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Multiplex networks consist of a fixed set of nodes connected by several
sets of edges which are generated separately and correspond to different
networks (“layers”). In this paper, the Ising model is considered on multi-
plex networks with two layers with partial overlap, i.e., sharing only a part
of nodes, with spins located in the nodes and edges corresponding to non-
zero exchange integrals of ferromagnetic interactions. Critical temperature
for the ferromagnetic transition is evaluated using heterogeneous mean-
field approximation and the replica method, from the replica-symmetric
solution. The results are valid for layers in the form of general complex
networks, in particular for heterogeneous scale-free networks. The size of
the overlap and the correlation between the degrees within different layers
of nodes belonging to the overlap significantly influence the critical temper-
ature. It is also argued that in typical cases, the size of the overlap does not
influence the critical exponent for the ferromagnetic transition. Analytic
predictions are partly confirmed by numerical simulations.
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1. Introduction

In the last two decades, investigation of complex networks and their role
in natural sciences, technology and social life have formed a rapidly develop-
ing branch of statistical physics [1, 2]. A significant part of this research is
devoted to the physics of interacting systems on complex networks, in partic-
ular those exhibiting various kinds of collective phenomena including phase
transitions [3, 4]. For example, ferromagnetic (FM) and spin glass phase
transitions in the generic Ising model on complex, possibly heterogeneous
networks were studied analytically using, e.g., the heterogeneous mean-field
(MF) approximation [5–8], the replica method [6, 9–11], the belief propaga-
tion algorithm [12, 13], the effective field approach [14, 15] and numerically
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via Monte Carlo (MC) simulations [16–20]. In the context of recent interest
in even more complex structures (“networks of networks”), much attention
has been devoted to multiplex networks (MNs) which consist of a fixed set
of nodes connected by various sets of edges [21–23]; a set of nodes together
with one set of edges forms a network called a layer of an MN. MNs emerge
in various social systems (e.g., transportation or communications networks),
and interacting systems on MNs exhibit rich variety of collective behaviors
and critical phenomena. For example, percolation transition [24–27], cas-
cading failures [28], threshold cascades [29, 30], diffusion processes [31, 32],
epidemic spreading [33, 34], FM and spin glass phase transitions in the Ising
model [35, 36] and in the related Ashkin–Teller model [37], ordering transi-
tion in nonequilibrium models for the opinion formation [38–41] etc., were
studied on MNs.

An important subclass of MNs consists of MNs with partial overlap, in
which each layer shares only part of its nodes with other layers, while the
sets of edges are generated separately (Fig. 1). The size and other details of

Fig. 1. Schematic illustration of generation of a MN with two layers (duplex net-
work) with partial overlap, as described in Sec. 2.1. First, two layers are gen-
erated separately, G(A) with N (A) = 11 nodes (empty circles) connected with
edges (black lines) and G(B) with N (B) = 12 nodes (gray points) connected with
edges (gray lines). Then, n = 7 nodes out of N (A) (N (B)) nodes belonging to
the layer G(A) (G(B)) are identified with each other and assumed to belong to the
overlapping part of the MN. The resulting MN, shown on the right, consists of
N = N (A) +N (B) − n = 16 nodes: the n nodes belonging to the overlapping part
are shown as circles filled with gray. The nodes i = 1, 2, . . . n within the layer G(A)

(G(B)) are characterized by the degrees k(A)
i (k(B)

i ): for the nodes belonging to the
overlap, there is k(A)

i > 0, k(B)
i > 0, while for the nodes belonging only to the layer

G(A) (G(B)), there is k(A)
i > 0, k(B)

i = 0 (k(A)
i = 0, k(B)

i > 0). In order to define
the Ising model on this MN, spins are located on the nodes, and the edges in the
form of black (gray) lines correspond to exchange interactions J (A) > 0 (J (B) > 0)
in Hamiltonian (1).
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the overlap play an important role, e.g., in the formation of the giant mutual
component in the percolation process on MNs [42, 43], in the robustness of
MNs against attacks [44], epidemics spreading on MNs [45], phase transi-
tions in nonequilibrium models of social dynamics [39, 41], etc. The aim
of this paper is to investigate the effect of partial overlap of layers on the
FM transition in the Ising model on MNs. For this purpose, a simple vari-
ant of the Ising model is studied, with spins placed on a fixed set of nodes
and with separately generated sets of edges within layers corresponding to
FM exchange interactions; the layers have a form of complex, possibly het-
erogeneous networks. The critical behavior of the model is investigated in
the heterogeneous MF approximation and by means of the replica method,
using the replica symmetric (RS) solution [46, 47]. In the previous studies
of this model on MNs with full overlap, the possibility of the occurrence
of the FM transition and strong dependence of the critical temperature on
the correlation between degrees of nodes (numbers of attached edges) within
different layers were demonstrated [35]. In this paper, it is shown that the
size of the overlap also strongly influences the critical temperature for the
FM transition. Besides, the critical temperature is again influenced by the
correlation between degrees within different layers of nodes belonging to the
overlapping parts of the layers. However, it is argued that in typical cases,
the size of the overlap does not influence the critical exponent for the mag-
netization. Theoretical findings are partly confirmed by comparison with
results of MC simulations.

