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The stability of a tree model is studied by randomly and preferentially
selecting edges, including adding and removing edges, respectively. Firstly,
the critical point of the phase transition in the percolation phenomenon
is determined according to the number of connected components with dif-
ferent sizes. Then the feature of the phase transition is distinguished ac-
cording to the distribution of the connected components with respect to a
cluster size at the critical point. The Monte-Carlo numerical results show
that the phase transitions in the evolving and fragmentation processes for
the Erdös–Rényi tree are continuous. For the product rule tree, however,
the evolving process undergoes a discontinuous phase transition, while the
phase transition in the fragmentation process is continuous.
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1. Introduction

The concept of percolation was first introduced by Broadbent and Ham-
mersley in 1957 to describe the flow of fluid in disordered porous media [1].
It told us that when the density or the concentration, i.e., the number of
occupied bonds or sites (this paper focuses on bond percolation) within a dis-
order system, increases to a certain degree, the system will suddenly appear
some kind of phase change behavior with long-range correlation. Percolation
theory is widely used in the study of many percolation phenomena in phys-
ical, chemical, biological and social systems, such as an artificial network
of Bethe lattice [2–4], the distribution of oil or gas inside porous structures
in oil field, the diffusion in a disordered medium, the fire spreading over a
large forest area [2, 5], the sol–gel transition [6], the epidemic spreading in
a social network [7] and so on. Interest in percolation theory has focused
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mainly on the topological properties of the different percolation lattices, the
percolation threshold tc, the stability against random failures of network and
the applications to thermal phase transitions [8–10], etc.

Originally, percolation is a random process defined on the regular geom-
etry structure. Percolation theory [1] is used to deal mathematically with
the forming of a larger connected component. It means the appearance of
connectivity between two opposite sides of a regular lattice system. When
this concept is generalized to the case of networks, it means the emergence
of a giant connected component. In this situation, one can observe the per-
colation phenomenon by adding edges one-by-one to connect nodes in the
network.

As a more general graph ensemble, the statistical ensemble of scale-free
connected random tree networks was constructed in Ref. [11]. Through cal-
culating the fractal and the spectral dimensions, the geometry of the graphs
and the stability of the scale-free regime were characterized. In fact, actual
RNA secondary structures have a heterogeneous, branched tree-like form
[12]. The literature [13] found that the anomalous diffusion has connec-
tion with bond percolation on random recursive trees. Many research works
[12–17] on random trees show that it is important to survey the nature of
phase transition of a tree model.

Explosive percolation (EP) has recently been considered on various topo-
logical structure, such as Erdös–Rényi random graphs [18], regular lattices
[19, 20] and scale-free networks [19]. Meanwhile, researchers have gotten
many interesting effects of the “product rule” on these networks (see details
in review article [21]). The previous studies [22, 23] dealt with random trees
by branching process or fragmentation process. The difference, however,
between random choosing and intentional choosing of links in tree evolution
and fragmentation processes, respectively, has not been addressed.

2. Descriptions of models and method

We are interested in what are the effects of the “product rule” on ran-
dom tree graph, especially the effects in evolution and fragmentation process.
Thus, the purpose of this paper is to distinguish the various effects of prod-
uct rules on PR random tree graph, PRT process and random graph model.
Product rules work differently in these models. In random tree model and
PRT process, the product rule works from the beginning to the end. How-
ever, for ER graphs, because two candidate edges are intra cluster edges, se-
lecting an edge by product rule is equivalent to randomly selecting an edge.
Therefore, the product rule does not always work in random graphs model.

In previous works [12–17], there is not any limitation on the formed trees
at any time step, such that any tree with N nodes may be the ultimate tree
of evolution. Here, we take a different strategy in which a specific tree will
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be chosen as a target tree of an evolution process. The reason for this is
that fragmentation begins with a specific tree, so evolution should also be
towards that specific tree. In the model, people do not need to care about
the concrete structure of the target tree, except to ensure that the evolving
target tree is the tree at the beginning of fragmentation.

