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Maxwell equations in the field of a gravitational wave are linearized by means of the
weak field approximation. Then the equations are solved in the case of a uniformly magnet-
ized sphere and the dipole electromagnetic radiation power is calculated. These results are
applied to compute the electromagnetic radiation emitted by the Earth and magnetic neutron
stars when hit by gravitational radiation.

1. Maxwell equations in weak gravitational fields

The production of electromagnetic radiation by gravitational waves falling on a static
magnetic field with plane symmetry was studied by Boccaletti et al. [1].

The case of a spherically symmetric magnetic field is, however, more interesting in
astrophysics; in the present work we will therefore calculate the emission of electromagnet-
ic waves by a uniformly magnetized sphere whe.. gravitational radiation falls on it.

Mazxwell equations in a gravitational field in vacuum are:
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where g* is the metric tensor with signature —2, the Greek indices run from O to 3 and
the Latin ones from 1 to 3.
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In the weak field approximation the metrics is written as: [2]

8ap = Napthap
guﬂ — naﬁ__haﬁ

where 7,5 is the Minkowski tensor with signature —2 and 4,5 are small corrections due to
the gravitational field; we shall neglect powers of h,, greater than 1.

In the same approximation the electromagnetic tensor is to be thought of as the sum
of two terms: one, j‘ represents the unperturbed field and the other, f,; represents the
perturbation due to the gravitational field. The latter is to be considered of the same order
of h.g; therefore second and higher order terms in h,; and f,; are to be neglected.

We shall consider only the case where the unperturbed term £ is a static magnetic
field, that is:

H(O) - f(g), H(O) = f(O)
H(O) = ;‘1)) (0) = Q.

In this approximation and with the splitting of f,; into space and time components,
Equations (1) become:
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where [ 1, means that in the expression in brackets only terms of the first order in 4,,
are to be considered and not zero order terms i.e. flat space terms. The right-hand side
terms in (3) and (4), which arise from the perturbation of the gravitational field can be
jnterpreted as a current S, with components:
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One can easily check that such a perturbation current satisfies the continuity equa-
tion:
os*

ox*
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2. Dipole solutions of Maxwell equations for a uniformly magnetized sphere at great
distances

Let us consider a plane gravitational wave produced by a mass quadrupole oscillator.
In the linear approximation the metrics is given by [31]:

hy, = %’.(2 cos? §—sin® ), h,3 = @sinfdcos b,
h P .2 — ;
sz = — —sin“ 8, hy; = —¢@sinfcosh,
_ @ . 2 - 2
h33 = 751{1 99 kOl - _wcos 0’

hgo = %(l-kcosz 0), hoy=hy; =hy;=0,

g= —1+psin®0, ¢ = qae7),
where 0 is the angle between the oscillation direction of the quadrupole and the x-axis
taken as the direction of propagation of the gravitational wave.

Let us assume that this wave falls on a uniformly magnetized sphere with its center
in the origin of the coordinates. For the sake of simplicity we assume that the constant
magnetic field H® with components H{®, H”, H® is zero outside the sphere. With
the choice of this metrics, (3) and (4) inside the sphere become:

x| s o

ox2 P R —HPike sin 0 cos 0,
21 23 20 sin’ 0
e = = —Hik .
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6{311 + afi)zz + af;:: = Hikg sin 0 cos 6.

Together with these we consider the remaining four Maxwell Equations (2) which allow
us to define:

fio=Hs, foz= Hy,
f31 = Hz, fio = Ei'

The above identification is possible as we look for solutions of the Maxwell equations
at infinity where electric and magnetic fields are of the same order of A,y, in fact in this
case the tetrad components of the electromagnetic tensor, which are the true Hand E
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[41 are the same as the coordinate components. This amonnuts to considering the equa-

tions written in the usual flat space, that is:

div E = 4ng, div H = 0,

. 1 6H . 10E 4=n.
rotE=—~-—, 10tH=-— +-—1J,
c 0 c Ot ¢
where
- iw i sin? @ iw
J={—~-— gH® sinfcos §; — — pHY D -
( an P = T an 7
and

1
0= ikpHY sinf@cos 0. (o = ck)
T

(0)
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2

Using standard electrodynamics, in the dipole approximation, we obtain:

