,,(r) only in a new parameter c,. In writing it we employ
the fact that the amplitude for the inelastic electron scattering on not toc heavy nuclei is
in the impulse approximation

T(q) = Zf(q)F(a)- (29)

In Eq. (29) f(g) denotes the elastic electron-proton scattering amplitude and Z is the number
of protons in the nucleus. The amplitude f(g) depends on the three-dimensional momentum
transfer g. We would like to maintain the three-dimensional character of the Eq. (29),
which is spoiled in the Glauber approximation valid at small scattering angles. In the
Glauber approximation the longitudinal momentum transfer dependence of the ampli-
tude is neglected. Therefore we restore it here, writing Eqs (27) and (28) in which the slope
parameters a/2 and 1/4d? of the amplitude f;,(g?) and inelastic form factor F,(q) enter in
a symmetrical way. This does not mean, however, that we intend to apply our model to
the description of the large-angle scattering; we are still restricted to rather small angles
because the absorption factor of Eq. (12) posesses an eikonal character.

The absorption factor G(l;, z), given by Eq. (12) can be rewritten in the following
form:

G(B, 2) = Gy (b)H(D, 2), (30)
where
Gyi(b) = exp {—(4—1) _}; dz | d*se(s, 2)7,1(b—75)} (31)
and
H(b, 2) = exp (~(4=1) | &2 [ &s0(s, ) IaB=D-20 B3] ()

Let us note that if the elastic scattering amplitudes of the outgoing system 2 are the same
as the incoming particle, H(b,z) = | and the absorption factor equals G4(b). This is
exactly the same absorption factor which should be considered in the inelastic scattering
in which the incoming and outgoing particles are the same. This case is therefore a partic-
ular limit of our amplitude. The formulae presented below for the amplitude T(g) might
be used in the description of the inelastic scattering and in the production process with the



710
excitation of the same nuclear level. For completeness we quote here the analytical for-
mulae for G,,(b) and H(b, z):
A-1 o (1—in,)
A 2n(R*+2a,)

B 2a R? b? L
x4 1+ = + + Riv2acs 33
[ P Reiza, TP Ri2a, Rz, )¢ (33)

Gy((b) = eXP{_

H(b, z) = exp {m - erfc( )[ul(b) u, (D)} +

cATL L 2 - )], (34)

A\/vz

In Eq. (34) the functions u; and v; (j = 1, 2) are given by the following expressions:

o, (1—iay) /3 R? b? b*
b) = ._:'__._1._ — - |
uAb) 24, +ﬁR2+2 P Riaa, Br2a,) P\ Riv 2,

(35)
o(1—ia;) b?
(h) = L& - 36
o£b) R?+2a; eXp( R2+2aj) (36)
and the error function
2 2
erfe(x) = Jn J‘e—t dt. €]

X

In order to calculate the three-dimensional integral in Eq. (14) it is convenient to choose
the cylindrical frame of coordinates: z, b, and azimuthal angle ¢ in the plane perpendicular
to the z axis. As seen from the expressions (27) and (30), except for the exp (ié}b’) factor,
only the harmonic wave functions Y;3,(®,) depend on the angle ¢. Integration over ¢
gives us the Bessel functions J,(grh). Next we use the relation sin 0 = b/(b+-22)*/? for
the second argument 8 of Y,,(0, ¢) and finally we get the following expressions for the
amplitudes T,,(g) devided by fi, (m, 0):

Fy0(@) = =D JodbbJo(qu)e"”’°zzGu<b) x
x [ dze®*(2z2 —b¥)e ¥ H(b, 2), (38)
Fz,i 1(-4’) = +iD \/3 5‘ dbb2J1(‘ITb)e—bzczzG1 1(B)x

x | dze'Wze " H(b, z), 39
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Fy:2(@) = DV3 ] dbb*J (grb)e PG, (b) x

x | dzeze™"H(b, z). (40)

In Eqs (38), (39) and (40) D = 44 n~'/2 B,c] and ¢, is the longitudinal momentum transfer.
At high energies and small scattering angles the values of the longitudinal momentum
transfer may be approximated by its minimum value in the forward direction

2 2
m” —mj

4L R 4uin = - Zp

where m; is the mass of the incoming particle, m is the effective mass of the produced
system and E* is the excitation energy of the nucleus.