In order to study the effects of “product rule” on random tree graphs,
two percolation models are studied in detail. The first percolation model is
the random evolution and fragmentation process on tree graph. The other
percolation model is the preferential evolution and fragmentation process.
The latter one is our main interest. There are many preferential attachment
algorithms to produce networks [18, 24, 25]. Here, product rule [18] will be
used as the preferential attachment algorithm in our second model.

First of all, two target trees in both models are generated with the help
of Erdös–Rényi (ER) process and product rule (PR) process, respectively.
The ER process starts with N isolated nodes and adds connections randomly
one-by-one under the limitation of no loop. At the end, all the nodes join
together to form a big tree TER. The PR process starts with N isolated
nodes and sequential preferential attachment of edges by using product rule
under the limitation of no loop. At the end, all the nodes join together
to form another big tree TPR. In both processes, any pair nodes have the
possibility of joining together under the limitation of no loop. TER and TPR
will be taken as the target trees in our models.

Let E1 denote the edge set of tree TER. The ERT process is, by using
set E1, to regenerate the tree. To this end, we start with N isolated nodes
again. At each time step, one edge was uniformly chosen from set E1 to
connect corresponding nodes and then be removed from E1. Here, time t is
the number of edges in the graph and t̃ is the density of edges of the graph.
We repeat this procedure until no edge exists in E1. In its inverse process,
the edges are removed randomly one-by-one from the tree in a uniformly way
until all the nodes in the original tree are isolated. As edges are removed
from the tree, it fragments into multiple connected components, and each
of them has a tree structure. We call this process the inverse Erdös–Rényi
tree (IERT) process.

Let E2 denote the edge set of tree TPR. The product rule tree (PRT)
preferential evolution process is, by using set E2, to regenerate the tree. In
each evolving step, two independent candidate edges are picked firstly from
edge set E2 and each of them is uniformly picked at random. Then one
edge is selected to connect two nodes in the graph to form a new subtree,
and the edge picked will avoid forming a bigger subtree [18]. This edge will
be removed from E2 after connection and the other edge will remain in E2.
Again, this procedure will be repeated until no edge exists in E2. In its
inverse process, two candidate edges are uniformly chosen at random. Then
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one edge is selected to remove from the tree, which will retain the bigger
subtree structure of the system. We call this process the inverse product rule
tree (IPRT) process. The above definition of the IPRT process is consistent
with the practice of Bastas et al. [20].

It is notable that the tree TER is not only the target tree of ERT process,
but also the initial tree of IERT processes, and the tree TPR is not only the
target tree of PRT process, but also the initial tree of IPRT processes. By
the way, the studies of simulations tell us the degree distribution on both
trees observes poisson distribution.

For further discussion, we define two numbers in the system: Cmax, the
size of the largest connected component and Cnum, the number of connected
components with different sizes. Cmax represents the number of nodes con-
tained in a largest connected component, so it can characterize the struc-
tural integrity of the network. Generally speaking, the bigger it is, the better
structural integrity the network has. When Cmax becomes microscale with
respect to N , the network lost its integrality. However, Cnum can charac-
terize the crossover characteristic of the system, while Cmax from microscale
to macroscale in evolution process or from macroscale to microscale in frag-
mentation process. In numerical calculation, the crossover begins with Cnum

reaching its maximum value for the first time, and ends with Cnum starting
to decline for the last time. The width of this domain will become very nar-
row when system size N goes to infinity and it will shrink to a single point.
This point can locate well the presence of a phase transition, i.e., the critical
point. As shown in Fig. 1, it can be seen that the number Cnum can de-
scribe well the crossover feature in the classical Erdös–Rényi and Achlioptas
processes.

In the following, the numbers of connected components with different
sizes for ERT and PRT percolation processes are given by Monte-Carlo sim-
ulation. It can be seen that Cnum in ERT process has the same trajectory as
that in IERT process (see Fig. 2 (a)). It indicates that for ERT and its in-
verse processes, the distribution of connected components sizes is dependent
only on the number of edges but independent of the linking order of edges
in the graph. So, both processes have the same distribution of the sizes of
connected components at the same time step for ERT and IERT processes.

