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We consider Einstein—Cartan’s theory in the static spherically sym-
metric case with a completely antisymmetric torsion tensor. We show, in
particular, that the weak Gauss law of general relativity is broken.
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1. Introduction

In reference [1], there is shown a particular example of Einstein-Cartan’s
theory [2—4] in the static spherically symmetric case, i.e. the Kottler or
Schwarzschild—de Sitter model with torsion that the weak Gauss law is bro-
ken: The interior mass Mj, the real mass, and the exterior mass M., defining
the strength of the gravitational field outside the mass distribution, do not
coincide.

In the example shown, the torsion tensor does not possess a completely
antisymmetric irreducible part (only the vectorial and mixed irreducible
parts are present). The fact that the torsion tensor is completely anti-
symmetric is much appealing [5]. In particular, when this happens, the
connection geodesics coincide with Christoffel’s geodesics.

In this paper, we will show that the torsion tensor possesses, in general,
the three irreducible parts. Requiring the irreducible vectorial and mixed
parts to vanish results in a completely antisymmetric torsion tensor. Then,
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we will show that, in general, the weak Gauss law is broken when the torsion
tensor is completely antisymmetric. We obtain, in particular, a mass formula
for the external mass M.

In comparison to reference [1], we can, under some conditions, go further
and solve completely the problem, that is, we determine the metric tensor,
together with the energy-momentum tensor. In the absence of torsion, we
confirm previous results [6-8]. The paper is constructed in a similar manner
as reference [1] and uses results of references |1, 9].

The paper is organized as follows: In Section 2, we determine the general
form of the connection after imposing invariance under time translations and
rotations around the 3 axes. In Section 3, we establish general formulae for
the curvature and torsion tensors. Then, we compute the torsion tensor and
decompose it into its irreducible parts for the static spherically symmetric
case. In Section 4, we require the torsion tensor to be completely antisym-
metric and then write the corresponding curvature tensor, the Ricci tensor
and the scalar curvature. Finally, we write Einstein—Cartan’s equations. In
Section 5, we consider the case of a Schwarzschild star, i.e. the case with
constant mass and spin densities. We then determine the mass formula, i.e.
the external mass M, in term of the internal mass M;. We are lead, natu-
rally, to distinguish between time reversal even and time reversal odd cases.
In the more interesting case from the point of view of cosmology, we can,
under some assumption, go further and determine completely the remaining
component of the metric tensor, together with the energy-momentum tensor
components. In Section 6 we discuss our findings, and Section 7 is devoted
to conclusions.

2. General form of the metric connection
in the static spherically symmetric case

Einstein’s theory admits the metric g as a fundamental variable. Einstein
—Cartan’s theory has in addition to the metric, another independent funda-
mental variable, the metric connection, not to be confused with Christoffel’s
connection. The presence of symmetries impose constraints on the metric
as well as on the connection.

In the static spherically symmetric case, it is well-known that the metric
g may be on the one handput, without loss of generality, in the form of

B(r) 0 0 0
0 —A(r 0 0
uv = 0 O( ) _7,2 0 . (1)
0 0 0 —r2gin246
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On the other hand, we have to solve the connection Killing equation

N _
o 8F/‘«V _ E‘F}\V %F_)\V +
oz 9> oz+ H

85'7 F}\ 825)‘

oxv ™ OxtdxV ’

§

for Killing vector fields

o O
£=¢ e (3)
corresponding to time translation
0
- = 4
and rotations
] cosf 0
£ = —smgp%—cosgpsine%, (5)
0 . cosf 0O
£ = coscp%—smtpsine%, (6)
0
§ = Frs (7)

One gets the following non-vanishing components of the connection:

Iy = X (r) a,b,c € {t,r},
oo
a a a : a
Iy = Sin26:E (r), Iy, = —I'gg = sinOF (r),
FgGZngo:Ca(r)v Fga:flfazya(T),
rf, = —sin®0Iy = —sin0Z,(r), I5,=—sin®0I% =sin0G,(r),
0 _ . ¢ o _ COsO
I',, = —sinflcosf, Iy, =17= g (8)

In comparison to [1], we have additional non-vanishing components paramet-
rized by four new functions of r: Zi(r), Z,(r), G¢(r), G,(r).
Next, requiring the metricity condition to be satisfied

o
oz

one obtains the following non-vanishing components of the connection:

