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We analyse the transverse momentum pr spectra of strange particles
K?, A, and £~ produced in Pb+Pb collision at V/SNN = 2.76 TeV, p+Pb
collision at \/syn = 5.02 TeV, and p + p collision at \/syny = 7 TeV in
different multiplicity events measured by the CMS experiment at the Large
Hadron Collider. The pr spectra of strange particles are fitted by the Tsallis
statistics and Boltzmann statistics, respectively. The fitting parameters are
studied as a function of the multiplicity events for all systems. The Tsallis
temperature (Trrs), Boltzmann temperature (Tgot,), and radius of the sys-
tem (R) increase with both the mass and strangeness number of the particle
and also increase with the multiplicity events. The non-extensive param-
eter (¢q) decreases with the increase in the mass of the particle and also
decrease with the increase in the multiplicity events which means that the
system tends to thermodynamic stabilization. The extracted temperatures
from the two statistics for the strange particles exhibit a linear correlation.
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1. Introduction

Quark—gluon plasma (QGP) was created at heavy-ion collisions at the
Relativistic Heavy-Ion Collider (RHIC) and the Large Hadron Collider (LHC)
[1-3]. The heavy-ion experiments seek to study strongly interacting mat-
ter under extreme conditions of high density and/or high temperatures [4].
QGP was described as the deconfinement of the colliding hadrons which
rapidly expands and cools down [5]. “Hadronization” or phase transition
from QGP to hadrons was found at the combination of the quarks and glu-
ons at special temperatures defined as critical temperatures. After cooling
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again, chemical freeze-out occur where the produced particles are stable [6].
One of the signatures for the creation of QGP is the enhancement of the
strangeness number [7, 8]. Strange quarks are not produced into the reac-
tion by the colliding nuclei. Therefore, any strange quarks or anti-quarks
seen in experiments have been newly created from the kinetic energy of the
colliding nuclei [8, 9]. Another important indication for the formation of
QGP is the transverse momentum pt spectra of the charged and strange
particles [10] since the p spectra can give information about the chemical
freeze-out — chemical potential and temperature — by utilizing many sta-
tistical models [11-17]. These statistical models describe the experimental
measurements over a wide range of center-of-mass energies depending on
different statistics.

The Tsallis statistics [18-23| success in fitting the experimental data
[24, 25] of the transverse momentum pr spectra in high-energy physics.
The pr spectra of all identified particles measured in p + p collisions at
RHIC and the LHC energies were fitted excellently by the Tsallis statistics
in Refs. [26-28]. The Tsallis statistics with the transverse flow effect is
used in the analysis of the pr spectra of charged and strange particles in
Ref. [22, 23, 29-32]. The Tsallis and Boltzmann statistics describe the pp
spectra of all identified particles measured in Au+Au collision and Pb+Pb
collision at RHIC and LHC energies in Ref. [33]. The obtained temperatures
from these previous fittings gave also some useful correlations with each
other. The aim of this paper is to obtain the correlation between the Tsallis
and Boltzmann temperatures from the pp spectra of strange particles at
different collisions and energies.

The paper is organized as follows. In Sect. 2.1, the Tsallis statistics
is presented, which is used to describe the particle spectra. In Sect. 2.2,
we present the Boltzmann statistics which is used to describe the particle
spectra. Then we discuss the results of the description of the pt spectra of
strange particles at different collisions and energies by using both statistics
in Sect. 3. Additionally, the dependence of the fitting parameters on the
multiplicity events and particle mass is discussed in Sect. 3. Finally, in
Sect. 4, the conclusion of our results is presented.

2. Transverse momentum spectra

Transverse momentum pr spectra of strange particles K0, A, and =~
produced in Pb+Pb collision at /syny = 2.76 TeV, p + Pb collision at
VSnNN = 5.02 TeV, and p + p collision at /sy = 7 TeV measured by the
CMS experiment will be discussed using the Tsallis and Boltzmann statistics
in Sects. 2.1 and 2.2.