The situation, however, in PRT process or IPRT process is very different.
Cnum in PRT process has no obvious similarity with that in IPRT process.
Cnum has a dramatic turning point in PRT evolution process. But in IPRT
process, the turning point is not obvious, and only in log–log plot of Cnum

an obvious change can be found (see Fig. 2 (b)). It indicates that the PRT
process is quite different from the ERT process.
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Fig. 1. Cnum and Cmax for classic Erdös–Rényi and Achlioptas processes. Cnum

reached its maximum value when t̃ approximates to 0.5 in ER process and ap-
proximates to 0.888 in Achlioptas process (or PR process). The crossover features
decided by Cnum are consistent with the results in Ref. [18]. The figure is based on
one run for N = 70 000.
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Fig. 2. The numbers of clusters with different sizes in various processes for N =

70 000, where the number of edges existed in a graph is taken as the time step.
Both sub-figures are based on one run.
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For further clarification of the difference, we investigate theoretically the
ERT and PRT processes as well as their inverse processes. At the time
step t, e is the chosen edge joining nodes v1 and v2, and v1 and v2 are in
different clusters. Let ξ and η denote the sizes of these clusters, respectively,
and ζ is the size of the new formed component after edge e was added into
the graph. So, we have the following probability relation:

Pt(ζ = k) =
∑
i+j=k

Pt−1(ξ = i, η = j) , (1)

here Pt(A) denotes the probability of the event A at the time step t. Further,
let Zv be the size of the component containing node v, then we have a
recurrence relation as follows:

Pt(Zv = k) = Pt−1(Zv = k) + kPt(ζ = k)− k
∑
j 6=k

Pt−1(ξ = k, η = j)

−k
∑
j 6=k

Pt−1(ξ = j, η = k)− 2kPt−1(ξ = k, η = k) . (2)

According to relations (1) and (2), the size of the connected components
for the ERT and PRT can be calculated by Monte-Carlo simulation. Figure 3
shows the numerical results for the emergence or disappearance of a giant
connected component for these processes.
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Fig. 3. The sizes of the largest connected components for various processes, as
simulated on a tree for N = 40 000. The data are smoothed by using over 100
runs. A forward line and a backward line indicated by two arrows form a loop.
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For ERT and IERT processes, the largest component undergoes a phase
transition when t1N edges have been added or (1 − t2)N edges have been
deleted. t1 and t2 are almost equal, i.e., t1 ≈ 0.9166 and t2 ≈ 0.9171. For
PRT process, the largest component does also a phase transition when t1N
edges have been added or (1−t2)N edges have been deleted. However, t1 and
t2 have different values, i.e., t1 ≈ 0.9925 and t2 ≈ 0.8898. All these values
are obtained via extensive numerical simulations, typically up toN = 70 000,
and the values are done over many runs.

3. Discussion

In order to judge the characteristic of the phase transitions in ERT and
IERT processes, the numbers of the connected components with certain size
at the critical point are calculated. The distributions of connected compo-
nents with respect to the size at the critical points for various processes are
shown in Fig. 4.

For the sake of reasonably dealing with some outlier data, the different
neighboring cluster sizes were combined in one bin according to the method
in Ref. [2]. Concretely, the kth bin contains all clusters with 2k−1 to 2k − 1
nodes, k = 1, 2, . . . , 9. These results are plotted at the geometric mean of the
two sizes 2k−1and 2k−1, i.e., at

√
2k−1(2k − 1). The data in last several bins

have been truncated. This avoids the certain systematic errors for possible
outlier over there just because of the sparse distribution of cluster sizes or
the lack of cluster at the interval of 2k−1 to 2k − 1 (see the rightest of the
plot in the inset of Fig. 4 (b)). When the different neighboring cluster sizes
were combined in one bin, it will lead to the inconsistency of the data.