2. The model

2.1. Multiplex networks with partial overlap

MNs consist of a fixed set of nodes connected by several sets of edges;
the set of nodes with each set of edges forms a network which is called a
layer of a MN [22, 23]. In the following, for simplicity, MNs with only two
layers denoted as G(A), G(B) will be considered; such MNs are often referred
to as duplex networks (Fig. 1). In the case of MNs with full overlap, all
nodes belong to both layers, i.e., each node has at least one edge from each
layer attached to it. In the case of MNs with partial overlap, only part of
nodes belongs to both layers, and the remaining nodes belong only to one
of the layers G(A) (G(B)), i.e., they have at least one edge from the layer
G(A) (G(B)) attached to them but they have not edges from the other layer
G(B) (G(A)) attached to them. Henceforth, the total number of nodes in the
MN is denoted as N and the nodes are labeled i = 1, 2, . . . N , the number of
nodes belonging to the layer G(A) (G(B)) is denoted as N (A) (N (B)) and the
number of nodes belonging to both layers as n so that N = N (A)+N (B)−n;
besides, if necessary, the nodes belonging to the layer G(A) (G(B)) can be also
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separately labeled l = 1, 2, . . . N (A) (l′ = 1, 2, . . . N (B)). The overlap of the
layer G(A) (G(B)) with the other layer is R(A) = n/N (A) (R(B) = n/N (B)),
thus R(A) = R(B) = 1 corresponds to full overlap and R(A) = R(B) = 0 to
two disjoint layers forming separate networks. The sets of edges of the two
layers are generated separately and, possibly, independently. As a result,
multiple connections between nodes are not allowed within the same layer,
but the same nodes belonging to both layers can be connected by multiple
edges belonging to different layers.

The nodes i = 1, 2, . . . N are characterized by their degrees k(A)i , k(B)
i

within each layer, i.e., the number of edges attached to them within each
layer. For the nodes belonging to both layers, there is k(A)i > 0, k(B)

i > 0,
while for the nodes belonging only to one layer, say G(A), there is k(A)i > 0,
k
(B)
i = 0. The, possibly heterogeneous, joint probability distribution of

the degrees of nodes within both layers, i.e., probability distribution that
a node belonging to the MN has degrees k(A), k(B), is denoted as pk(A),k(B)

and the averages with respect to this probability distribution are denoted
as 〈·〉. For example, the mean degree within the layer G(A) is 〈k(A)〉 =

N−1
∑N

i=1 k
(A)
i =

∑
k(A),k(B) k(A)pk(A),k(B) (note that for MNs with partial

overlap some terms in these sums can be zero). Besides, separate probabil-
ity distributions of the degrees of nodes within each layer, i.e., probability
distributions that the node belonging to the layer G(A) (G(B)) has degree
k(A) (k(B)) are denoted as pk(A) (pk(B)); by definition, a necessary condi-
tion for pk(A) > 0 (pk(B) > 0) is k(A) > 0 (k(B) > 0). The respective
averages are denoted as 〈·〉A (〈·〉B), e.g., the mean degree of nodes in the
layer G(A) is 〈k(A)〉A = (N (A))−1

∑N(A)

l=1 k
(A)
l =

∑
k(A) k(A)pk(A) (note that

all terms in these sums are nonzero). In the simplest case of an MN with
full overlap and with separately and independently generated layers, there
is pk(A),k(B) = pk(A)pk(B) , and this case was considered in Ref. [35].

2.2. The Hamiltonian

In a simple version of the Ising model on an MN with two layers con-
sidered in this paper, two-state spins si = ±1 are located in the nodes
i = 1, 2 . . . N and edges within the layers G(A), G(B) connecting pairs of
nodes i, j correspond to FM exchange interactions with integrals J (A) > 0,
J (B) > 0, respectively. The Hamiltonian of the model is

H = −J (A)
∑

(i,j)∈G(A)

sisj − J (B)
∑

(i,j)∈G(B)

sisj , (1)

where the sums are over all different edges belonging to the layerG(A) (G(B)).
It should be emphasized that in the model under study, there is only one
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spin si located in node i which interacts with all its neighbors within all lay-
ers; thus, interaction between different layers in Hamiltonian (1) is provided
by n spins belonging to both layers G(A), G(B).

