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Based on the conception of gravitational field, the issue of synchroniza-
tion of complex network turns to the interaction and motion of particles
under a physical field. By the design of coupling factor based on velocity,
the synchronization of complex network is obtained where the dynamics of
those nodes may be discontinuous and different from each other. Unlike
those common methods of synchronization, this new approach is not lim-
ited in any desired governing equation of motion. According to the idea
of approximation, the conditions of network synchronization and the syn-
chronous orbit equation in the gravitational field are pointed out. The
speed of synchronization is positively related to the coefficient of gravity.
Synchronization was obtained in complex network with 51 and 501 nodes of
piecewise linear Chen systems, Sprott systems and Lorenz systems, which
shows the effectiveness of the proposed method.
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1. Introduction

Complex dynamic networks have wide application in bio-technology, en-
gineering technology or social fields. There are many synchronization meth-
ods including global synchronization based on the Lyapunov function, local
synchronization based on the master stability function and global synchro-
nization based on connection graph stability in time-varying network [1, 2].
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The traditional Lyapunov function method is often complicated and associ-
ated with the node equations [3-8|, methods for local synchronization based
on the master stability function mainly work for those networks with the
same nodes [9-14]; while the synchronization method of connection graph
stability in the time-varying network needs to combine the Lyapunov func-
tion with graph theory [15-18]. In this paper, the synchronization issue
of complex networks is transformed into particle-motion synchronization in
a gravitational field. Specifically in this paper, we solved the synchronization
problem of complex networks, which contain nodes with different governing
equations and even nodes with discontinuous equations at the right-hand
sides. The coupling factor is only associated with the speed of the nodes,
which has nothing to do with the motion equation. This method is essentially
different from the design of the controller for synchronization and, therefore,
has a strong generality. The conditions of network synchronization in the
gravitational field were given according to the idea of approximation. The
synchronous orbit equation was consequently obtained. It was found that
the synchronization velocity is positively related to the coefficient of gravity.
Simulations show the effectiveness of the proposed method.

2. Gravitation theory revised for synchronization and some
mathematical preparation

2.1. Gravitation theory

Gravitation is the attraction between objects caused by the mass. Its
mathematical expression is F(t) = G ":218"”)2, here F'(t) is the attraction be-
tween two bodies at moment ¢, G is gravitational constant, mq, mg are
masses of two objects, respectively, r(t) is the distance between two ob-
jects at the time t. According to Newton’s second law, the acceleration of
the object ¢ at the time ¢ can be calculated and, consequently, its velocity
can be calculated (i = 1,2). For multiple objects, the motion velocity caused
by gravity can be similarly calculated.

Suppose X; = (zi1(t), zia(t), ..., Tin(t)) is the location for the object i
in n-dimensional space, x;;(t) is the position of the dimension %k at time ¢
(k = 1,2,...,n). The masses of the particles are M; (i = 1,2,...,m).
Therefore, at the moment ¢, the gravitational force between the particles i

. . . . i M; M T (t)—xp (T
and j at the dimension k is Fj; (t) = GEZ:1 (mjk(t)]—mik(t))2 X ||)5§Et;kaf(t))||

and, consequently, the velocity component of motion of the particle ¢ caused
by the resultant force from other particles in the dimension k is
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vi(t) = v (0) + / €L >0 Fils)ds
0

J=1,j#i
. tom M; w]k(S) Tip(s) s
- u©+a[ 2 S ) a0 X)X

For the convenience of calculation, not limited to the laws of physics,

here we define the velocity of motion of the particle ¢ in the k dimen-
sion at the moment t, v, (t) = G x (37, R]\fi{t)(:njk(t) —zik(t)), (v > 1).
To decrease the complexity of calculation, we let v = 1, vy(t) = G x

(Z;nzl %(xjk(t) — xk(t))), where

R = DD D in®) — zan(t))?. (1)

Definition 2.1. A physical field can be defined as a gravitational field if the
particle ¢ in a physical field has the velocity of motion in the k& dimension at
the moment ¢,

wa®) = Gx (W) | ¥ ghen®—zal) ] . @
j=1

here, G is a positive constant and W (t)

= > > pey (zik(t))?. We suppose
each particle has a unit quality M; =1, (i =

1,2,...,m

2.2. Mathematical preparation
Mark F(t,z) = Kf(t,z) = () () ©f(t,z°\N), here z0 is the é neigh-
6>0 uN=0
bourhood of the variable z, ¢o represents a convex closure of a set, x € R",
feLX(RxR"R"), F(t,x) is a set-valued mapping.

loc

Definition 2.2. Define the vector function z(t) in the non-degenerate inter-
val I C R as the Filippov solution of the system & = f(¢, x), if it is absolutely
continuous in any compact subintervals of I and satisfy @ € F(t,z) for al-
most all t € 1.

Definition 2.3. F(t,z) is upper semi-continuous if there is a neighbour-
hood V of (ty,x¢) subjecting to F(V) C U, U is an open set containing
F(to, $0).
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Definition 2.4. The set-valued mapping F'(¢,x) is said to satisfy basic
condition, if in the region A C R x R", F(t,x) is a non-empty compact
convex set for any (¢,z) € A, and is upper semi-continuous according to ¢
and x.