= I\ = T)agur = 0, (9)
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A
It = Dt§7 Iy = Dy,
A
Fﬁr = DTE, Ft';:Dra
B A
t _ ro_ T
Lr =55 b =54
r2 r2
Fée = Ect, Té}az—ZCr,
¢ r’ 2 r’ 2
F(P(P = Esin QCt, F;¢:—Zsin QCT,
Ft%_ctv IfG:CW
Fti;:Cta qup:Cra
1 1
0 __ —
F@r - ;7 Ffr*;7
r2 r2
Iy, = EsinaGt, Iy, = —ZsiHQGT,
r2 r2
F:;H = —EsmﬂGt, ;ezzsnﬂGr,
Gy G
F‘P _ __~t F%O — r
to sinf’ ré sinf’
IY, = Gysing, If, = Gysinf,
Zy Z,
Iy = I r
ot sinf’ Or " ging’
th = —sinfZ;, FgT:—sinOZT,
0
I, = —sinfeost,  If =I%=—" (10)

parametrized by eight functions of r: Cy(r), C.(r), D(r), Dy(r), Zi(r),
Z(r), G¢(r), Gy(r). In comparison to [1], there are additional non-vanishing
components parametrized by the four functions of r: Z;(r), Z.(r), G¢(r),
G,(r). In fact, our solution is the most general one corresponding to the
static spherically symmetric case. The solution of [1] is less general, corre-
sponding to a particular case of ours, obtained by setting Z;(r) = Z,(r) =
Gi(r) = G,(r) = 0. We will show in the following that the four functions
Zy(r), Zy(r), G(r), Gy(r) are crucial in order to obtain a completely anti-
symmetric torsion tensor.
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From now on, we will work in an orthonormal frame e® related to the
holonomic frame dz* by
e = e, dz", (11)

where ej; € GL(4). From (11), we get

G () = GZ(fc)eg(@“)%b- (12)

Since the metric tensor is given by (1), one deduces that

vVB 0 0 0
a 0 A 0 0
u = 0 \/(; T 0 ' (13)
0 0 0 rsinf

The components of the same connection with respect to the orthonormal
frame w and with respect to the holonomic frame I" are linked by a gauge
transformation

0 _ha
wg‘u = egrgu( )5+eaﬂ (e 1)b . (14)

The non-vanishing components of the connection w are

[A

wit = BDta Wgt = —Z,
[ A

wh, = BD wg,r =—Z,

r r
wpe = ﬁct» Wep = —ﬁGta
. r , r
w€9 = _ﬁcr’ wwe ﬁGT,
roo. roo.
u)g(p = ﬁ sin 0Gy , wz;(p = ﬁ sin 0CY ,
wg‘p = —ﬁ sin G-, Wop = —ﬁ sin 6C,.
w,, = —cosb.
0 0 15

Let us notice that in comparison to |1], there are additional non-vanishing
components expressed in terms of the four new parametrizing functions

Zy(r), Zp(r), Ge(r), Gr(1).
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3. Formulae for the curvature and torsion tensors.
Computation of the torsion tensor

Thanks to the structure equations for the curvature R} and the tor-

sion T¢

Rp = duf + iy, (16)
T = de® + wie®, (17)

one can compute the curvature and torsion tensors defined respectively by
R® = LR%ec o (18)

and
T% = 1% Typee® e (19)

It is a straightforward calculation to obtain explicit formulae for the
curvature and torsion tensors

Ry, = (8uwg’y — &,wl‘fu + wguwgy — wgng ) (e_l)“ (e_l); , (20)

[

T = (@Le,‘f — Gyez + w,‘guelj — wgyeﬁ> (e_l)Z (e_l)lcl , (21)

where (e7 1)} is the inverse of ey, that is

e ()0 = 1. )
Thus,
1
75 (3 0 0
e e R (23)
a 0 0o = 0
1
0 0 0 rsin 6

As stressed in the introduction, we are especially interested in the case
where the torsion tensor is completely antisymmetric. We will proceed in
three steps: We must first compute the torsion tensor, then decompose it
into its irreducible completely antisymmetric Agp., vectorial V,, and mixed
M pe parts and finally, require the vectorial and mixed parts to vanish, i.e. re-
quire the torsion tensor to be completely antisymmetric. The non-vanishing
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components of the torsion tensor are

,Tttr -

TtGgo

TTGL,D =

1
Tet(p —ﬁ (Zt + Gt) 5
1 1
o= 75 (1)
1
T9Lp7“ = _7 (Zr + Gr) ’
2
-G ,
VB '
2
-G,

1629

(24)
(25)
(26)
(27)
(28)
(29)
(30)

(31)

In addition to the non-vanishing components of [1], we have additional non-
vanishing components expressed in terms of Z;(r), Z,(r), G¢(r), G,(r). Let
us now decompose the torsion tensor into its irreducible completely anti-
symmetric Agpe, vectorial V, and mixed M. parts

Tabc = Aabc + nach - 77ach + Mabc s

with

Aabc =

M, abc

3 (

1
Tabc + Tbca + Tcab) y

1

b
= 777a Tab07

3

= Tope — Agpe — nab‘/c + 77(10% .