Transverse Momentum pp Spectra of Strange Particles Production . .. 39

2.1. Tsallis statistics

The experimental measurements of the pp spectra in high-energy colli-
sions can be described by different formula of the Tsallis statistics [18, 34-36].
The total number of particles is given by

v [lran (G e o

where Ty is the Tsallis temperature, ¢ is the non-extensive parameter, F
is the energy, p is the pressure, g is the degeneracy factor, V is the system
volume, and g is the chemical potential. The momentum distribution [37]
can be obtained as
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In terms of the rapidity (y) and the transverse mass (mr = 4/ p3% + m?),
energy can be written as £ = mr cosh y, so at mid-rapidity y = 0 and p ~ 0,
Eq. (2) [38] becomes
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2.2. Boltzmann statistics

According to the Boltzmann statistics [39], the number of particles can
be written as
[e.o]

4 dp?
N—(2ﬂ_)30/exp(E_u>7 (4)
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where Tyt is the Boltzmann temperature. The momentum distribution
[39-41] can be obtained as
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The momentum distribution at mid-rapidity y = 0 and p =~ 0 can be
given by

1 N
d _ gVmr exp< mr ) . (6)
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3. Results and discussion

The transverse momentum distributions of the strange particles K2, A,
and Z7in Pb+Pb collision at \/syn = 2.76 TeV, p+Pb collision at /syy =
5.02 TeV, and p + p collision at \/syn =7 TeV [42] in different multiplicity
intervals are fitted applying two different kinds of statistics — the Boltzmann
statistics using Eq. (6) and the Tsallis statistics using Eq. (3). These are
shown in Figs. 1, 2, and 3. The fitting parameters are listed in Tables I, II,
and III.

Figure 1 shows the pr spectra of the strange particles, (a) K2, (b) A,
and (c¢) =7, produced in Pb+Pb collision at /syy = 2.76 TeV with dif-
ferent multiplicity intervals. The experimental data of the CMS exper-
iment [42] are represented by symbols. The experimental data are di-
vided into classes based on the multiplicity intervals N&Tine in the mid-
rapidity range |y| < 1.0. The corresponding averaged multiplicity (NVirack) =
21, 58,92,130, 168,210,253 and 299 [43]. The solid and dashed curves are
the calculated results using the Tsallis statistics (Eq. (3)) and the Boltzmann

CMS Pb+Pb, 2.76 TeV
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Fig. 1. Transverse momentum distributions of the strange particles K0, A, and
=~ for Pb+Pb collision at \/syny = 2.76 TeV measured in the CMS experiment
(symbols) [42] are compared with calculations from the Tsallis statistics (solid
curves) using Eq. (3) and with the Boltzmann statistics (dashed curves) using
Eq. (6) for different multiplicity intervals.
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statistics (Eq. (6)), respectively. Here, we concentrate on the smallest pr
region. The resulting fit parameters are given in Table I. We notice that our
two results for A and =~ particles are in good agreement with the exper-
imental data of Pb+Pb collisions at \/syy = 2.76 TeV for all multiplicity
intervals. For K? particle, also there is good agreement only with the results
obtained from the Tsallis statistics but with the results obtained from the
Boltzmann statistics, the good agreement decreases with the increase in the
multiplicity classes.