Lemma 2.1. Assume F(t,x) satisfy basic condition in the region A, (tg, zo)
€ A. If there are positive constants b, ¢ such that A contains a cylindrical
domain Z = {(t,z)[to <t < b,|| z — xo ||< ¢}, the solution of differential
equation with discontinuous right-hand side © = f(t,x) which satisfies the
initial condition x(ty) = xo exists on the interval [to,to + d], where d =
min{b —to, £}, m= sup | F(t.z) | [19]

(t,x)eZ

Corollary 2.1. For almost all t € [to, b] and any x subjecting to ||x—x¢ ||< ¢,
if the following conditions are satisfied: (i) f(t,x) is piecewise continuous;
(ii) f(t,x) is measurable with respect to t for any x; (iii) there is an integrable
function m(t) subjecting to || f(t,x) ||< m(t), then the Filippov solution of
differential equation with discontinuous right-hand side © = f(t,x) which
satisfies the initial condition x(tg) = xo exists on the interval [ty,to + d],
where d = min{b —to, =}, m = sup || F(t,z) | [20].
(t,x)eZ

Lemma 2.2. Suppose F(t,x) satisfies the basic condition in open region A,
to € [a,b], (to,x0) € A, and all the solutions x(t) of the differential con-
clusion & € F(t,x) with the initial condition x(ty) = xo exist in [a,b] and
their images are all in A. If for any € > 0, there exists § > 0 subjecting to
ts —to] <0, || 2 — 20 ||< S, F*(t,2) C [coF(t2,29)]° for any t} € [a,b], x}
and F*(t,z) satisfying basic conditions, then all solutions x*(t,x) of the dif-
ferential conclusion x* € F(t,z*) satisfying the initial condition x*(t}) = x}
exist on the interval [a,b], and for each x*(t), there is a corresponding so-
lution x(t) of the differential inclusion & € F(t,x) with the initial condition
x(tg) = xo which satisfies max | z(t) —*(t) ||< e [21].

Lemma 2.3. Assume scalar functions u(t, ), ui(t,z) are continuous in the
plane P and satisfy the inequation u(t,z) < ui(t,x), (to,z9) € P. If x =
& = u(t,x) T =wui(t,x)
and
$(t0) = X0 { x(t()) = X0
defined in t > tg, then @(t) < @(t) when t > to.

o(t), x = D(t) are the unique solution {
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3. Synchronization based on the theory of gravitational field

1, z >0,
Mark Ry = [0,400), sgn(z) = ¢ 0, x =0, suppose there is com-
-1, x<0,

plex network including m particles with the following equation of motion:

i1 £ f(g) i sgn (1)
gi1
gi2
+1 , (t=1,2,...,m) (3)
Gin
Here, fi(]g) :fi(,g)(mﬂ, T2y -« oy Tin), Gik = Gik(Ti1, Tigy -y Tin), (1=1,2,...,m;

J,k = 1,2,...,n). Then, when R(t) # 0, the equation of motion of the
complex network in the gravitational field is

) FO e sgn(zi1)
T2 f(21) f(22) o f,(Q”) sgn(z;2)
gi1 Vi1
gi2 Vi2
+ . +] L (i=1,2,...,m). (4
Gin Vin
Here, fk = f]f) (0611,9612,---,3%11)7 Jik = gik(l'il,xz‘%---axm); Vik = Uik(t)
and M; = 1. X} = (241(0), 242(0), ..., 24, (0)) # 0 is the initial condition of

the node i, (1 =1,2,...,m;j,k=1,2,...,n).

To study the dynamics of complex network (4) when R(t) = 0 in the
gravitational field, we introduce the parameter «, (a € [0, +00)). According
to the approaching theory, considering a more general network,
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Tiy fi(ll) f¢(12) . fi(f) sgn(wi1)
Tio B fi(21) fi(22) . fi(;) sgn(z:2)
gi1 Vil
gi2 V2
+ + bl (221727' 7m) (5)
Gin Vin
Here, flk = i(,ﬁ)(:m,:viz, ce xm), gik = gik(ﬂfﬂ, Li2y - 7$m), Uik = Uik(t7a)

= Gx(1+W () (XL mayra (@in(t) — zin(1)), fin(zir, Tiz, - .., 2in) and the
initial condition X?(0, ) = (2;1(0), 2:2(0), ..., 2:(0)) are equal to complex
network (4), (1 =1,2,...,m;j,k=1,2,... ., nja € [0,4+0)).

Hypothesis 3.1. Assume complex networks (3), (4), (5) satisfy:

fi(,‘g)(xl, X2y ..., Tn), gik(T1, T2, ..., x,) are continuous functions in R", there
exist positive constants A( S 0, B(J ) > 0, A;r > 0, B;;, > 0 and continuous
functions in R?" pgi)l(:nl,:cg, s Zom)s Qiki(X1, X2, ..., T2,) such that
n
P @122, )| < B+ AD S (@),
. =1
\gin (21, 72, .., 2n)| < Big + A Y (11)?,
I=1

£ @ e, an) = £ w2 )

<me 1l |22l - @l il Lyl - lyn Dl — wal,
|gik($1,$2, o) — Gik (Y1, Y2, -, Yn)|

n
< Z%k,l(‘l’lya ’332|, CER) ‘«Tn’, ‘y1|7 |y2‘7 ) |yn‘)|xl - yl‘ s

(i=1,2,....mj=12....mk=12...n).

Obviously, according to Hypothesis 3.1 and Corollary 2.1, for complex
networks (3), (4), (5), there exists Filippov solution in their domain of defi-
nition.
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Mark A = max{Ay),Aik}, B = max{(m — )n(n + 1)A, (m — 1) > p_;

S B+ X0 B =12, omii =12, nk = 1,2,...,n).
Mark x;;, = (¢, ) as the solution of equation of node i in complex net-
n m
work (5), (i = 1,2,...,m;k = 1,2,...,n), mark V(t,a) = 3 > 3 (za)?%

k:l =1
obviously for an arbitrary a € [0, +00), z;%(0, o) = x;(0), V(0) = V(0,a) =

23 >0 (241,(0))? are constant.

Theorem 3.1. For the complex network (5), there exists T, 0 < 5 —
Larctan/2V(0) < T < +oo, when t € [0,T), for any arbitrary o €
(0,400), V(t,a) is continuous in [0,T), and 0 < V(t,a) < 3 tan?(Bt +
arctan 1/2V(0) ) < +o00. When a = 0, if each node in complex network (5)
has solutions in [0,T1) C [0,T"), then V(t,a) is continuous in [0,11), and
0 < V(t,a) < Ltan?(Bt + arctan /2V(0) ) < +oo.