(32)
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For the non-vanishing components, one obtains the following expressions:

At@@: T(Zt+2Gt),
ATQSD: f(Z+2G)
1
Vi = —— (D, +2C) ,
! 3\/§( 2
1 (=B 2 A
r = —F— | =5 — — r+ =D |,
Vi 3@(23 r+2C+Bt)
-2 (B 1 A
Mttr—?)\/z(QB—r‘f‘Cr—BDt)a
2
Mw@:ﬁ(zt—Gt),
2
MrrziDr_C ’
= 578 2
2
MrGw:m(z G)
1 1
M@tﬁz_iMrtr:ﬁ(Ct_Dr)v
1
M@t@:ﬁ(zt*Gt),
1 1 (B 1 A
Moy = -Myy = — |5 ——-+Cr—5D: ],
or6 o Mitrt 3\/Z<QB 7"+ B t)
MGr&p:?)\/»( Gr)a
M‘Pw:B\/»( Gt)7
1 1
M‘Ptip:MGtGZ_iMNT:ﬁ(Ct—DT)' (36)

4. Completely antisymmetric torsion tensor case

Finally, requiring the vectorial and mixed parts of the torsion tensor to
vanish, one obtains the constraints
1 B’

Ct:()a CT:77 Dt:

r ﬂv Dr:O7 Gt:Zt, Gr:Zr.

(37)
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The completely antisymmetric torsion tensor obtained in this way has two in-
dependent components A;g, and A,g, related respectively to the parametriz-

ing functions Z; and Z,

Zy
Ay, = 2,
i VB
Z
Arpp = —2—

73

(38)

(39)

In the completely antisymmetric torsion tensor case, the expressions of

the components of w simplify to

wyy = 2\/5;/1—B7 wgt:_Zt’

wg,r = —Z, wz;g —%Zt,

why = _\/12’ W ﬁZr,

wéw = %sin 07, Why = —ﬁ sin0Z, ,

wh o= _ﬂ wgw = —cosd. (40)

P JA

We can now compute the curvature tensor components Rgdb using formula (20).

We have the following non-vanishing components:

Rt?“ _ 1 ( B/ )/ RQCP _ 1 Z/
" VAB \2vAB) ’ i VAB Y
1 B’ —B'

Riy = B<2rA_Z’?>’ Rij = 5ap%r
RY — Zr 2y RTY — 1 <B/
= JAVB' = JAB \2B
B’ 1 B’
o __ to
Mo = Sap?r Rw—3<m‘
1 B’ 1 Ly Z
rd __ ro _ 4r t
- (= 4+2)Zz — Zt
fitg \/E<2B+r> v e = R VB
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py G % peo L4
"= T VAVE' ¢~ VAVB
RO — 1 L/_,_Zi?? RY — _ 1 ﬁ
v = va\va) ta " T VAVE
/ 2
pe - G L P ER
T TVAVE wTwva\va) A
2 Z 1z 1 Z?
tr 7t 0o = —— — Zt —__ - 41
Bo = L JAVE’ Ro=—m—ptoata W
where the / denotes derivative with respect to r.
The non-vanishing components of the Ricci tensor RY, defined by
R = R (42)
are
1 B/ /
VAB \2vVAB rAB B
1 B’ 1\ 2
. oy +Zz>
7z <2r> (H i
1/ B 1 1 1
0 _ Y —927 _ 22 -
® = w5 (s 24) + 7z () 5 () -
Z Zy
RL =
VAVvE'
Z Zy
R, =
1T AAVE
[4 [ B
= - = T 4
Ry R, 2ABZ (43)

and the scalar curvature R, defined by
R =RL=TR,+R;+Rj+RE (44)

is given by

- o) () 3 (e )
2 (E-sz)- 5 (4

r
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The Einstein equation reads [1, 9, 10]
Gap — Angp = 87G1hq (46)

where G, is the Einstein tensor, related to the Ricci tensor R, and scalar
curvature R by