Figure 2 presents the pr spectra of the strange particles, (a) K, (b) A,
and (c) 27, produced in p + Pb collisions at /syy = 5.02 TeV with
different multiplicity intervals. The experimental data of the CMS ex-
periment [42]| are represented by symbols. The experimental data are di-
vided into classes based on the multiplicity intervals N&ffine in the mid-
rapidity range |y| < 1.0. The corresponding averaged multiplicity (Nirack) =
21,57,89,125,159, 195,236 and 280 [43]. The solid and dashed curves are
the calculated results using the Tsallis statistics (Eq. (3)) and the Boltzmann

CMS p+Pb, 5.02 TeV
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Fig.2. Transverse momentum distributions of the strange particles K, A, and
Z7 for p + Pb collision at \/syny = 5.02 TeV measured in the CMS experiment
(symbols) [42] are compared with calculations from the Tsallis statistics (solid
curves) using Eq. (3) and with the Boltzmann statistics (dashed curves) using
Eq. (6) for different multiplicity intervals.
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statistics (Eq. (6)), respectively. Here, we concentrate on the smallest pr
region. The resulting fit parameters are given in Table II. We notice that
our two results for A and =~ particles are in good agreement with the ex-
perimental data of p+ Pb collisions at \/syy = 5.02 TeV for all multiplicity
intervals. For K? particle, also there is good agreement only with the results
obtained from the Tsallis statistics but with the results obtained from the
Boltzmann statistics, the good agreement decrease with the increasing of
the multiplicity classes.

Figure 3 depicts the pr spectra of the strange particles, (a) K2, (b) 4,
and (c) £7, produced in p + p collision at \/syn = 7 TeV with different
multiplicity intervals. The experimental data of the CMS experiment [42]
are represented by symbols. The experimental data are divided into classes
based on the multiplicity intervals N2Mine in the mid-rapidity range |y| <
1.0. The corresponding averaged multiplicity (Niack) = 14,50,79,111,135
and 158 [43]. The solid and dashed curves are the calculated results us-
ing the Tsallis statistics (Eq. (3)) and the Boltzmann statistics (Eq. (6)),

CMS p+p, 7 TeV
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Fig.3. Transverse momentum distributions of the strange particles K0, A, and
EZ7~ for p + p collision at \/syn = 7 TeV measured in the CMS experiment (sym-
bols) [42] are compared with calculations from the Tsallis statistics (solid curves)
using Eq. (3) and with the Boltzmann statistics (dashed curves) using Eq. (6) for
different multiplicity intervals.
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respectively. Here, we concentrate on the smallest pr region. The resulting
fit parameters are given in Table III. We notice that our two results for A
and = particles are in good agreement with the experimental data of p+p
collisions at /syny = 7 TeV for all multiplicity intervals. For K? particle,
also there is good agreement only with the results obtained from the Tsallis
statistics but with the results obtained from the Boltzmann statistics, the
good agreement decrease with the increase in the multiplicity intervals.

As seen from Tables I, II, and III, the value of x2?/d.o.f. is small which
represents the good quality of the fitting. Especially, the Tsallis statistics
gives excellent agreement with the experimental measurements for all mul-
tiplicity classes. In addition, the fitting results of the Tsallis statistics are
better than those of the Boltzmann statistics, especially at high range of pr.

Furthermore, we have extracted the fitting parameters: the non-extensive
parameter ¢, the Tsallis temperature parameter Tmg, and the Boltzmann
temperature parameter T, which inform us about the variations between
the Tsallis and Boltzmann statistics. There is also another fitting parameter
known as the radius R as we assume that the geometry of the fireball is
spherical, so R = (3V/4m)'/3 which signifies the dimension of the system
and is related to the normalization in the statistical distribution function
used in describing the particle yield or spectra [44].

Figure 4 (a)—(c) depicts the fitting parameter ¢ for the strange particles
K?, A, and Z~as a function of (Niac) produced in the Pb-+Pb, p+ Pb and
p + p collisions at /syy = 2.76,5.02, and 7 TeV, respectively. Results are
obtained using the Tsallis statistics and modified Tsallis statistics [30]. The
value of ¢ (our calculations) decreases with the increasing of both the particle
mass and strangeness number and also with the increasing in the multiplicity
events for all systems. Our results differ from the ones modified in the effect
of multiplicity on the non-extensivity parameter. This decreasing indicates
that the system tends to be in equilibrium (thermodynamically).