Proof. Obviously, there exists measurable function fy( )( a) € Klsgn(x;, ()
(t,))] subjecting to

4 = Z Zl‘zkl‘zk = Z szk (Z fzk Tily L2y« - - ,ﬂfm)%(;?(t)

k=1 1i=1 k=1 i=1

+gik (i1, Tig, - - -, Tin) + Uik)

n m n l
ZZ (Zf $11,$12,---a9€z‘n)’7§k)(t) +gik(xi17xi27-'->$m)>
k=1 i=1 =1
n m m
G(1+WwW)
+ Z ik R o (Z Tik — Tik) )
k=1 i=1 =1

f(;? (w31, a2, .. - 96m)%-(;? (t) + gir(wi1, zi2, - - . wm))

Il
—
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S\/ﬁii

n
l l
Z fz(k:) (fCih Ti2y .- 7~75in)’}/i(k) (t) + gik(mﬂ, Tio, ... ,:L'm)

k=11i=1 |i=1
S
<V2V z”: i (Bz'k; + Ak Zn: (z)” + Zn: (Bi(iz) +AF) y (f’fil)2>>
k=1 i=1 I=1 Jj=1 =1
St
<V2V i i (Aik i (za)® + 3 (AE{;) i (xil)2>>
k=1 1i=1 =1 Jj=1 =1
+\/sz1§; (Bz'k +;B§ZQ’> - G%iZV)RQ
< on(n+ 1)AVV2V + W};; (Bz’k +;B§Z)) - G(]:ZV) ?
<V2VB(1+2V) — G%IZV)RQ <V2VB(1+2V).
Let P = \/W, thus
%SB(MFPZ), (6)

then arctan P < Bt +arctan P(0). Therefore, when ¢ < 55 — % arctan P(0),
P < tan(Bt+arctan P(0)), i.e., V < % tan?(Bt+arctan P(0)) < +oco. Thus,
there exists 7" satisfying 0 < 5 — & arctan P(0) < T < +oo, when ¢ € [0, 7)),
0 < V(t) < Ltan?(Bt + arctan P(0)) = 3 tan?(Bt + arctan \/2V(0)) <
+00. O

For complex network (5), mark H(t,a) = 3>, 3", d i
(zjk(t) — wir(t))?, obviously H(0) = H(0,a) = 3> 4>, disiv
(zj£(0) — 24(0))? is constant, (a € [0, +00)).

Lemma 3.1. For complex network (), there exists an inherent constant

. : . 2,/2H(0)
Go associated only with network (3), when G > (1 + T omretan \/2H(0))G

7

there exist 0 < tg < m(éiil(ci)) < T and point Xo, when t — t,, X; =

(wil(t),l'ig(t), e xm(t)) — Xo, (Z = 1, 2, R ,m).
The proof for this will be given in Appendix A.
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Mark Xy = (z1(tq), z2(ta), - .-, zn(ta)) = (z1(tg, 0), z2(tg, 0), .. .,
xn(tg,())).

Corollary 3.1. For complex network (5), for any arbitrary constant € > 0,
there exists sufficiently small o > 0 subjecting to

Z zi(tg, ) — 2(tg,0))? < e, and
.

ol
HM:
Ti

)

m
> (@jn(ta, o) — zplte, @))® < 2ma/E.

1 j=i+1

M=
Ms

B
Il

114

From Lemmas 2.2 and 3.1, Corollary 3.1 can be proved easily.

Theorem 3.2. For complex network (5) and sufficiently small a>0, if there
exists the time t1 € (0,T) subjecting to \GF_GGOO)oc < \/H (t1) < \/H ), then

2(
when
2H (t1)
t —— T
€ <1+’I7’L(G—G0)’ ) )
Lin H(0)-%0 ?
O<H(t)<1 Go N G x e2 e 2
T 2G=C0  (6-Go) (EG-Go)(t—t) - VHI))

Here, Gy is only related with system (3) but does not depend on c.
Proof. For complex network (5), from an analogous deduction like (18),

di - _ MRQJrR(lJrW)B: - (mGRfa —B) (1+W)R

dt =  R+a
< — | mG r —B|R=—mG I — B|V2H,
R+« R+«
then

dQ V2 Q _V2m Q
dt§_2< GQ+B—B) 2 (GQ+B

“G).

here, A = maX{Ali),Alk},B:max{(m—l) (n+1)A, (m )Zk 1EZ 1
( ik+2j:13§]§)}75:§a7Q:\/ﬁ7 GOZ %) (Z: ]-725"'7 m;
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j=12...,nik = 1,2,...,n). When G > Gy, we investigate differen-

tial equation,
dy  V2m y
—=—|G— -G 8

dt 2 <y+ﬂ 0 ®)

satisfying y(t1) = Q(t1) = /H(t1).
For a sufficiently small «, from the known condition y(t1) > Ggiocoﬁ , the
solution of (8) is

pin (v 52 B)Z—M(G Gt 4, (9)

eren G— Gy

where ¢; = @(G—Go)tl +y(t1)+G_LG061n(y(t1) — fOGO ). From Eq. (9),
y is monotonically decreasing and when ¢t — +o00, y gets close to GE:OGO B, so

(t1). From Eq. (9), we can also get

ng5m<y Go ﬁ>::vﬂn«; Go)t + 1 —

G — G — Gy 2
V2m Gy
< Y2 (0 _
<SG -Gt e~ B
fm Go
<X _ _
(G —Go)(t —t1) +y(tr) + Goﬂlﬂ(y(h)) G—GOB’
SO
Go G — Gy \/§m 1
_ < _ _ _ _ —
In (y G—G()ﬂ) < a ( 2 (G — Go)(t —t1) Z/(h)) 3
G
+In(y(t)) — 7 -
then
0 - Y2m (G=Go) (t—t)—y(h) ) A+In(y(h)
< (v
y < G_Ggﬂ—Fe

From Eq. (7) and Lemma 2.3,

Go B+e — 0 (m(G-Go)(t—t)—y(h) ) +in(y(t) -
G — Gy |

Q<y<
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When £ is sufficiently small,

Go In(y(t1))—- !
VH < a_ /3+ GGGO (fm(G Go)(t —t1) —y(t1)> 3
Gy Gen(t) -2
TG G-a (%G—Go)(t—tﬂ—y(m) )
Since y(t1) \/H (t1, ) < \/H N {a 50
. 2
0<H(ta) < |50 4 Gei O E o

2{G=Go " (G—Go) (Y22 (G—Co)(t—t1)—VH1))
O

Corollary 3.2. For complex network (5) and sufficiently small 0 < e < 1,
there exists 0 < § < € when 0 < o < 4, (i) H(t,a) < De in [tg,T)
except a small region I with the length less than C+\/e, here C, D are positive
constants, which are only related with G,Go and m. (ii) For arbitrary b,
(0 <tg <b<T) there exists a positive constant E, which is only related
with G, Gy and m,b subjecting to H(t, ) < Ee in the region [tg,b] C [tg,T).