Gab = Rap — %Rnab- (47)
In the orthonormal frame, the most general energy momentum tensor reads
p(r) q(r) 0 0
ra=| T w0 pa(()T) U?T) (48)
0 0 —u(r) pa(r)

Let us justify that (48) is the more general form of the energy momentum
tensor. It is clear that the vanishing of a component of Gy, — Ang, implies
the vanishing of the corresponding component 73, of the energy momentum
tensor. Since the components t0, 0t, tw, pt, 10, Or, ro, or of Gup — Ang
are vanishing, this on the one hand implies that 79; = 0, 79 = 0, 7,y = 0,
Topo = 0, 79, = 0, 79 = 0, 75 = 0, 7, = 0. On the other hand, G g —Anyg =

—(Go,—Anyg,,) implies that 7,9 = —79,, and Ggg— Angg = G — A1, implies
that 799 = 7,,. Finally, since Gy — Angyp, is a function only of 7, the same
is true for the components of the energy momentum tensor 7,;. Hence, we
can, without loss of generality, parametrize the energy momentum tensor as
n (48). 7y is interpreted as a density of matter p, and 7., and 799 = T
as pressures: T, = p, as radial pressure, and 7p99 = Ty, = p, as azimuthal
pressure. Using (43), (45) and (48), we can explicit the components of the
Einstein equation

2 1) zZZ 1
Alwa) —a (v *é 2~ A=81Gp(r),
T

;(1 n ZQ) 1 ( 323) =+ A=8xGp, (1),
F(iﬂﬁ)l () +a ()
(

B/
+5 (QTA — ZE) + A =81Gp, (1) , (49)
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Ly Ly
— =4nGo(r) ,
VBvA el
Zy 7y
¢ = —4nGq (r) ,

VBVA

1 (Z\ 1(B
—|—=) - = =% | =-87G . 50
\/Z<\/Z> B <2A ) mGu (r) (50)
In the case of a completely antisymmetric torsion tensor, Cartan’s equations

[1] reduce to
Aabc = *SWGaabca (51)

where aqpc is the completely antisymmetric irreducible part of the spin tensor
Sabe: Qabe = %(sabc + Scab + Sbea) [1]. Here, since the completely antisym-
metric torsion tensor has two independent components (38), (39), we have
two Cartan equations

Z,
TtE - 47rGa/t9<p 5
Z,
= = 4rGayg, . (52)

N

5. Schwarzschild star

Now, let us consider the case of a Schwarzschild star with the constant
matter density p and constant spin densities a9, and a,g,. Then, it is clear
that

Athp = WP (53)
and
Arogp = WrP, (54)

where w; and w, are constants. In the following, p, wy and w, will be treated
as parameters. Then, Einstein’s equations simplify to

2 1 / 3 2 2 1 .
7 (r\/Z> =y 3(4rGuw,rp)” + (ArGuwp)” + i A =8rGp,

B 1
+ (4nGuorp) + —s = 3(4nGlunp)® — =5 + A = 8xGp, (1),

1
r2A rAB

’

1 B’ 1 1\ 1 )
VAB (2@) VA (rﬂ) gt nGr)

B
2rAB

+

— (4nGuip)® + A = 87Gp, (1) , (55)
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0 = —q = 4nGuw,wp?,
B/
u(r) = wrp, 56
and Cartan’s equations reduce to
Zy
— = 47Gw
3] tP
and
Zr 4 Guw (57)
— =47 .
VA P

The tt-component of Einstein’s equation (55) may be put in the form of

/
- <%) — 3(4nGuw,p)? r? + (4rGuwip)® r? + 1 — Ar? = 8nGpr?.  (58)

Integrating the last equation, one obtains

3

1 A
— — (4nGup) 1 + < (4nGuayp) 1 7 — TP = 8nGp = K, (59)

where K is a constant of integration to be determined. Evaluating for r =0
and taking into account that A (0) > 0, one gets K = 0. Then,

r 2 3 1 2 3 3 r3
AN 4 T - -4 - A— — = U.
ne + (ArGw,p)“r 3( TGuwip) 1 — 1+ 3 +81Gp 3 0. (60)
Finally,
r2] 7!
A(r)=|1- (A+87Gp+ 4812 GPwip? — 167r2G2wt2p2) 3 . (61)
For r = R, we have
2
AN (R)=1- (A+8rGp+ 48T GPw? p* — 167T2G2wt2p2) % : (62)
However,
2GM. AR?
AN R =1- e _ 63

where M, is the external mass [1] defining the strength of the gravitational
field. Then, by comparison,
G2 M?