1kR — it 3 f 2
aRj [sin* 6 sin” 8
H, =° (k*R —ik) 1 [T HYz— —— H(2°)y] ,
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H, = ¢ = (kK*R —ik) — [sm 6 cos 0HY z — —— sin’ H(o)x]
ikR —iot R3 n.2 [}
H, = (k*R —ik) — [sm 0 cos OHD y — ¥ H ] ,
R aR, 2p2 (0) gleR it
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R3 ) in% 6 sin? 0
x 9—3—‘ (k*R* +3ikR —3)x [sm 0 cos OH HYy+ H<2°’z],
ikR —iwe 3 kR —iot 3
e aR; 202 sin® 0 T T Ry
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sin® § n’ 6
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(R is the radius of the sphere).
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As we are interested only in wave propagation, we take into account only the terms
which behave as 1/R at infinity, which amounts to considering R> R,. We have thus:

H, = T KaRs (sin” GH(0>Z_. S—inz 0 H®
x R2 3 2 z 2 5 y
el‘kR-ioul kzaRs sinz 8
H, = R 3 ! (sin 0 cos OH\Vz — —- H§°’x) ,
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a2 (32
] sin” 6
+ B HP - H;°’R2] :

The Poynting vector is:

C > -

S = 2 x H*¥, * = complex conjugation
¥4
and therefore the energy flux is:

£ |H|* erg/cm? - sec.
n

Integrating on a spherical surface of radius R we get:

4, 216 [eind in*
W, = ok ;7R1 [sm4 o H®” +5in® 6 cos® 0H'™ + s__m4 ° Hio)z] :

Averaging over all possible directions of the mass quadrupole oscillations we get:

o*a®RS [ 4 2
W = — H(O)2 - H(O)2 .
o218 (15 TR
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After averaging over all possible orientations of the magnetic field we find:

2 w*a®R¢

W]ern s H(O)l’
405 ¢

where H® is the magnetic field strength.
Expressing the gravitational wave amplitude a by means of the incident gravitational
wave energy flux F [6], i. e.:

, 128nGF, L
a® = —5=—, G = gravitational constant,
w’c
we get:
W = 1.8 107 %0 R$F,H ", (5)

3. Astrophysical applications

In the preceding calculations we made the approximation that the field outside the
sphere was zero. Actually the external field is proportional to u/R® where u is the magnetic
dipole moment of the sphere. We notice that in Formula (5) a factor H2RS ~ u? appears.
We are therefore allowed to expect the order of magnitude of the interaction between
gravitational radiation and a true magnetic dipole not to be very different from the one
given by (5).

In fact we notice that the greatest part of the interaction takes place essentially in the
region of high magnetic field, i. e. inside the sphere, while outside it the strength of the
magnetic field decreases very fast according to the law 1/R3.

Formula (5) can be rewritten as:

em =

W = 1.8 107 °w’F p° (6)

In this way we can apply our results to the Earth and to magnetic neutron stars.

Magnetic neutron stars behave essentially as magnetic dipoles and their sizes are
smaller than the wavelength of the gravitational wave. In fact Weber’s experiment seems
to show the existence of gravitational waves with a frequency v = 1.6 - 10® Hz caused
by the gravitational collapse of massive objects in the Galactic center. Presumably the
flux on the Earth per event is 105 - 107 erg/cm? - sec [7, 8].

In a preceding paper we proposed a model for the galactic center which besides
explaining the emission of gravitational waves, gave also an account for the emission of
cosmic and y rays as well as for the emission of infrared and radio waves [9].

In [9] the possible effects of the interaction of gravitational waves produced in the
cluster itself with the magnetic dipoles of the neutron stars were not taken into account.
In fact we made the assumption that in the center of the Galaxy is a cluster of neutron
stars with radius ~ 10'7 cm and with 10'! stars among which 10'° have a magnetic mo-
ment p = 1033 erg G-! [10].
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Gravitational waves are emitted in the pulsating mode during the collision of two
neutron stars [11]. These events occur with a frequency 10 yr-1. The flux of gravitational
energy per event is in the cluster ~ 10'7 = 108 ergfem? - sec, therefore every magnetic
star emits, because of (6), an energy which multiplied by the number of magnetic stars
gives for the whole cluster ~ 103! = 1032 ergfsec in electromagnetic waves with a fre-
quency 1.6 - 10° Hz. Such amount of energy, absorbed by the interstellar plasma, is,
however, negligible compared with the energy absorbed in the radio frequency and there-
fore does not disturb the condition assumed for the model.

As to the Earth the emission of electromagnetic waves of frequency ~ 1.6 - 103 Hz,
taking into account a flux of gravitational radiation 10% + 107 erg/cm? sec and a
u=28-10%erg Gt is ~ 10~* = 1073 erg/sec per pulse. We recall that these figures are
meaningless if one considers a situation too far from the dipole approximation (kR; < 1)
i. e. if the uniformly magnetized core of the Earth has a radius greater than the wave-
length of the incident gravitational wave.
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