Proof will be shown in Appendix B.

Suppose z;; = x;k(t, ) is the Filippov solution of the node i of complex
network (5), (i =1,2,...,m;k=1,2,...,n), then

d (XZiza) _ 1 ShS 1 o
dt m “m Z Z le Sgn(.%'”) + m 29117
d S @2 _ 1 no

dt m T m Z E f2 Sgn(xzj) + = 2912,

d (ZEhizim) _ 1 5~ g= p0) R S
dt m T m Z Z fm Sgn(xw) + m 291n~
1=

Jj=1li=1
Here, f‘(j):f‘(])(l'ilaxi%” s Tin), Gik = ik (Tils Tigy - -+ Tin), (1=1,2,...,m;
J,k=1,2,...,n). Obviously, (Z’Téx”, 2 =152 Zznllxm,a)T is the Fil-

ippov solution of system (10) with the 1n1t1al condition
vy (tG) — (Zz 1z (te,e) 2oL zie(te,o) S Tin (tasr) a)T.

m ) m rrr m )
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| % - 7}%J‘i1 zi fl( )(y1,y2, - yn)sgn(yj — Bij(t, yns1))
ok 3 g 0) + ().
d% - T}ljél zé f(g)(yl’yQ’ - yn)sgn(y; — Bij(t, yns1))
+$Li§gz2(yl,y2, oo Un) 2t Y1) (10)
= é]iﬁf (y1, 92, yn)sgn(y; — Bij(t yn 1))
+7}1i§19m(y1,y2, o) F vt Yns)
Dat1 g,

Here,

P 15%(’j Yn+1)

ﬂlj (t yn+1)

Zi1(t, Ynt1 ie1 Tia(t, Yny1
) :—zz[ ( Lyraltiynn) S vetbyn)

m m
Jj=11i=1

— Tgj (t ynJrl)

Z?i1 .Tm(t, yn+1)
m

) f(])(fm(t Ynt1), $i2(t7yn+1)7---,!Em(t,ynﬂ))]

xsgn(zi;(t, Ynt1))

1 Em: [g‘k <Z;n1 i1 (6 Ynt1) Doimg Tia(t, Ynr1) i Tin(t, Z/n+1)>
KA
m 4

) LR

m m m

—9ik(Ti1(t, Ynt1)s Tia (L Yng1), - - - Tin(t, yn+1))] ,

(i=1,2,....m;5=1,2,....nsk=1,2,...,n).

Mark Yy = (y17y27-"7y?’b+1) f*(t y) (ff(t7y)af2*<t7y)a“'7f1t(tay)70)T7
f];k(t’y) 1 Zg 1 Zz 1 zk)(yhyzu s 7yn)sgn(y] - BZJ(tJ yn+1)) + % Z:’il
gik(yl,yg,...,yn) + Yty ynt1), (B = 1,2,...,n), then the solution y(t) of
system (10) satisfies the ordinary differential inclusion, §y € F*(t,y), F*(t,y)
=Kf*(ty)= N N @f(ty \N).

6>0 uN=0
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Let us consider a system

) m m
dy — L Zl Zl Dy, - yn)sen(y;) + = Zlgn(yhyz, e Yn)
j=li= =
dyr _ 1 N~ ¥ £4) NlRe
&= Zl Zl 5 (Y1, Y2, -, yn)sen(y;) + o z%gl?(ylvy%“-ayn):
j=li= i=
d " n m m
% = % 231 af(])(y17y27 e 7yn)5gn(yj) + % Z:lgin(yhyQ’ oo 7y’n)7
Jj=1i= =
\ 4dyg;r1 :Oa

(11)

with an initial condition yo(tg) = (z1(tg), z2(tg), - . ., Tn(tg),0)T. Mark

Yy = (y1)y27"')yn+1)T7
fty) = (fitt,y), fo(t,y), -, fu(t,y), 0)F

fk(tay) = EZZfZ(]g)(ylayQ,7yn)sgn(y])+azglk(ylay237yn)a
j=1 i=1 i=1
(k=1,2,...,n),

then the solution y(t) of system (11) satisfies the ordinary differential in-

clusion, § € F(t,y), F(t,y) = Kf(t,y) = N () ©f(t,y°\N). For any
>0 uN=0

arbitrary b, (0 < tg¢ < b < T), for system (11), from a similar proof of

Theorem 3.1, 1+1P2 v < LB < Bin [tg,b] C [tg,T), then arctan P <

Bt — Btg + arctan Py (tg) in [tg,b] C [te,T), so
P, <tan(Bt — Btg + arctan Py (tg)) < +00. (12)
From Theorem 3.1,
Py (tg) < tan(Btg + arctan P(0)) < 4o00. (13)

Substituting (13) into (12), P, < tan(Bt + arctan P(0)) < +o0,

Sy (k)2 de, Yooy (yk)? < tan?(Bt + arctan P(0)) = tan?(Bt +
arctan \/2V(0)) < +o0, then 3741 (yx)? = S0 (W) + (yny1)? < tan?
(Bt + arctan /2V(0)) < 4o0. So, for any arbitrary b, (0 < tg < b < T),
and sufficiently small € > 0, the initial condition yo(tq) = (z1(tq), z2(tq),

S zn(te),0)T, there are solutions satisfying the ordinary differential in-
clusion in [tg,b] C [tg,T), and all the solutions in the open region A =
{(t,y)te —e <t <b+e X7 (yp)? < tan?(B(b + ) + arctan \/2V (0)) <
+oo}.
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Lemma 3.2. F*(t,y) and F(t,y) meet the basic conditions in the open
domain A.