2GM, = 3 (3w? — w}) 75 T 2GM, (64)
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where M is the internal mass defined by

4
M; = g”ﬂR?" (65)

In this way, we obtain a mass formula for the external mass

3
M, = M; 1+§(3w2—wt2)

T

G M,
R3 |’

(66)

quadratic in w? and w?, which shows that the external mass is different from
the internal mass, i.e. that the weak Gauss law does not hold, except when
w2 1
x =3
2
For % > %, the external mass is greater than the internal mass and for

2
w—g < 3, it is the internal mass which is greater. Solution (61) is valid inside

the mass distribution that is, for » < R, where R is the radius of the mass
distribution. Outside the mass distribution, i.e. for r > R, the solution is the
well-known Kottler, also named Schwarzschild—de Sitter, vacuum solution

(67)

Equation (64), with (62) and (63), is nothing but the continuity condition.
Thus, we have an exact analytical solution for A(r) valid for all values of r

-1
[1 — (A + 87Gp + 48w G2w?p? — 1672 G%wip?) g} r<R,

A= [1—M—%Q]_lr > R.
(68)
Using the condition
I (@) = (A7) () A5 AL I (o) — (A7) (@) 5 (A7) (),
(69)

where Al(z) is the Jacobian matrix

A(x) = 5 (@),
which applies to continuous as well as to discreet isometries preserving the
metric, it is easy to see that Z; and Z, are, respectively, odd and even under

time reversal. This allows us to treat the two cases separately Z; # 0, Z, = 0
(w #0,w, =0)and Z; =0, Z, # 0 (w = 0, w, # 0). We would like to have

Ozt
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M, > M;, in view of the resolution of some dark matter problems. From
now on, let us take wy; = 0 so the mass formula (66) reduces to

Me = Mi |:1 + 50)7, R3 :| 5 (70)
and since Z; = 0, (56) reduces to
o(r) = 0, q(r)=0,
Bl
u(r) = ——wy 71
=135 T’ (71)
and the expression of A(r) (68) reduces to
~1
[1 — (/1 + 8nGp + 487r2G2w,%p2) ﬁ} r<R,
A(r) = (72)

[1- 260 —%ﬂ_lrzR.

T

To simplify further, we take p, = p, = p that is, we consider only one
pressure. The rr and 66 components of the Einstein equation (55) reduce to

’

| , B 1
L (4rGup) 4~ p A= ,
=y + (4rGuyp)” + a5 2t 87Gp (1)

1 B’ +1<1>’+1+(4G)2
— | —— — | —= — ems
JAB\2vaB | T VA \rv/a) 124 P

!

+ 2rAB

+ A =8xGp(r) . (73)

Since the expression of A(r) is already known, (73) may be considered as
a coupled nonlinear system of two equations with two unknowns B(r) and
p(r). The solution of (73) satisfying the continuity conditions

2GM, AR?
R 3 7

B(R)=1— p(R) =0 (74)

is [11]

B(r) = B\/1—-3r2+a\/1-3R?
= (1-a)V1-3r2+ay/1-3R2, (75)

oy (VI
(p+47rGwrp)<m 1>, (76)

<

—~
=

S~—
I
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where we have introduced notations similar to those of [§]

1

7 = 5 (A+8nGp + 480G’ | (77)
127G ArGuw?p?

__ (p-l?-ﬁﬂ wi?) (78)

_ A_4

The knowledge of A(r) (72), and of B(r) (75) allows us to determine the
expression of u(r)
u(r) = 1 (1= &) ywrpr (80)
2(1-a)\/1-73r24+ay/1-3R?
Let us notice that the expressions of B(r) (75), p(r) (76), and u(r) (80)

hold inside the mass ditribution, i.e. for r < R. For r > R, the solution is
well-known

2GM, Ar?
r 3

B(r)=A(r)' =1 , p(r)=0, u(r)=0. (81)
It is worthwhile to stress that the determination of A(r) and B(r), which
is equivalent to the determination of the metric tensor, is essential. For
instance, A(r) and B(r) are both involved in the geodesic equations

. B'(r)..
By =0 (82)

. B'(r). Al(r) . Ty
"+t taam” " an? = O (83)
¢+§f¢ 0, (84)

where the dot denotes derivation with respect to an affine parameter p and
the 7 derivation with respect to . Thus, to study geodesics, it is essential
to have explicit expressions for A(r) and B(r).