Writing the Formulae (38)-(40) we neglect the Coulomb phase factor because 12C
is a light nucleus and we do not expect the Coulomb phase to play a very important role
except, perhaps, in the diffractive minima of the angular distributions.

The double differential cross section for the production process, in which the spin
alignment of the 12C* (4.4 MeV) nucleus is not measured, is given by the following relation

d*c _ d*an(m, 0)
dmdg:  dmdg:

+E*, 1)

IF(@). (42)

The forward production cross section d2 ay(m, 0)/dmdg? on the nucleon is equal |, ,(m,0) |2
and

2

F@I* = ¥ , \Fom(@). 43)

4. Discussion of results
a. Angular distributions

In this chapter we present results of the numerical calculations of the angular distribu-
tions for the reaction (1). These distributions depend on a number of parameters describing
the nuclear wave functions and the two-body amplitudes f;,, /52, and f;,. To begin with,
we discuss the most characteristic features of the factor |F(g)|* (Eq. (42)).

There are three nuclear parameters: B,, d,, defining the transition form factor (24),
and the radius parameter R of the ground state density distribution (26). The radius R
is fairly well determined from the elastic electron scattering experiments on carbon and
we put R = 1.6 fm. The parameters B, and d, are not so well determined because the
experimental study of the electron inelastic scattering is more complicated and the errors
are larger than in the case of elastic scattering. The parameter B, gives only the normaliza-
tion factor and the second parameter d, changes the shape of the angular distributions.
Fig. 1 illustrates the characteristic shape of the nuclear factor |F(g)|? as the function of gz,
for a set of values d7 . The curves are calculated at the laboratory momentum p = 6 GeV?/c
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for the 37 effective mass m = 1.1 GeV and under the assumption that the amplitudes
f2, and f;; are equal. The parmeters o, = 27.2 mb, a; = —0.21, and a = 8.4 GeV—?
are the average parameters of the known pion-proton and pion-neutron elastic scattering
amplitudes at 6 GeV/c [27, 28], The slope parameter g of the production amplitude is

LA S It AR [ R S R RN SR I R N INL MM N B S |

TR2C— T T T2C* (4.4 MeV)
p = 6 GeVic E
m = 11GeV 1

(F(Q)1?[
s

R ab(tid)

1021

10731

s el

10-4 PR WY SO HEYPU IO R S S T H R R
0 05 10 B 20 g%(GeV?)

Fig. 1. Transverse momentum transfer squared dependence of the nuclear factor |F(g)|? given by Eq. (42)
on the parameter d, of the transition density Eq. (25). For values of other parameters see text

taken equal to 10 GeV—2. If not otherwise specified the above parameters are used for
the amplitude f3, in the calculation of the curves shown in the next figures. We see from
Fig. 1 that the curves have a dip in the forward direction followed by the broad secondary
maximum and minimum, so the differential cross sections have a diffractive structure.
This structure comes from the absorption of the incoming and outgoing particles. In the
case of negligible absorption we do not get any minimum, choosing the inelastic form
factor as in Eq. (24).
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The effect of the absorption is shown in Fig. 2. The upper curve is calculated for the
case of no absorption, the lower one for the 37 absorption equal to the single pion absorp-
tion. As seen from this figure, the absorption reduces the cross section at the maximum
by a factor of about 2. This reduction has, however, the g% dependence, which is most
clearly seen in the vicinity of the minimum at about 0.175 GeV?2.

SUNNLIMASE SRR Mt S IO B R A S RN S B

L L R A L BN R Bt R
IF(Q)I?f T2C—>TTT'2C*(4.4MeV)

I p - 6 GeVic
m = 11 GeV

100}

NO ABSORPTION

07 .
1072 PION ABSORPTION ]
10 o] ST W N I S S S (N T S TR U RO TR ST ST S N R T

0 05 10 15 20 q2(Gev?)