At a first glance, the model under study seems trivial since Hamilto-
nian (1) is equivalent to that of the Ising model on a network being a su-
perposition of the two layers (a super-network), in which nodes belonging
to both layers are simply more densely connected than the remaining ones.
However, analytic study of the Ising model on such super-network can be
difficult and hardly conclusive. For example, the consecutive layers can be
uncorrelated networks, i.e., networks without correlations between the de-
grees of nodes within layers; this group of networks comprises many random
graphs and a broad class of heterogeneous scale-free (SF) networks. Then,
for each layer, it is a simple task to evaluate a basic quantity, the probabil-
ity that a node is connected to a node with a given degree within a layer.
As a result, it is possible to derive the MF approximation for the model
on an MN in which two magnetization-like order parameters, related to the
two layers of the MN, occur in a natural way, and to evaluate the critical
temperature for the possible FM phase transition [35]. In contrast, as a
rule, the corresponding super-network is a correlated network, and evalua-
tion of the correlations between the degrees of nodes of this super-network
is not straightforward. In turn, in particular in the case of strongly hetero-
geneous layers, neglecting these correlations in the MF approximation for
the Ising model on a super-network yields critical temperatures for the FM
transition which noticeably deviate from the more correct values obtained in
the above-mentioned MF approximation which takes into account the lay-
ered structure of the network [35]. Similarly, if the replica method is used
to investigate the FM transition in a certain variant of the model under
study, it is relatively easy to evaluate statistical sums over replicated spin
configurations separately for each layer; again, two sets of order parameters
(magnetization, spin glass order parameter, etc.) related to the two layers
occur then in a natural way [35, 36]. Moreover, in the approaches based on
the MN, it is possible to observe certain phenomena, e.g., dependence of the
critical temperature for the FM transition on the correlation between the
degrees of nodes within different layers [35], which can easily be overlooked
in the approach based on the super-network. So far, the above-mentioned
approaches based on the MF approximation and the replica method have
been applied to the Ising model on different MNs with full overlap. In this
paper, the effect of partial overlap of layers of an MN on the FM transi-
tion in the model described by Hamiltonian (1) is investigated using similar
methods.
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3. Investigation of the ferromagnetic transition using
the mean-field approximation

3.1. The model for a multiplex network with partial overlap

In this section, heterogeneous MF approximation is used to evaluate the
critical temperature for the FM transition in the Ising model on an MN
with partial overlap. In order to simplify calculations, it is convenient to
assume that the layers of an MN are generated randomly and independently
so that the degrees within different layers of nodes belonging to both layers
are uncorrelated; the process of generation of an MN with such layers is
schematically illustrated in Fig. 1. For brevity, this sort of MNs will be
referred to as MNs with independent layers. The simplest way to generate
an MN with two independent layers G(A), G(B) and with given distributions
of the degrees of nodes within layers pk(A) , pk(B) is probably to use the
Configuration Model [48] separately and independently for each layer. To
generate the first layer G(A), the algorithm starts with assigning to each node
l = 1, 2, . . . N (A) in a set of N (A) nodes belonging to this layer a degree, i.e.,
a random number k(A)l of ends of edges drawn from a given probability
distribution pk(A) , with m̃(A) < k

(A)
l < N (A) (the minimum degree of node

is m̃(A), and the maximum one N (A) − 1), with the condition that the sum∑
l k

(A)
l is even. The layer is completed by connecting pairs of the ends

of edges chosen uniformly at random to make complete edges, respecting
the preassigned sequence k(A)l , and under the condition that multiple and
self-connections are forbidden. The layer G(B) is generated in a similar way,
with the degrees assigned randomly toN (B) nodes from the possibly different
probability distribution pk(B) . Finally, n nodes randomly chosen from the
set of N (A) nodes belonging to the layer G(A) are identified with n nodes
randomly chosen from the set of N (B) nodes belonging to the layer G(B) by
matching pairs of nodes randomly and uniformly, without repetitions, i.e.,
it is assumed that a spin located in any of these n nodes interacts both with
spins located in the nodes connected to the former node by edges of the
layer G(A) or G(B). Thus, the joint probability distribution of the degrees
of nodes of the MN with independent layers is

pk(A),k(B) =
N (A)−n

N
pk(A)δk(B),0 +

N (B)−n
N

pk(B)δk(A),0 +
n

N
pk(A)pk(B) . (2)

In order to make analytic progress, it is further assumed that the layers
G(A), G(B) are uncorrelated networks, i.e., that there are no correlations
between the degrees of pairs of nodes connected by edges within each layer.
This property concerns separate layers and is not related to the lack of cor-
relations between the degrees within different layers of nodes belonging to
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both layers, which was assumed above. Analytic calculations are performed
for layers in a form of heterogeneous SF networks, with the degree distribu-
tions pk(A) = 0 for k(A) < m̃(A), pk(A) = (γ(A) − 1)(m̃(A))γ

(A)−1(k(A))−γ
(A)

for k(A) ≥ m̃(A) and, similarly, for pk(B) . Such SF networks generated from
the Configuration Model are uncorrelated for γ(A) > 3, γ(B) > 3, and for
γ(A) ≤ 3, γ(B) ≤ 3, they are correlated unless artificial constraints are im-
posed on the maximum degree of nodes [49].

3.2. Heterogeneous mean-field theory

In the heterogeneous MF approximation, the FM transition in the Ising
model on an MN with two layers is characterized by two order parameters
〈S(A)〉, 〈S(B)〉 which have a form of magnetization weighted by the degrees
of nodes within the layers G(A), G(B). Derivation of the MF equations for
these order parameters in the case of MNs with partial overlap follows closely
that in the case of MNs with full overlap performed in Ref. [35]. As in the
latter case, the average value of spin at node i obeys an equation

d〈si〉
dt

= −〈si〉+ tanh (β〈Ii〉) , (3)

where β = 1/T and

〈Ii〉 = J (A)
∑

{j:(i,j)∈G(A)}
〈sj〉+ J (B)