It is obvious that the nice straight lines exhibit in these log–log plots
except in Fig. 4 (c). The slopes of the straight lines in these plots give the
exponent of the power law, i.e. −τ , here τ is the Fisher exponent [2]. Let
ns denote the number of the clusters with size s, Eq. (3) is valid for larger s
at the critical point tc

ns(tc) ∝ s−τ . (3)

Considering that the power law for the cluster sizes distribution is a
typical characteristic for continuous transitions [19, 26, 27], the phase tran-
sitions are continuous for ERT evolution processes and IERT fragmentation
process. In both processes, there are linear number of N of edges existed in
the graph near the critical point, thus, only when edges with a linear num-
ber of N of edges have been added to the network, the size of the largest
cluster go from sublinear in N to linear in N . Therefore, the transitions are
continuous.
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Fig. 4. (Color online) The distributions of the clusters with respect to the size at
the critical points. The straight/red lines are the best fits. Figures 4 (a) and 4 (d)
were chosen from the ER and PR evolution processes. There is not any limitation
on the target tree’s structure. Figures 4 (b) and 4 (e) were chosen from an ERT
process and its inverse process, and Figs. 4 (c) and 4 (f) were done from a PRT
process and its inverse process, respectively. The logarithm in these plots is the
base 10 logarithm. The log–log plots in inset of Fig. 4 (b) and Fig. 4 (c) have no
combination of neighboring clusters and no cut-off too. Inset of Fig. 4 (b) shows a
power law behavior for the distribution of cluster sizes. Inset of Fig. 4 (c) shows
that the data has almost uniform distribution if compared with the scope of the
cluster sizes. If the different neighboring cluster sizes are combined in one bin, the
height of the combined bin is similar to the area of a rectangle with the width of
2k − 1–2k−1 and the constant height. When the bin is plotted at the geometric
mean of the two sizes 2k−1 to 2k − 1, the curve approximates to be a straight line
with positive slope in theoretically.

A power law of cluster sizes distribution is also observed very near the
critical point for IPRT process (see Fig. 4 (f)). It implies that the percolation
transition is continuous for IPRT process. In contrast, ns has almost uniform
distribution if compared with the scope of the cluster sizes for PRT process
(see the inset of Fig. 4 (c)). For a uniform distribution, i.e., ns = b, s =
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1, 2, · · · , Cmax (b is a constant), one will have
∑Cmax

s=1 bs = N . This means
that the clusters number

∑Cmax
s=1 ns can be approximated by

√
2bN , which is

a number sublinear in N . This indicates that the addition of a small fraction
of edges leads to the merger of most of such small clusters. That is to say,
only a number sublinear in N of edges are needed to add to the graph, can
the largest connected component grow from miniscale to macroscale. It is a
discontinuous transition process [19]. That is to say, the evolution process
for PRT undergoes a discontinuous phase transition but the fragmentation
process does a continuous one. Furthermore, we check carefully the cluster
sizes distribution on various system sizes of PRT process and find that ns
always observes the similar distribution.

It is notable that the distribution in PR process is power law (see, Fig. 4
(d)), and percolation transition for PR process on random tree model is
continuous, which is the same as on regular lattice and scale free network
[28]. However, the percolation transition for a PRT process (specific tree
model) is discontinuous. It is obvious that the curves for the sizes of the
largest connected components in PRT and IPRT processes form a loop.
This loop, however, is quite different with the typical hysteresis loop in the
traditional discontinuous phase transition. Here, one process in the loop is
responding to a discontinuous transition but another is not.

4. Conclusion

In this paper, we have studied numerically in detail the evolution process
and fragmentation process of a specific tree, including two kinds of candidate
edges strategies. The explicit way for the determination of the critical point
of the phase transition has been given by the treatment of the number of the
connected components with different sizes. The feature of phase transition
has been clarified by calculating the distribution of the clusters with respect
to the size at the critical point. The results show that for PRT process, there
existed two types of phase transitions, one is discontinuous in the evolution
process, but the other is continuous in the fragmentation process.
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