Fig. 2. Influence of the absorption on the momentum transfer distribution. Parameters for the upper
curve are: 0y = 6, = 0, @; = &, = 0, a; = a, =0 (no absorption) and for the lower curve: oy = 02 =
= 27.2mb, a; = o, = —0.21, a, = a, = 8.4 GeV-2 (pion absorption)

Figs 1 and 2 correspond to the production of the 37 mass m = 1.1 GeV. The angular
distributions are very sensitive to the changes of the effective mass m. This is shown in
Fig. 3 for m = 0.5, 1.1, 1.4, and 1.7 GeV. One can see a shift of the maximum to the left
when the mass m increases; for 1.7 GeV the forward dip completely disappears and the
maximum is in the forward direction. At the same time, the magnitude of the cross sec-
tion decreases. This effect is caused by the factor exp (ig z) in the integrals (38), (39), and
(40), which is related with mass m via the longitudinal momentum transfer ¢, (Eq. 4n).
The dependence of the angular distribution on the incoming particle momentum p at
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fixed m has the same origin. As we shall see later, the relations shown in Figs 3 and 4
have an important influence on the mass distributions and the energy behaviour of the
integrated cross sections.

Now let us pass to the question how sensitive are the cross sections to the absorption
of the outgoing system of produced particles. Here for the 37 production we compare
four values of the ratio of the total cross section ¢, to the pion-nucleon total cross section

(S AL A R Sn I B A SR S DU R R B R I S B [ R A B

IF(q)I? TC— T T TRC* (4.4 MeV)
109} p =6 GeVic .
b m =11 GeV 1
oy=272mb

1014 .
1072} -
10731 ]

10—(’ b FYRE SN T NY S SR SR S SN N SO |

S PERSNS DON W B |
0 05 10 15 20 q2(GeV?)
Fig. 5. Transverse momentum transfer squared dependence of the nuclear factor |F(g)|® for different ratios
on the mw-nucleon to the 3m-nucleon total cross sections. The 37 mass m = 1.1 GeV

a,. Figs 5 and 6 present the angular distributions for m = 1.1 and 1.7 GeV for 0,/0, =
=0, 1, 2, and 3. In all cases we can observe that the absorption plays a more important
role for the higher momentum transfers where it changes the position and depth of the
minimum. For a comparison with the coherent production cross sections we have calcu-
lated similar curves for m = 1.1 GeV using the optical model formula of Ref. [29] (the
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recoil factor is not included here). The curves are drawn in Fig. 7 for the same set of para-
meters as in Figs 5, 6. The angular dependence of the coherent process at the small mo-
mentum transfers is steeper than for the previous case, so the diffractive structure is shifted
towards the smaller angles and is also very sensitive to the cross section ¢,. One can ob-

]F ‘2 ™t TT T LN S I S S N S M R U S R R IR SRR B S B
(@) T2C — T T T2C*(4 4MeV)
10k p - 6 GeVic 7
m = 17GeV 7

gy - 272mb

107}

m-Z

T |

10731

]0‘1‘411414;114||1111|l|;14;4

|
0 05 10 15 20 g7 (GeV?)

Fig. 6. The same dependence as in Fig. 5 but for m = 1.7 GeV

serve that the ratios of the distributions corresponding to the different values of o, are
larger for the coherent production case, although for the production with excitation of
the nucleus the influence of the absorption is also quite important. This fact is connected
with the spatial character of both processes governed by the transition density distribu-
tions. The coherent production process might happen in the whole volume of the nucleus
while the production process with excitation of the nucleus rather in its surface part.
Therefore the absorption of the outgoing pions from the centre of the nucleus is in the
second case stronger than in the coherent production process, although in both cases the
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Fig. 7. Transverse momentum transfer squared dependence of the nuclear factor [F(g)|> for the coherent

production at different ratios of o/,
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flux of particles produced in the middle of the nucleus is considerably reduced by the
nuclear absorption.

We have also studied the role of other two-body amplitude parameters. The ratio «,
of the real to the imaginary parts of the f;, amplitude has a very weak influence on the shape
and absolute magnitude of the differential cross section except for the vicinity of diffrac-

L ¥ T L} l T T T L} I T T T T ' T T T ]’ T T T 1
IF(Q) FC—T TT2C*(44 MeV)
10° p = 6 GeVic 3
~ m = 11 GeV K
a(Gev?)
5
07+ >
i 1
: ]
)
10-2 - B
b
10‘3 YR WA VY N SN SHNC S TN SR NUUET SUIY TR, SOWAE WOOW OV TR ST SO W T SO W T .
0 05 10 15 20 qf(GeV?)