Figure 5 (a)—(c) shows the fitting parameter R for the strange particles
K?, A, and Z~as a function of (Niack) produced in the Pb+Pb, p+ Pb and
p + p collisions at \/syny = 2.76,5.02, and 7 TeV, respectively. The value
of R increases with the increasing in the multiplicity classes but decreases
with the increase in the particle mass. So the volume of the system increases
with the increase in the multiplicity events as expected.
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Fig.4. The fitting parameter ¢ as a function of the event multiplicity (Nirack)
for the strange particles K0, A, and =~ fitted using the Tsallis and Boltzmann
statistics for (a) Pb+Pb collision at \/syy = 2.76 TeV, (b) p 4+ Pb collision at
VSNN = 5.02 TeV, and (c) p + p collision at \/syy =7 TeV.
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Fig.5. The fitting parameter R as a function of the event multiplicity (Nirack)
for the strange particles K0, A, and =~ fitted using the Tsallis and Boltzmann
statistics for (a) Pb+Pb collision at \/syny = 2.76 TeV, (b) p + Pb collision at
V53NN = 5.02 TeV, and (c) p + p collision at /syny = 7 TeV.
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We compare our obtained values of R with Hanbury-Brown-Twiss (HBT)
radii [45-47] at different center-of-mass energies \/syy as shown in Fig. 6.
The fitting parameter R for the strange particles K2, A, and Z~and from
HBT radii was obtained at most central collisions and also at mid-rapidity
(for details on HBT radius parameters, see Refs. [48-52]). The obtained
values of R show the same behaviour as R from HBT, especially Rjong.

100 : . ; .
ks (Ts) & A(Boltz) © HBT Ry —k—
ks (Boltz) A = (Ts) HBT kag
A(Ts) ® = (Boltz) HBT Rgige
10 »
" %
g 1 A} a] -
o
A
| °
0.1} N
0.01 . . . . .
2 3 4 5 6 7
Vs [GeV]

Fig.6. The parameter R as a function of the center-of-mass energy /syn for the
obtained strange particles K2, A, and =~ fitted using the Tsallis and Boltzmann
statistics and values of HBT radii (Rout, Riong, Rside) [45-47].

Figure 7 (a)—(c) depicts the fitting parameter T for the strange particles
K9, A, and Z~as a function of (Niack) produced in the Pb+Pb, p+ Pb and
p + p collisions at \/syy = 2.76,5.02, and 7 TeV, respectively. The values
of both temperatures (Tsallis and Boltzmann) increase with the increase in
both the particle mass and the strangeness number and also with the multi-
plicity classes for all systems. The direct relationship between the tempera-
ture and the strangeness number of hadrons is unlike the known behaviour
obtained previously in extensive models (particle yields and ratios) [53, 54],
so we will work on the confirmation of the behaviour of this dependence in
extensive and non-extensive particle yields and ratios in future work. Our
calculations are compared with the modified Tsallis results [30] and agree
with each other. The freeze-out of particles with large mass occurs earlier
than that of small mass. When the volume is small, the particle with large
mass freeze out early [4]. Also, the Boltzmann temperature is always greater
than the Tsallis one which is independent of the type of particles or systems,
S0 TBoltz > TTS~
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Fig.7. The fitting parameter T as a function of the event multiplicity (Nirack)
for the strange particles K0, A, and =~ fitted using the Tsallis and Boltzmann
statistics for (a) Pb+Pb collision at \/syny = 2.76 TeV, (b) p + Pb collision at
VSNN = 5.02 TeV, and (c) p + p collision at \/syn =7 TeV.
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Figure 8 shows the relation between Trg and Tgey,, Where all values
of temperatures obtained from Figs. 1, 2, and 3 and listed in Tables I, II,
and III are given by symbols. The fitted result for all strange particles at
different collisions is given by the solid line which is described by

Trs =a TRolty + b,

where a = 1.2465 + 0.0138 and b = —160.499 + 5.386 are constants with
x%/d.o.f. = 0.0528. However, these values are different for different particles,
so this linear relation is the same for all particles but the values of constants
are different depending on the mass of the particle. The dependence of the
constants on the particle type is listed in Table IV.