Detail of proof will be shown in Appendix C.

Definition 3.1. For complex network (4), if there exists a system

,fl = hl(iUl,'IQa cee 7xn)’
Ty = ha(r1,22,...,2n), (14)
Ep = hp(z1,22,...,20)

for any arbitrary € > 0, if there exists § > 0, when 0 < a < §, for any

solution of the node i of complex network (5) z;(t), there exists a solution of

system (14) 2/(t) subjecting to niax | zi(t) —2'(t) |< e, (i=1,2,...,m),
ta<t<

then the complex network (4) under gravity field synchronizes to system (14)
in the solution set.

Theorem 3.3. There exist G1 > 0 and 0 < T < +o00, when G > Gy and
there exists tg, when t € (tg,T], complex network (/) synchronizes to the
system with initial condition of Xo = (z1(tq), z2(tq), - - ., n(tc))’ according
to the solution set

;

n m m
;‘51:%21 1f (xl,xg,...,a:n)sgn(xj)—k%Zlgil(ilwzw-wxn)a
j=li= =
n m m
To = % Zl 2]2?2)(])1,1;2, Ce ,.’Bn)Sgn(fL’j) + % ZlgiQ(xth? .- 'an) )
j=li= =
n m . m
in = 1 2:1 }:lfi(i)(xl,xg, xp)sgn(z;) + L Zlgm(u’ﬂlﬁﬂ% ooy )
j=1li= i=

(15)
The larger is the G, the faster is the synchronization. Specifically, if the
solution of system (15) ' (t) is unique, whent € (tq,T), complex network (/)
synchronizes to ' (t).

Proof. From Lemma 3.1, for complex network (4), there exist a constant

B 2,/2H(0) :
G = (1+ 7r_Qarcmn\/m)Go and T, when G > G, there exist 0 <

ta < mi”(?ﬂ?o)) < T and the point Xog = (21(tg), z2(tq),...,za(tg))?,

when t — t;;, Xi = (za(t),zi(t),...,zm(t)T — Xo. Suppose y(t) =
(w1(t), 22(t), ..., 2n(t),0)T is the arbitrary solution of the ordinary differen-
tial inclusion g E F(t,y) satisfying the initial data yo(tq) = (z1(tq), z2(ta),
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S za(te),0)T. For system (10), when ¢ € [tg,b] C [tg,T), for any arbi-
trary sufficient small € > 0, from Hypothesis 3.1 and Corollary 3.2, there
exist 01 > 0, d5 > 0, when

t=tg and | yo(ta) — wo(ta) ||< o1,

0<a§@,

m
—1 Z15(t, Ynt1
|Bij (t, Yns1)| = iz 74 Y1)

— xi5(t, Yny1)

m
< Zlnil |$lj(t7yn+1) B xij(tayn+1)| < 52,
m
n m
|’Yk(t7yn+1)‘ = | - E . A
j=11=1

; , e
ik m m m

y [f(j) (ZZL i1 (b, Ynt1) Yoy Ti2(t, Ynt1) Yo win(t, yn+1)>

— 1D @it ynsr)s 2ot Yng1)s - Tin (1, yn+1>>] x sgn(24(t, yni1))

y goe ey
m m m

—iZm [g,k<zz';1xﬂ<t,yn+l> S i (t, Yosn) z;”;l:cm<t,yn+1>>
1
m “

—gik (i1 (t, Yn+1), Ti2 (6, Yns1)s - - s Tin (2, yn+1))] ‘

; , Yo
ik m m m

) ((ZEyzaalt gnsn) X wialt gor) z;';lxmu,ym))

— Z-(,i)(:m(t, Yn+1)s Ti2(t, Ynv1)s - -+ Tin(t, Ynt1))

1 m
T

s sy
m m m

gk<zz (b ynrt) STzt yert) M Tt ynm)
1

—Gik (i1 (t, Ynt1)s Tiz(t, Yy 1)s - -5 Tin(t, Yns1))| < b2,
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Let § = max{51,52} like in the proof of Lemma 3.2 (¢f. Appendix C),
F*(t,y) C[coF(t°,4°)]? and from Lemma 3.2, F*(t,y) and F(t,y) satisfy the
basic condition in the open region A. Therefore, from Lemma 2.2, for suffi-
ciently small € > 0, there exists § > 0, when 0 < a < 4, any solution y*(¢)

of the ordinary differential inclusion y € F*(t,y) satisfying the initial con-

dition yS(tG) — (ZZ 1L Ll(tG7 ) Zz 1 L2(tG70é)’ Zl 1$zn(tG7 ),a)T eXlStS lIl

the region [tq, b], and for each solution y*(t) there exists a solution y(t) of
the ordinary differential inclusion ¢ € F(¢,y) with the initial data yo(tg) =
(z1(tq), z2(tg), . . ., zn(ta),0)T, subjecting to tmax |l y(t) — y*(t) ||I< e

T

Slnce yl(t) = (Z’L 1x11(t a) Zz 1Il2(t O!) Zz 1xbn(t Oé)

— sl o)t is the solu-
tion of the ordinary dlfferentlal 1nclu51on y € F* (t y) satisfying the ini-
tial data yo(tG) (21 1111(75@,0() Zz 1122(t07 ) ’Zz 1337.n(tG7 )’ )T then

for sufficiently small e > 0, there ex1sts 53 > 0, when 0 < a < 63,

Joax || y(0) = yi(0) I< ge.