Fig. 8. Transverse momentum transfer squared dependence of the nuclear factor |F(g)|? for different values
of the production amplitude slope a on a single nucleon. The 37 absorption is assumed equal to that of a
single pion

tive minima. The same statement is true for the slope parameter a, when it is varied be-
tween 5 and 15 GeV-2, The slope parameter of the production amplitude, however, plays
a non-negligible role (see Fig. 8). This parameter is in our approach closely related with
the parameter d, of the transition density distribution (Eg. (28)).

b. Mass distributions
The mass distributions can be obtained from Eq. (42) after integration over the mo-
mentum transfer squared:
d d*on(m, 0
g _ ————M( 5 )J(p, m), (44)
dm dmdqy

where
J(p, m) = [ dqi|F(q)|*. (45)
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They depend on the mass distribution produced on nucleons and on the integrated nuclear
factor J(p, m) whose mass dependence comes from the longitudinal momentum transfer.
Let us first discuss some properties of this factor integrated over gr. The integral depends
on mass m and the incoming pion momentum p. The second relation is shown in Fig. 9
for m = 1.1 GeV. For p < 7 GeV/c we observe a quite strong increase in the factor

T T T T T T

J(p.m)
(GeV)? TRC — T T TRC*4.4 MeV)
007 m =11 GeV

T
L

006 .

005 8

004} .

003 4

002_ 1 1 i 2 114 1 ]
2 3 4 5 678910 20 p(Gevic)

Fig. 9. Dependence of the integrated nuclear factor J(p, m) given by Eq. (45) on the incoming pion mo-
mentum p. The 37 absorption equals that of a single pion and the produced mass m = 1.1 GeV

J(p, m). The range of the momentum in which the factor J(p, m) increases is wider for
larger masses m. If the production cross section on nucleons does not decrease too strongly
with energy the integrated over mass distribution cross section will increase similarly to
the factor J(p, m). This behaviour of integrated cross sections is identical to that in the
coherent production cross sections, which increase with growing energy [29]. The mass
dependence of the factor J(p, m) for the different total cross section g, is seen in Fig. 10.
Production of higher masses is suppressed in comparison with small masses; for m > 1GeV
the curves fall steeply. From the same curves we can also read the relative magnitudes of
the production cross section for a given mass m and the cross section ¢,. The curves
presented in Fig. 10 have been obtained after integration of the angular distribution over
the g+ changing from 0 to 0.22 GeV>.

c¢. Comparison with experiment

The preliminary data for the reaction (1) at 6 GeV have been published in Ref. [5].
In order to compare our model with these data we take the existing mass distributions
of the reaction 7~p — n—rtrnp at 5-7.5 GeV/c¢ (shaded histogram in Fig. 2 of Ref. [30])
and assume that the slope parameter @ equals 10 GeV—2 independently of m. The actual
dependence of this parameter on the produced mass m is known from the experiments on
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hydrogen (see for example Ref. [23]), but at the present experimental accuracy for the
reaction (1) we do not expect that variation of this parameter with m is very important.
We can use unnormalized cross section on hydrogen because the data of Ref. [5] are
arbitrarily normalized. In our application we smooth by hand the mass distribution on

LA T T ] T T T T l T T T A ‘]. A
T(p.m) TRC =TT TR2C* (44 MeV)
(Gev?d) p = 6GeVic

g~ 27.2mb
010+

[e 5} IO'}

009

008

0.07

006

005

004

0.03

0.02

0.01

PR S R R N SN S ST S TR N S 0
° 20
m (GeV)
Fig. 10. Dependence of the integrated nuclear factor J(p, m) on the produced 3z mass for different 3=-nuc-

leon total cross-section o2

hydrogen from Ref. [30] and multiply it by the factor J(p, m). In Fig. 11 our curve is
compared with the experimental mass distribution of Ref. [5] (upper curve of Fig. 2b).
A general agreement is obtained.