900

kg —a—
A ——
700 )
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Fig.8. The Tsallis temperature Ty as a function of the Boltzmann temperature
TBoltz- All values of temperatures obtained from Figs. 1, 2, and 3 listed in Tables I,
II, and IIT are given by symbols. The solid line represents the fitted result given

by Eq. (3).

TABLE IV

Constants values deduced from the fitting of linear relation between the Tsallis and
Boltzmann temperatures, see Fig. 8.

Particle a b x?/d.o.f.
K (1.3714 £ 0.0092)  (—177.514 £2.503)  0.0319
A (1.3856 +0.0255)  (—209.84 +10.2) 0.0876
=" (1.39513 £0.0212)  (—249.213 +9.963) 0.0722
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As can be seen from Table IV, the value of constant a increases with
the increase of the particle mass but the constant b is inversely propor-
tional to the particle mass. A similar linear relation between Tps and Tty
for charged (but not strange) particles at various collisions was found in
Ref. [33]. The values of constants a and b for the charged non-strange par-
ticles confirm our concept about the dependence of the constants on the
particle mass.

Therefore, we can find a direct relation between any temperature and
the Boltzmann temperature, and consider the Boltzmann temperature as
the reference for all other temperatures [33]. However, the Boltzmann statis-
tics fails to fit some experimental transverse momentum spectra especially
at high-pt region as a result of using the simplest form of the Boltzmann
statistics [16, 33, 41, 55]. On the contrary, the Tsallis statistics succeeded in
depicting all experimental transverse momentum spectra used in the present
work and also at high region of pr [30, 33, 35, 56-61]. We also compare our
Tsallis results with the modified Tsallis one [30] (with a radial flow). Our
Tsallis temperatures are greater than modified ones [30]. The reason for
this increasing gets from neglecting the effect of the radial flow. We ne-
glect this parameter as a result of the considered low range of transverse
momentum |33].

4. Conclusion

We analysed the transverse momentum pr spectra of the strange par-
ticles KO, A, and Z~in different multiplicity events produced in Pb-+Pb
collision at /syy = 2.76 TeV, p + Pb collision at \/syny = 5.02 TeV, and
p + p collision at \/syy = 7 TeV using the Tsallis and Boltzmann statistics.
In nearly all cases, our Tsallis and Boltzmann results are in excellent agree-
ment with the experimental data of the CMS Collaboration at the LHC.
Except for K, the goodness of our Boltzmann results decreases with the
increase in the multiplicity events.

In all studied collisions, for all particles in different multiplicity events,
the Tsallis Ts and Boltzmann Ty, temperature values increase with the
increase in the mass of the mentioned particle. Moreover, there is a direct
relationship between the values of the temperatures and the multiplicity
events. We observe that Trg < Tz, the value of ¢ is inversely proportional
with the multiplicity events in all studied systems, and the value of R in both
statistics increases with the increase in the multiplicity events. There is also
the direct dependence of the multiplicity on the size of the volume of the
system.

There is a linear relation between the Tsallis temperature T and the
Boltzmann temperature Tpoy,. We have Ty = (1.3714 + 0.0092) Tpoit, +
(—177.51442.503) for K2, Trg = (1.3856+£0.0255) Tgo, + (—209.84410.2)
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for A, and Tps = (1.39513 4+ 0.0212) Ty, + (—249.213 £ 9.963) for =
Besides, we have Trg = (1.2465 + 0.0138) Tpoy, + (—160.499 + 5.386) for
all studied strange particles. In all cases, Trs < Tgoit, as the Boltzmann
temperature is considered as the base for all other temperatures, and both
values of temperatures increase with the increase in the particle mass at
vanishing chemical potential.
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