Mark 2} (t) = (21 (t, @), zia(t, @), . ., Tin(t, @), )T, from Corollary 3.2 (i4),
there exists 04 > 0, when 0 < a < dy, Irg%x | 27 (t)—y;(t) |< 3e. Mark 6 =

{03,064}, when 0 < a < 4, max, | xf(t) —y(t) ||[< e. Mark y/(t) =

(ylu Y2,..-, yn) ) xl(t) = (l‘ﬂ(t, Oé), xi?(t7 Cl), v 7xin(t7 a))T than max ”
ta<t<b

zi(t) — y'(t) ||[< e. Here, y/(t) is the solution of system (15), «}(t) is the
solution of the node i of complex network (5) (i = 1,2,3,...,m), therefore,
complex network (4) synchronizes to system (15) according to the solution

set. From Lemma 3.1, the larger G leads to a faster synchronization. O

Note: In the proof of Theorem 3.3, to show the existence of the con-

24/2H(0
stant G, let G; = (1 + - i/)QV(o))GO' However, generally G; <

24/2H(0) " . ) )
(1+ reton \/2V(0))G0' In addition, if there exists a f;}’ (21, z2,...,2n),

(t=1,2,....,m;j = 1,2,...,n;k = 1,2,...,n) equaling zero, the above
theory is still true.

4. Numerical simulation

Let us consider piecewise linear Chen systems (a) with the number of
m1, piecewise linear Sprott systems (b) with the number of mg, piecewise
Lorenz systems (c) with the number of ms,
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T;1 = —1.18x;1 + 1.18x;9,
(a) Ti9 = (1 — ﬂj‘ig)SgH(ﬂj‘il) + 0.7z ,
j}z'g = a:ilsgn(xig) — 0.168$i3 s

Ei1 = wizsgn(zi) ,
(b) 8 T = i1 — T42,
Eiz =1 —|z42|,

T = 0.9(—331‘1 + xig) ,
() { Ziz = (2 — xi3)sgn(zi1) , (16)
&iz = |zi1| — 0.1z43

as the nodes with the number of m = mi+mo+ms3 in complex network in the
gravity field. Here, vy, = G x (1+ W (t))(3_7%, F(@n(t) — z(t))), W(t) =

S i@ )2 R = /S S S (@) — zia()?,

29 = (21(0), 2i2(0), . .., 2:n(0)T # 0, (2 is of inequality) is the initial po-

2

sition of the node i of complex networks (5) and (10) (: = 1,2,...,m;k =
1,2,3).

Theorem 4.1. There exists a constant G1, when G > G1, then there exists
ta, when t > tg, complex network (16) synchronize to the following system
according to a solution set:

& = D (—1.18z1 + 1.18x2) + T2 (x3sgn(x2)) + 0'9%(—:61 +x2),
To = %[(1 — xg)sgn(xy) + 0.7x9] + %(xl —x9) + %[(2 — x3)sgn(xy)],
i3 = TL(zysgn(z2) — 0.618z3) + 72(1 — |z2|) + T2 (|21] — 0.123) ,

(17)
here, m = mqy + mg + ms, the parameter G can speed the synchronization.

This can be proven from Theorem 3.3.

4.1. Case A: m; =21, mg =18, mg =12, G =0.05

Here, the initial position X? is random. The effect of synchronization is
shown in Fig. 1. Here, e1 = 211 — 241, €2 = T12 — T2, (i = 2,3,...,51).

4.2. Case B:m1 =21, my =18, mzg =12, G =1

The synchronization effect is shown in Fig. 2. Here, e; = x11 — @41,
€2 = X192 — I42, (Z :2,3,...,5].).
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(d)

2

t
Fig.1. When m; =21, mgo =18, mg =12, G=0.05, (a) network operation state,
(b) the synchronization error between network and system (17), (c¢) the synchro-
nization error among the first coordinates at different node positions, (d) the syn-
chronization error among the second coordinates at different node positions.

2
o 0
-2 (b)
04 0.6 0.8 1
t
3 R e SR ¥
- 2
(]
1 ]
-2
(e) @
0F :
0 0.5 1 0 0.5 1
t t

Fig.2. When my = 21, mg = 18, mg = 12, G = 1, (a) network operation state,
(b) the synchronization error between network and system (17), (c¢) the synchro-
nization error among the first coordinates at different node positions, (d) the syn-
chronization error among the second coordinates at different node positions.
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4.8. Case C: mq = 171, mg = 168, m3 = 172, G = 2000

The effect of synchronization is shown in Fig. 3. Here, e; = x11 — x41,
€y = 12 — T2, (Z = 2,3,...,501).

2
o 0
-2 (b)
2 3 4 5
t x 10°
3 0
1
(C) -2 (d)
0 ; ; _3[
0 2 4 0 2 4
t x10° t x10°

Fig.3. When my = 171, my = 168, m3 = 172, G = 2000, (a) network operation
state, (b) the synchronization error between network and system (17), (c) the
synchronization error among the first coordinates at different node positions, (d)
the synchronization error among the second coordinates at different node positions.

Comparing figure 1 and figure 2, when G is bigger, one can see that the
speed of synchronization is faster.

5. Conclusion and discussions

By introducing the concept of gravity field, the issue of synchronization
of complex network turns to be the synchronization in gravity field. In
this paper, we solved the question of synchronization where the dynamical
equation of each node may be different and even the differential equations
have discontinuous right-hand side. According to the general definition of
the velocity (the coupling term), since it is independent of the equation of
motion, which endues the synchronization method with more generality than
other control methods. Simulations based on the complex network with 51
and 501 nodes of piecewise linear Chen systems, piecewise Sprott systems
and piecewise Lorenz systems agree with the theoretic analysis.
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Appendix A
Proof for Lemma 3.1

Q..