∑
{j:(i,j)∈G(B)}

〈sj〉 (4)

is the average value of the local field acting at the spin at node i.
The basic assumption of the heterogeneous MF theory for the Ising model

on MNs is that the nodes of the network are divided into classes according
to their degrees (k(A), k(B)) and that the average values of spins in nodes
belonging to the same class 〈sk(A),k(B)〉 are equal. Taking into account that
for uncorrelated layers, the probability that the edge of the layer G(A) at-
tached at one end to the node i is linked at the other end to the node with
degrees (k(A), k(B)) is

pk(A),k(B)k(A)∑
k(A),k(B) pk(A),k(B)k(A)

=
pk(A),k(B)k(A)〈

k(A)
〉 (5)

and similarly for the layer G(B), and thus that the number of nodes with
degrees (k(A), k(B)) connected to the node i by edges of the layer G(A) is

k
(A)
i

pk(A),k(B)k(A)〈
k(A)

〉 , (6)
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and similarly for the layer G(B), and replacing the sums over the indices of
nodes by sums over the classes of nodes, Eq. (4) can be written as

〈Ii〉 = J (A)k
(A)
i

∑
k(A),k(B)

pk(A),k(B)k(A)〈
k(A)

〉 〈sk(A),k(B)〉

+J (B)k
(B)
i

∑
k(A),k(B)

pk(A),k(B)k(B)〈
k(B)

〉 〈sk(A),k(B)〉

= J (A)k
(A)
i

〈
S(A)

〉
+ J (B)k

(B)
i

〈
S(B)

〉
, (7)

and Eq. (3) as

d〈si〉
dt

= −〈si〉+ tanh
[
β
(
J (A)k

(A)
i

〈
S(A)

〉
+ J (B)k

(B)
i

〈
S(B)

〉)]
. (8)

In the above equations, in a natural way, two order parameters occur

〈
S(A)

〉
≡ 1

N
〈
k(A)

〉 N∑
i=1

k
(A)
i 〈si〉 =

∑
k(A),k(B)

pk(A),k(B)k(A)〈
k(A)

〉 〈sk(A),k(B)〉 ,

〈
S(B)

〉
≡ 1

N
〈
k(B)

〉 N∑
i=1

k
(B)
i 〈si〉 =

∑
k(A),k(B)

pk(A),k(B)k(B)〈
k(B)

〉 〈sk(A),k(B)〉 . (9)

Multiplying both sides of Eq. (8) by k
(A)
i

N〈k(A)〉 (
k
(B)
i

N〈k(B)〉), performing the sum
over the nodes and replacing it with the sum over the classes of nodes, results
in the following system of MF equations for the order parameters:

d
〈
S(A)

〉
dt

= −
〈
S(A)

〉
+

∑
k(A),k(B)

pk(A),k(B)k(A)〈
k(A)

〉 tanh
[
β
(
J (A)k

(A)
i

〈
S(A)

〉
+ J (B)k

(B)
i

〈
S(B)

〉)]
,

d
〈
S(B)

〉
dt

= −
〈
S(B)

〉
+

∑
k(A),k(B)

pk(A),k(B)k(B)〈
k(B)

〉 tanh
[
β
(
J (A)k

(A)
i

〈
S(A)

〉
+ J (B)k

(B)
i

〈
S(B)

〉)]
.

(10)
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3.3. Mean-field critical temperature for the ferromagnetic transition

Equation (10) has a fixed point (〈S(A)〉, 〈S(B)〉) = (0, 0) corresponding
to the PM phase. Expanding Eq. (10) in the vicinity of this fixed point up
to linear terms yields

d
〈
S(A)

〉
dt

=

(
−1 + βJ (A)

〈
k(A)2

〉〈
k(A)

〉 )〈S(A)
〉
+ βJ (B)

〈
k(A)k(B)

〉〈
k(A)

〉 〈
S(B)

〉
,

d
〈
S(B)

〉
dt

= βJ (A)

〈
k(A)k(B)

〉〈
k(B)

〉 〈
S(A)

〉
+

(
−1 + βJ (B)

〈
k(B)2

〉〈
k(B)

〉 )〈S(B)
〉
.

(11)

Using Eq. (2), it is possible to express the averages with respect to pk(A),k(B)

in Eq. (11) by averages with respect to the known degree distributions within
layers pk(A) , pk(B)〈
k(A)k(B)

〉
=

∑
k(A),k(B)

k(A)k(B)pk(A),k(B)

=
N (A) − n

N

∑
k(A)

k(A)pk(A)

∑
k(B)

k(B)δk(B),0

+
N (B) − n

N

∑
k(A)

k(A)δk(A),0

∑
k(B)

k(B)pk(B)

+
n

N

∑
k(A)

k(A)pk(A)

∑
k(B)

k(B)pk(B) =
n

N

〈
k(A)

〉
A

〈
k(B)

〉
B
, (12)

〈
k(A)

〉
=

N (A)

N

〈
k(A)

〉
A
,

〈
k(B)

〉
=
N (B)

N

〈
k(B)

〉
B
, (13)〈

k(A)2
〉

=
N (A)

N

〈
k(A)2

〉
A
,

〈
k(B)2

〉
=
N (B)

N

〈
k(B)2

〉
B
. (14)

Substituting Eqs. (12)–(14) into Eq. (11) yields the following system of equa-
tions for the order parameters:

d
〈
S(A)

〉
dt

=

(
−1+βJ (A)

〈
k(A)2

〉
A〈

k(A)
〉
A

)〈
S(A)

〉
+ βJ (B)R(A)

〈
k(B)

〉
B

〈
S(B)

〉
,

d
〈
S(B)

〉
dt

= βJ (A)R(B)
〈
k(A)

〉
A

〈
S(A)

〉
+

(
−1+βJ (B)

〈
k(B)2

〉
B〈

k(B)
〉
B

)〈
S(B)

〉
.