6. Discussion

Let us now discuss our results and compare them to those of reference [1].
First, it is worthwhile to notice that in comparison to reference [1], we have,
to parametrize the non-vanishing components of the connection, four addi-
tional functions of r: Gy, G, Z;, Z,. In reference [1], due to the lack of these
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functions, the torsion tensor does not possess an irreducible, completely an-
tisymmetric part and thus, it was not possible to construct completely an-
tisymmetric torsion tensors. In the present paper, in the general case, the
torsion tensor has an irreducible, completely antisymmetric part and it was
possible to construct completely antisymmetric torsion tensors, by requiring
the irreducible vector and mixed parts to vanish. This results in torsion ten-
sors parametrized by two functions Z; and Z,. These functions transform
differently under time reversal. Thus, we can treat the time reversal even
case corresponding to Z; = 0 and the time reversal odd case corresponding
to Z, = 0 separately. In both cases, the weak Gauss law is broken, that is,
the external M, and the internal mass M; differ. In the time reversal even
case, the external mass M, is greater than the internal mass M;, while in
the time reversal odd case, the external mass M, is smaller than the internal
mass M;. In the light of these findings, the torsion, in the time reversal even
case, may be an alternative to the dark matter by choosing suitable values
of the parameter w,. One can interpret the internal mass M; as the ordinary
matter mass, that is, the real mass enclosed inside the sphere of radius R.
However, the observer outside the sphere of mass felt a different mass, the
external mass M, greater than the internal mass M;. All happens as if the
external observer feels a supplementary mass M, — M;j, which is interpreted
as dark matter mass. Using the mass formula (70), one gets

M, 9 ,GM
e 142
M T RS

(85)

From (85), one can notice that the ratio M,/M; is independent of the cos-
mological constant A and is a sum of two terms: 1 and a positive quadratic
term in w,. This contrasts with the result of [1], where the ratio M, /M, is a
sum of three terms: 1, a linear term in w and a positive quadratic term in w

R
Me_1+6w/ Fd7 +3w2GMi
M, R JA(F 2R3
) VA

(86)

from formula (58) of reference [1|. Furthermore, in this case, the ratio M, /M,
presents a dependence, although weak, on the cosmological constant A com-
ing from the linear term in w. For illustration purposes, let us determine,
as in reference [1], the values of w, for the sun and for a cluster of galaxies
for a ratio Me/M; = 5 corresponding roughly to the ratio of the ordinary
matter mass to the total matter mass. From (85), one obtains

8R3 \ 2
wT:<9GM) . (87)
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In the case of our sun, whose mass and radius are receptively: M; = Mg =
1.9884 x 103" kg and R = 7 x 10® m, we have w, = 1.52 x 10% s. For a
cluster of galaxies, such that M; = 10'°Mg and R = 3 x 10?3, one obtains
w, = 4.26 x 10'7 s. For the particular example studied by the authors of
reference [1], w = 3.1 s for the sun and w = 1.33 x 10 s for the cluster of
galaxies. On the other hand, the authors of reference [9] have shown that
the Hubble diagram of super novae can be fitted with the Einstein—Cartan
theory with w = 10'” and no dark matter. Although the value of w, obtained
in this paper is closer to the value of w obtained in reference [9] than that
obtained in reference [1], the three values are not very far from each other.
However, they are very far from the naive microscopic value

we 2 o, (88)

'rnprotonc2

7. Conclusion

We consider Einstein—Cartan’s theory in the static spherical case with a
completely antisymmetric torsion tensor. In the case of Schwarzschild star
with constant mass density p and constant spin densities a9, and a,g,,
i.e. a9, = wip and arg, = wrp, With p, wy, w, constants, we integrate the
tt-component of the Einstein equation obtaining for A(r) an expression show-
ing that the weak Gauss law is broken. In the case of wy = 0, w, # 0, the
torsion may be an alternative to dark matter. In this case, if we assume only
one pressure p, i.e. p, = p, = p, we can completely solve the problem, that
is, we can determine B(r) and the components of the energy momentum
tensor q(r), o(r), p(r) and u(r). In the w, = 0 limit, i.e. in the absence of
torsion, we recover the interior Kottler solution [6-8].
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