NE

m
Z ik — Tik) (T — Tik)
Jj=i+1

h h
(Tjr — Tik) [Z f](k)(l’jh Tj2, ... ,ijn)’}’](-k)(t)
h=1

INgE EM:
MSE

n
k=11 i+1

1j

n
h h
g (1, g2, ) g — D i (@i, @iz, i)V ()

h=1
—9ik(Ti1, Tiz, - - ., Tin) — Uik]
n m m n
h h
ZZ Z (Tjk — @ik ! f;k)(ﬂfjlﬂjm---,ﬂfjn)VJ(k)(t)
k=1 1i=1 j=i+1 h=1

n
h h
+gik(Tj1, 252, ., Tjn) — Z fi(k)(xilv T, .. ,wm)’)’i(k)(t)

— ik (Ti1, Tio, - .- ,fvm)]

Ms

5 { o= 2 S5 ) -3 |
k=1 i=1 j=i+1 = =1
n m m n h
S Y o) [ D etz 20
k=1 1=1 j=i+1 =1

n
h h
+5k(Tj1, Tj2, .-, Tjn) — E fi(k)(xil,wz‘z,---ﬁBm)%(k)(t)
he1

G1+W ALNL
—9ik(Ti1, Ti2, - - . ﬂb‘m)] —m X (R) Z Z (21 — Tik)?
= fmG(l +W)R

+ZZ Z Tk — Tik) [Zf};?)(wjhfszw-vxjn)vj(-z)(t)

k=1 i=1 j=i+1 h=
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— (h h
(@t Ty, ) = O fo (@it Tz, - i)y (1)

—gik(xi1, xi2, . .. ﬂim)]

< —-mG1+W)R

n 2
+R\zz 3 ( NI S %;—g,-k)
h=1 h=1

k=1 1i=1 j= z+1

'Lk Psz +g

;

(h
ijk PYJIC + Gk
h=1

n
(h h)
+ Z zk)%(k + ik

)

n
Z fjk ij RL
h=1

n
Z fzk 'sz + ik

h=1

n
Bie + Air > (i)’
=1

= —mG(1+W)R+ (m — 1)R§n:§m:
k

1:=1

< —mG(1+W)R+ (m zn:i
k=1 1i=1
+Z< +A(h xll )]

< —mG(1 + W)R

m — l)RZZ

k=1 1i=1

Azkz le 2+Z (AZ Z le 2)]
n m -
n-n3-3” (o +zB,-<:>)
h=1

k=1 i=1
< —mG(1+W)R+ (m— Dn(n+ 1)ARW

—1RZZ<Bk+ZB )

k=1 1i=1
< —mG(1+W)R+ R(1+W)B

—(mG — B)(1+W)R=—V2(mG — B)(1+W)VH.
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_B 2D/2H(0)
Let GO — m? When G > GO + m(7r—2a1'Ct&Il QV(O))’

ddfj_ —V2(mG — B)WWH = —V2m(G — Go)VH . (18)

From Eq. (18), vVH < \/H(0) — %2m(G — Go)t.

Let [0, a) be the largest region subjecting to positive H (t), obviously H (t)

decrease monotonously in [0,a), and a < m éH(C?)) < T. In the following, we

prove lim H(t) =0.
t—a~
Suppose lim H(t) # 0, then lim H(t) > 0. For any arbitrary € > 0,
t—a~ t—a—
there exists 0 < § < e, when [t; —a| < 4, |t —a| <6, (0 < t1,t2 < a, may as
well think ¢; < to, obviously |t] — t2| < § < ¢€)

|z (t1) — zar(t2)| <

to

n
h h
Z fi(k)(xz‘h Tig, . .. Jz‘n)%(k)(t) + gik (@i, Tiz, - - -, Tin) + Vik
to
< /(

t1

dt

>dt

to n
S/( ‘fi(;?)(wﬂ,ﬂ?w, e ,xz‘n)%(ig)(t)‘ + |gik(zi1, Ti2, - ., Tin) | + !wd)dt
h

=1

n
h h
E fi(k)(:Eu,!Ez'z, e ,fL‘m)%-(k)(t) + gik(fm,l’iz, ce l‘z‘n)| + |Uz'k
h=1

t1
to

</

t1

+vmG(1 + W(t))] dt

to

</

t1

zk+Azkz le JFZ( ik +A (xil)2>
=1

By + Z B 4 /mG + (Aik +3 A0 + \/FnG) W(t)] dt
h=1

to

/{ k+zB

t1
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}dt

- B\/2H
+vVmG+ Aik"—z A(.Z)—i—\/mG tan? By2H(0) + arctan 1/2V(0)
el v m(G—Go)

_{ ik+ZB§£)+\/ﬁG

B\/2H(0)
+ ( ik + ZA + m(l) tan? m(C—Co) + arctan 4/2V(0) } (ta—t1)
< {BszBh)Jr\FG

B+\/2H (0
+ (Azk + ZAzk + fG) m(G—C(;o)) + arctan 1/2V(0) }E

i.e.

|2 (t) — zi(t2)] < {Bik +>° B 1 /mG + (Aik +>° AP 4 \/HG)
h=1

h=1
B+\/2H(0
X tan? m(G—C(}'O)) + arctan /2V(0) } 5 (19)
(i=1,2,...,m;k=1,2,...,n). Therefore, lim z;(¢) exists, mark

t—a—

lm 2 (t) = z(a), (i =1,2,...,m;k=1,2,...,n), then

Z Z (z6(a) — zix(a))? = lim SN (ainlt) - zalt)’

ANGE

k=1 i=1 j=it+1 U [ e S
= 2 lim H(t)>0.
t—a—

Thus z(a) (i=1,2,...,m;k=1,2,...,n) are not all equal. Suppose X;(a)
is the initial data, from the continuity of solution of complex network (4),
here we can extend the solution to the region [0,a + dg(a)] subjecting to
H(t) > 0in [0,a + dg(a)], (dc(a) > 0). This is in conflict with the conclu-
sion that the region [0, a) is the biggest region for positive H(t), therefore,
lim H(t) = 0.
t—a~
2H(0) o

Let tg = a, then 0 < tg mG=Go) < T, like in the proof for Eq. (19),
there exists a point X, When t—=to, Xi = (za(t), wia(t),. .., 2in(t)) = Xo,
(i=1,2,...,m).
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Obviously, when o = 0, complex network (5) turns to be (4). Thus
for complex network (5) when a = 0, there exists a constant Gg, which
2H(0)

. 2
is only related to network (3) when G > (1 + W—Qarctan\/m)Go’ and
there exist 0 < tg < (éH(GO)) < T and point Xy, when ¢t — {5, X; =
(@i (t), wia(t), ..., win(t)) = Xo, (i =1,2,...,m).
Appendix B
Proof for Corollary 3.2
(1) If y(te) = /H(tg,a) > GGioGOB’ from the poof for Theorem 3.2,
whentg—i—iﬂ(H(tG’—i-f<t<T
0 < H(t,«)
— GO 2
1 Go Ges n(H(0)— )
Salc-Go " vz °
|GG (G-Go) (Tm(G—Go)(t—tc)— (i, o) )
_ 42
<3la-a (G—Go)\f
_1[ G | vagehmuo -7’
S2|G=G T mG—Gor |