(15)
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The paramegnetic fixed point becomes unstable, and the FM phase oc-
curs, if one of the eigenvalues of Eq. (15) crosses zero which takes place
if the determinant of the right-hand sides is zero. This, in general, leads
to two solutions Tc±. The higher temperature Tc− corresponds to the
critical temperature for the FM transition from the paramagnetic phase,
TFM
c,MF = Tc−. Below TFM

c,MF, the paramagnetic state is unstable, and the
instability at T = Tc+ < TFM

c,MF has no physical meaning. In a simple case
with J (A) = J (B) = J , N (A) = N (B) and thus R(A) = R(B) = R, explicit
expressions for Tc± are

Tc± = 2J

〈k(A)2〉
A
〈k(B)2〉

B

〈k(A)〉
A
〈k(B)〉

B

−R2
〈
k(A)

〉
A

〈
k(B)

〉
B

〈k(A)2〉
A

〈k(A)〉
A

+
〈k(B)2〉

B

〈k(B)〉
B

±
√
∆

, (16)

where

∆ =

(〈
k(A)2

〉
A〈

k(A)
〉
A

−
〈
k(B)2

〉
B〈

k(B)
〉
B

)2

+ 4R2
〈
k(A)

〉
A

〈
k(B)

〉
B
.

In particular, in the case of two layers with identical degree distributions
pk(B) = pk(A) and thus with 〈k(B)〉B = 〈k(A)〉A, 〈k(B)2〉B = 〈k(A)2〉A

Tc± = J

(〈
k(A)2

〉
A〈

k(A)
〉
A

∓R
〈
k(A)

〉
A

)
. (17)

From Eq. (17) follows that the critical temperature for the FM tran-
sition increases in general linearly with the size of the overlap R. This is
not surprising since then the mean degree of nodes in the aggregate super-
network also rises which should shift the critical temperature upwards. It
is interesting to note that qualitatively, similar dependence of the critical
temperature for the FM transition was obtained in the heterogeneous MF
approximation for the Ising model on modular networks [7, 8], which are
another kind of “networks of networks”. This is so though the topology of
MNs is different from that of modular networks, which consist of subnet-
works such that density of edges connecting nodes belonging to the same
subnetwork is significantly higher than that connecting nodes belonging to
different subnetworks (loosely corresponding to the size of the overlap R in
MNs).
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4. Investigation of the ferromagnetic transition
using the replica method

4.1. The model for a multiplex network with partial overlap

In order to investigate FM transition in the model under study using the
replica method, it is convenient to generate the layers of the MN with desired
degree distributions from the static model [50, 51]. Each layer is generated
separately and independently (Fig. 1). In order to generate the first layer
G(A), the nodes of the MN belonging to this layer are numbered randomly
as l = 1, 2, . . . N (A) and weights v(A)l > 0 are assigned to them, while zero
weights are assigned to the remaining N −N (A) nodes which do not belong
to the layer G(A), v(A)i = 0 for i /∈ G(A). The weights are normalized so
that

∑N
i=1 v

(A)
i =

∑N(A)

l=1 v
(A)
l = 1. Then, nodes are linked with edges in

accordance with the prescribed sequence of weights, by selecting a pair of
nodes i, j (i 6= j) with probablities v(A)i , v(A)j , respectively, linking them with
an edge and repeating this process N〈k(A)〉/2 times. In this way, a network
with N nodes is obtained with the probability that the nodes i, j are linked
by an edge fij ≈ N〈k(A)〉v(A)i v

(A)
j and with the mean degree of nodes 〈k(A)〉.

In fact, following this procedure, only N (A) nodes belonging to the layer
G(A) can have edges attached, while the remaining N −N (A) edges remain
unconnected and do not belong to the layer G(A). In this way, the layer G(A)

is generated with N (A) nodes and with the mean degree of nodes 〈k(A)〉A =
N〈k(A)〉/N (A). The distribution of the degrees of nodes within the layer pk(A)

depends on the choice of weights. In particular, for vl drawn from the zeta
distribution, vl = l−µ

(A)
/ζN(A)(µ(A)), where 0 < µ(A) < 1 and ζN(A)(µ(A)) ≈

(N (A))1−µ
(A)
/(1−µ(A)), SF network is obtained with the distribution of the

degrees of nodes pk(A) ∝ (k(A))−γ
(A) , γ(A) = 1 + 1/µ(A). In an ensemble

of layers generated from the static model in the above-mentioned way, the
mean degree of a given node i would be N〈k(A)〉v(A)i = N (A)〈k(A)〉Av(A)i .
The next layer G(B) is generated analogously.