In Ref, [5] the transverse momentum transfer squared distribution for the 3= masses
between 1.0 and 1.4 GeV is drawn. In Fig. 12 we compare it with our prediction. The ex-
perimental distribution is arbitrarily normalized as in Fig. 11 and its overall shape is
reproduced by our curve under the assumption that the absorption of the 3x system is
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Fig. 11. Comparison of the experimental mass distribution from Ref. [5] with theory given by solid line
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Fig. 12. Transverse momentum transfer squared distribution for the 37 mass range from 1.0 GeV to

1.4 GeV. Experimental histogram from Ref. [5] compared with the theoretical curve

10
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the same as of a single pion, Using these unnormalized data we cannot, however, exclude the
possibility that the absorption of the outgoing pions is different from that of the incoming
pions. This is illustrated in Fig. 13, where the same angular distribution is drawn together
with the four theoretical curves normalized to the same value at the maximum (calculated

T T LI P
a{b. T2C — T T T2C* (4.4 MeV) ]
units p - 6 GeVic ]
m =11GeV ]
0,=272mb
10°L E
107 ot 1:.“-.-' ozlon |
...... s
~2
4
1
2L \ 4
10 r \ ]
\
\
\ i
- \0
10 -] BT S SR N N S S T W N NN W WA T N T SN NN Y DA S R T
0 05 10 15 20 q2(Gev?)

Fig. 13. Transverse momentum transfer squared distributions for different total cross sections o, are
compared with histogram taken from Ref. [5]. Theoretical curves are normalized to the same value at the
maximum

for m = 1.1 GeV). It is clear that data of better quality and for larger momentum transfers
are needed if we want to estimate the absorption of produced particles in the nucleus in
that way.

5. Conclusions

The distorted wave impulse approximation compared with the preliminary data gives
satisfactory results for the angular and the effective mass distributions for the reaction (1),
provided one uses the transition densities obtained from the inelastic electron scattering
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experiments. The present experimental data, however, are not sufficiently accurate to study
in detail the absorption of the multipion system in nuclei and/or the possible use of nuclear
production data as a source of the different parts of the hadron-nucleon production ampli-
tudes. These aims may be achieved when absolutely normalized data confining the angular
distribution at larger momentum transfers is accessible. Our analysis shows that the absorp-
tion of a group of particles changes not only the height of the maximum of angular distri-
bution corresponding to the maximum of the transition form factor, but also changes the
diffractive pattern of this distribution at larger production angles.

As in the coherent production process on nuclei, the process associated with excita-
tion of a nucleus leading to the multihadron system having the large mass is suppressed
in comparison with the production of the same mass on hydrogen. Therefore the produc-
tion cross section obtained after the integration over the mass spectrum increases with
incoming hadron momentum, although the corresponding cross section on hydrogen
may be constant, or even slightly decreasing with energy. The effect comes from the longi-
tudinal momentum transfer dependence of the nuclear amplitude.

In the DWIA model the same transition nuclear density may be used to describe the
different processes leading to the excitation of the same nuclear level. This enables us to
relate the expetrimental results of these processes in order to improve our parametriza-
tion of the transition density or to obtain some information about the hadron-nucleon
amplitudes. One must remember, however, that this model neglects the correlations among
the nucleons in the nucleus and the possible two — and more — step mechanism of excita-
tion of nuclear levels. In general, the model describes well the shape of the angular distribu-
tion but in some cases discrepancies in the predictions of their absolute magnitude have been
found. For example, in Ref. [15] the theory is 20 9, too high on the first maximum for the
reaction p12C — p!2C* (4.4 MeV) [311at 1 GeV, but as reported in Ref. [4] the theoretical
curve gives a 2 times larger cross section at the maximum for the same reaction with pions
at 4.5 GeV/c. We have checked these results, obtaining for our parametrization of the
transition density in the first case about 359 to high value and exactly the same factor 2
in the second case. This situation needs further experimental and theoretical studies,
especially for the case of the pion inelastic scattering.

Note added in proof:

In the present paper the terms corresponding to the case when the production and excitation take
place on different nucleons are omitted. They are discussed by one of us (L.L.) in his talk given at
-the International Meeting on Hegh Energy Collisions Involving Nuclei, Trieste, 9-13 September 1974
(to be published in the Proceedings of this Conference).
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