If y(tq) = /H(tg,a) < & GO ﬁ, and if there exists & € (tg,T') subject-
ing to \/H (tg,a) > GE’OGO B, let f* be the minimal value of &, from the conti-
nuity of \/ (tg, @), there exist t] € (tg,T) and £* < t1 < £*+ 54/ subject-
1ngtoG ,6’<\/H(t1, a) < QGO B,ze, GGG a < 2H(t1, a) < G?féoa.
From the above discussion, when ¢; + 7'2H(t1’ Z\F <t<T,

m(G—Clo)
0 < H(t,o)
- 2

1 Go Gles In(H(0) = )
“3la-a " NG *
(=G0 (G —Go) (B2(G - Go)t —t1) — VE))

— 12
1 G | avageinrO-@”
- 2 |G-Gy m(G—Go)Z\/a

1[Gy | 2vaGesmHo-E )’
< =
S3le—G T mG-a? |°“
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From Corollary 3.1 for an arbitrary small 0 < € < 1, there exists 0 <

0 <e,when 0 < a <9, \/2H(tg, o) < y/e. Mark

C = ! +1 260, 1
T VG =Gy T U m(G =G 2

. 1[Gy Vages -2
SN GG T mG—ay? |
2
1| Go 2/2Ges M(H(0) -2
2la=a T T mic—aop ’

then for complex network (5) and sufficient small 0 < & < 1, there exists
0<0<e when0< a<4d, H(t,a) < De in those regions in [tg,T) without
the region I with length smaller than C'/e.

(7i) Can be obtained from Theorem 3.1 and ().

Appendix C
Proof for Lemma 3.2

Here, we prove only to show that F*(t,y) satisfies the basic conditions
in the open region A, and F(t,y) can be proved similarly. According to
the definition F*(¢,y), obviously, for arbitrary (¢,y) € A, F*(¢,y) is a com-

pact convex set For any fixed t(© and point y(© = (ygo),yéo), e ,yflo))T

(i) when y — By (© ,ynH) #0 and x;; (t(o),ynJrl);éO from the continu-

I

ity offik (1,22, ..., Tpn), gik(T1, 22, ..., Tp), (1=1,2,...,m;5=1,2,...,n

kE=1,2,...,n) and Hypothesis 3.1, we know F*(t,y) is upper semi-conti-
wous in (t,y). (i) If 4\’ /31]( 0y =0, (i € {iriz, .. im}j €
{jlvj?)"'ajnl} 1SZ]- <7’2< <7’m1 valgjl <]2<<]n1 Sn)a

0 . .
or xz]( ( );yy(b_t,)_l) = 07 (Z € {p11p27"'7pm2}a] € {QIaQQ7"'7Qn2}71 < P <

pr < 0 < Py <Myl <@ < @@ < o0 < gpy, < n). Without losing

generality, let us suppose here y%o) — B (t© ),yf(H)l) =0, 1, (t, 97(321) =0.
Mark

n

f**(t(o) ) Em:f (@h Y5 --.7y£°))

]: 1=2

xsn (3 = 55 (19, 50)) + Zgu (s
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.....

[ (Z =1 1 yn+1) Doy T ( yr@l)

m

SECE S

,ynﬂ) .....
v (19,4/0,)) ]Sgn (s (#9.4))
m m £0) (0 ™o (0>,7(10>
_% Zz; [gil (Zz:lx 1 ( yn+1> 2iz1 T2 (t Y ‘H)

.....

—3i1 (:L’ 1 t(o) (0)1),%'2 (t(o),ys]ll) ..... Tin, (t(o),ygoll)) ] ,

N 1 .1 0) (0
a*(t,y) = Efl(l) (y§ T yﬁ”) :

b* (t<o>, y(o>)
_ l [fﬁ) (Z;n1 il (t(o)a 3/521) Zznil T42 (t(o)’ 3/7(10421>

.....

m ’ m

Z —1 Tin (t(o) y+1))

m

1) (o (100 (902) - (192)) |

here, F *(t(o), y(o)) is the closed convex polyhedron with vertices

Ji (t(o),y(o)> _ (ff‘* (t(o),y(o)) e (t(o),y(o))
T

4 (t<o>7 y(O)) i (t(m,y(m) _____ £ <t<o>7y<o>) 70) 7
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J (t<0>,y(0>> — (ff* (t(O)’y(O)) +at (t(0>7y(0))
b (10 0) 5 (100 0) g (100) 0)

Js (t<o>7y<0)> — ( £ (t<o ,yo>) (t(o Y ))
7 (10./0) £ (¢ ),-.-,f,ii (10.5) 0)

T (100 ) = (7 (#09%) = (105
b (t<0> ) f2( #0) 4 >) o (t<0>,y<0>),o)T.

For any open set including F*(t(o), y(o)), there exists g9 > 0 subJectmg to
(F* () y0Y))20 U, there exist §; > 0, d2 > 0, when ||(¢, y) — (t©, y )H <

81,9j—Bij(ty ynt1) # 0and zj (¢, ynt1) #0, (i = 2,3,...,m;j = 2,3,...,n);
when
H(t y) (t(o), y(o)) < b,
Ji(t,y) — Ji (t(o),y(o)) < g9,
Jalty) = 2 (17,9 )| < <o
J3(t,y) — Js (t(o),y(o)) < &,
Ji(t,y) — Jy (t(o),y(o)) < €.

Let 8 = min{61, 82}, V = {(t9)] || (t,9) — (£©),y©) ||< do}, then F*(V) C
(F*(t©) 4 ©))20 c U. Thus, F*(t,y) is upper semi-continuous with (t,y).
Therefore, we conclude that F*(t, y) satisfies the basic conditions in the open
region A.
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