In order to complete the process of generation of an MN, n nodes of
the layer G(A) must be identified with n nodes of the layer G(B) (Fig. 1).
This identification can be performed in various ways, leading to possible
correlation between the degrees of nodes within different layers. The simplest
way is to select randomly n out of N (A) nodes belonging to the layer G(A)

and n out of N (B) nodes belonging to the layer G(B), and to identify nodes
with one another by matching pairs of nodes from these two sets randomly
and uniformly, without repetitions. Then the weights, and hence also the
degrees of identified nodes within different layers are uncorrelated and for
sufficiently large n, their correlation coefficient can be approximated by its



1654 A. Krawiecki

expected value

N∑
i=1

v
(A)
i v

(B)
i ≈

〈
N∑
i=1

v
(A)
i v

(B)
i

〉
= n

〈
v
(A)
i v

(B)
i

〉
=

n

N (A)N (B)

N(A)∑
l=1

N(B)∑
l′=1

vlvl′

=
n

N (A)N (B)

N(A)∑
l=1

vl

N(B)∑
l′=1

vl′

 =
n

N (A)N (B)
. (18)

Thus, in this way, an MN with two independent layers is obtained. However,
it is also easy to obtain an MN with maximum possible correlation between
the weights v(A)i , v(B)

i of nodes belonging to both layers, and thus between
their degrees within different layers, by matching nodes l belonging to the
layer G(A) with nodes l′ = l belonging to the layer G(B) for l = 1, 2, . . . n.
An MN with minimum possible correlation between the weights v(A)i , v(B)

i

can be easily obtained by matching nodes l belonging to the layer G(A) with
nodes l′ = N (B) − l + 1 belonging to the layer G(B) for l = 1, 2, . . . n or by
matching nodes l′ belonging to the layer G(B) with nodes l = N (A) − l′ + 1
belonging to the layer G(A) for l′ = 1, 2, . . . n (note that for µ(A) 6= µ(B)

or N (A) 6= N (B), these two ways of matching nodes are not equivalent).
For brevity, these two cases are referred to as MNs with maximally and
minimally correlated layers. Henceforth in this section, only FM transition
in the model on MNs with independent layers with partial overlap is dis-
cussed; the effect of correlation between the weights v(A)i , v(B)

i on the critical
temperature for the FM transition is briefly discussed in Appendix B.

4.2. The replica symmetric free energy

Investigation of the thermodynamic properties of the Ising model on
MNs with partial overlap by means of the replica method follows closely
analogous considerations in the case of the Ising model on MNs with full
overlap until an explicit form of the weights assigned to the nodes in the
static model becomes important; for details, see Refs. [35, 36]. The starting
point is to evaluate the free energy averaged over a statistical ensemble of
MNs generated from the static model with given weights associated with
N nodes and with given overlap, −βF = [lnZ]av, where Z is the partition
function for the Ising model on an MN with a particular set of edges (i.e.,
the two sets of edges in the separately generated layers G(A), G(B)), and
the average [·]av is taken over all possible random realizations of a set of
edges. In the framework of the replica method, the free energy is formally
evaluated as −βF = limν→0 {[Zν ]av − 1} /ν. In the case of an MN with
separately generated layers, the averages over the realizations of the sets of
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edges can be evaluated independently for each layer, which yields [35, 36]

[Zν ]av

=

∫
dq(A)α

∫
dq

(A)
αβ . . .

∫
dq(B)
α

∫
dq

(B)
αβ . . . e

−Nνβf
(
q
(A)
α ,q

(A)
αβ ,...q

(B)
α ,q

(B)
αβ ...

)

≡
∫

dq exp [−Nνβf(q)] , (19)

with

νβf(q) =

〈
k(A)

〉
T

(A)
1

2

∑
α

q(A)2α +

〈
k(B)

〉
T

(B)
1

2

∑
α

q(B)2
α

+

〈
k(A)

〉
T

(A)
2

2

∑
α<β

q
(A)2
αβ +

〈
k(B)

〉
T

(B)
2

2

∑
α<β

q
(B)2
αβ + . . .

− 1

N

N∑
i=1

lnTr{sαi } exp
(
X

(A)
i +X

(B)
i

)
, (20)

where

T
(A)
1 = coshν βJ (A) tanhβJ (A) ν→0→ tanhβJ (A) ,

T
(A)
2 = coshν βJ (A) tanh2 βJ (A) ν→0→ tanh2 βJ (A) , (21)

and similarly for T
(B)
1 , T (B)

2 , and α, β, . . . denote different replicas, Tr{sαi }
is the trace over the replicated spins at node i, and

X
(A)
i =N

〈
k(A)

〉
T

(A)
1 v

(A)
i

∑
α

q(A)α sαi +N
〈
k(A)

〉
T

(A)
2 v

(A)
i

∑
α<β

q
(A)
αβ s

α
i s
β
i +. . . ,

(22)
and similarly forX(B)

i . The elements of a set {q}, q(A)α , q
(A)
αβ , . . . , q

(B)
α , q

(B)
αβ , . . .

form in a natural way two subsets of the order parameters associated with
the two layers of the multiplex network G(A), G(B). The first two order
parameters,

q(A)α =
∑
i

v
(A)
i sαi , q(B)

α =
∑
i

v
(B)
i sαi , (23)

where the averages are evaluated as

sαi =
Tr{sαi }s

α
i exp

(
X

(A)
i +X

(B)
i

)
Tr{sαi } exp

(
X

(A)
i +X

(B)
i

) ,
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are usually called magnetizations; the next two order parameters

q
(A)
αβ =

∑
i

v
(A)
i sαi s

β
i , q

(B)
αβ =

∑
i

v
(B)
i sαi s

β
i , (24)

are called spin glass order parameters, etc.
The simplest RS solution for the order parameters is obtained under the

assumption that spins with different replica index are indistinguishable. In
the case of the Ising model on an MN, this solution has a form of q(A)α = m(A),
q
(A)
αβ = q(A), etc., and q

(B)
α = m(B), q(B)

αβ = q(B), etc., for α, β = 1, 2 . . . n,
etc., where, in general, m(A) 6= m(B), q(A) 6= q(B), etc. [35, 36]. In the
case of the model with purely FM interactions, it is enough to retain in the
free energy only terms containg magnetizations m(A), m(B) and truncate in
Eq. (20) terms of the order higher than m2. Assuming the above-mentioned
form of the RS solution and taking the limit ν → 0 yields

βf
(
m(A),m(B)

)
=

〈
k(A)

〉
T

(A)
1

2
m(A)2 +

〈
k(B)

〉
T

(B)
1

2
m(B)2 − 1

N

N∑
i=1

ln (2 cosh ηi) , (25)

where

ηi = N
(〈
k(A)

〉
T

(A)
1 v

(A)
i m(A) +

〈
k(B)

〉
T

(B)
1 v

(B)
i m(B)

)
. (26)

With βf(q) given by Eq. (25), the integral in Eq. (19) can be evalu-
ated using the saddle-point method. For this purpose, the minimum of the
function f(m(A),m(B)) should be found, and the necessary condition for the
existence of extremum leads to the following set of self-consistent equations
for the magnetizations m(A), m(B)

∂f

∂m(A)
= 0 ⇔ m(A) =

N∑
i=1

v
(A)
i tanh ηi ,

∂f

∂m(B)
= 0 ⇔ m(B) =

N∑
i=1

v
(B)
i tanh ηi . (27)

4.3. Critical temperature for the ferromagnetic transition

After expanding the logarithm in Eq. (25) and retaining only square
terms with respect to the order parameters in f(m(A),m(B)), the system of



Ferromagnetic Transition in a Simple Variant of the Ising Model . . . 1657

equations in Eq. (27) leads to the following system of linear equations valid
for small m(A), m(B):(

1−N
〈
k(A)

〉
T

(A)
1

N∑
i=1

v
(A)2
i

)
m(A)

−N
〈
k(B)

〉
T

(B)
1

(
N∑
i=1

v
(A)
i v

(B)
i

)
m(B) = 0 ,

−N
〈
k(A)

〉
T

(A)
1

(
N∑
i=1

v
(A)
i v

(B)
i

)
m(A)

+

(
1−N

〈
k(B)

〉
T

(B)
1

N∑
i=1

v
(B)2
i

)
m(B) = 0 . (28)

Non-zero solutions of the system of equations (28) exist if the determinant
is zero. From this condition, the critical temperature for the FM transition
can be evaluated: the corresponding equation for the critical temperature is
quadratic with respect to tanhβJ (A), tanhβJ (B), thus, it has two solutions
of which that with a higher value corresponds to TFM

c,RS.
The sums in the diagonal coefficients in the system of equations (28)

diverge for 1
2 ≤ µ

(A) < 1 (2 < γ(A) ≤ 3), 1
2 ≤ µ

(B) < 1 (2 < γ(B) ≤ 3), while
for 0 < µ(A) < 1

2 (γ(A) > 3), 0 < µ(B) < 1
2 (γ(B) > 3) are [51]

N
〈
k(A)

〉 N∑
i=1

v
(A)2
i = N (A)

〈
k(A)

〉
A

N(A)∑
l=1

v
(A)2
l ≈

〈
k(A)

〉
A

(
1− µ(A)

)2
1− 2µ(A)

,

(29)
etc. The sums in the off-diagonal coefficients depend on the correlation be-
tween the weights v(A)i , v(B)

i of nodes belonging to both layers, and thus
between their degrees within different layers. In the case of MN with inde-
pendent layers for sufficiently large n, they can be approximated by their
expected values, as in Eq. (18), which yields

N
〈
k(A)

〉 N∑
i=1

v
(A)
i v

(B)
i ≈ R(B)

〈
k(A)

〉
A
,

N
〈
k(B)

〉 N∑
i=1

v
(A)
i v

(B)
i ≈ R(A)

〈
k(B)

〉
B
. (30)

For simplicity, let us focus on the case of the model of an MN with
independent layers such that J (A) = J (B) = J , N (A) = N (B) and thus
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R(A) = R(B) = R. This case was considered in the heterogeneous MF
approximation in Sec. 3.3. The critical temperature for the FM transition
can be obtained from Eq. (28) using Eqs. (29), (30)

TFM
c,RS = J atanh−1


〈
k(A)

〉
A

(1−µ(A))
2

1−2µ(A) +
〈
k(B)

〉
B

(1−µ(B))
2

1−2µ(B) −
√
∆

2
〈
k(A)

〉
A

〈
k(B)

〉
B

[
(1−µ(A))

2

1−2µ(A)

(1−µ(B))
2

1−2µ(B) −R2

]
 , (31)

where

∆=

[〈
k(A)

〉
A

(
1−µ(A)

)2
1−2µ(A)

−
〈
k(B)

〉
B

(
1−µ(B)

)2
1−2µ(B)

]2
+ 4R2

〈
k(A)

〉
A

〈
k(B)

〉
B
.

In particular, in the case of two layers with identical degree distributions
and thus with

〈
k(B)

〉
B
=
〈
k(A)

〉
A
, µ(A) = µ(B), there is

TFM
c,RS = J atanh−1

〈k(A)〉−1
A

[(
1− µ(A)

)2
1− 2µ(A)

+R

]−1 . (32)

Equations (31), (32) can be written in a more general form taking into
account that in Eq. (29), for networks obtained from the static model, the
following equality holds [51]:

N (A)
N(A)∑
l=1

v
(A)2
l =

〈
k(A)2

〉
A
−
〈
k(A)

〉
A〈

k(A)
〉2
A

. (33)

Then from Eq. (28) using Eqs. (29), (33), the critical temperature for the
FM transition can be written as

TFM
c,RS=J atanh−1


〈k(A)2〉

A

〈k(A)〉
A

+
〈k(B)2〉

B

〈k(B)〉
B

− 2−
√
∆

2

[(
〈k(A)2〉

A

〈k(A)〉
A

−1
)(
〈k(B)2〉

B

〈k(B)〉
B

−1
)
−R2

〈
k(A)

〉
A

〈
k(B)

〉
B

]
 ,

(34)
where

∆ =

(〈
k(A)2

〉
A〈

k(A)
〉
A

−
〈
k(B)2

〉
B〈

k(B)
〉
B

)2

+ 4R2
〈
k(A)

〉
A

〈
k(B)

〉
B
.
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In particular, in the case of two layers with identical degree distributions
and thus with 〈k(B)〉B = 〈k(A)〉A, 〈k(B)2〉B = 〈k(A)2〉A

TFM
c,RS = J atanh−1

(〈k(A)2〉A〈
k(A)

〉
A

+R
〈
k(A)

〉
A
− 1

)−1 . (35)

Equations (34) and (35) correspond to Eq. (16) and Eq. (17), respectively,
obtained in the heterogeneous MF approximation. Although Eqs. (34), (35)
were derived for the static model, it is expected that they can be used for
the Ising model on any MN with partial overlap, with degree distributions
within heterogeneous layers characterized by the moments 〈k(A)〉A, 〈k(A)2〉A
for the layer G(A) and similarly for the layer G(B).

5. Comparison with numerical results

The Ising model was investigated numerically on MNs with two inde-
pendent SF layers with various overlaps R generated from the Configura-
tion Model (Sec. 3.1) with identical degree distributions pk(B) = pk(A) , the
same numbers of nodes N (A) = N (B) and with J (A) = J (B) = J = 1. MC
simulations were performed using the Metropolis algorithm and the parallel
tempering (replica exchange) method in the form described in Ref. [18]. The
numerical value of the critical temperature for the FM transition TFM

c,MC was

determined from the intersection point of the Binder cumulants U (M)
L vs. T

for different N [52],

U
(M)
L =

[
1−

〈
M4
〉
t

3 〈M2〉2t

]
av

, (36)

where M = N−1
∑N

i=1 si is the usual magnetization, 〈·〉t denotes the time
average for the simulation of the Ising model on a particular MN, and [·]av
denotes the average over random realizations of the MN with given param-
eters.

Exemplary results of MC simulations are shown in Fig. 2. The slow
increase of magnetization as well as monotonic increase of the Binder cu-
mulants with decreasing temperature provide evidence for the occurrence
of continuous FM transition (Fig. 2 (a)). The critical temperature for this
transition obtained from MC simulations increases linearly with the over-
lap R (Fig. 2 (b)). Dependence of the critical temperature obtained in the
MF approximation, Eq. (17), on the size of the overlap reproduces this lin-
ear trend but the analytic results slightly overestimate the numerical ones
(Fig. 2 (b)). Nevertheless, agreement between theoretical and numerical
results is satisfactory. Better quantitative agreement is obtained between
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theoretical predictions obtained from the RS solution, Eq. (35), which also
yields linear dependence of TFM

c,RS on R, and results of MC simulations. This
is though the SF layers of the MNs under study were generated from the
Configuration Model rather than from the static model. This confirms that
Eqs. (34), (35) are valid for the Ising model on a broad class of MNs with
heterogeneous layers with partial overlap and yield more accurate values of
the critical temperature for the FM transition than Eqs. (16), (17) obtained
in the MF approximation.

Fig. 2. Results for the Ising model with J = 1.0 on an MN with two inde-
pendent SF layers with identical degree distributions with γ(A) = γ(B) = 4.5,
m(A) = m(B) = 10. (a) Binder cumulants UL vs. temperature T (inset: magneti-
zation M vs. T ) obtained from MC simulations of the model with overlap R = 0.6

and (from top to bottom for high T ) Ñ = 103, 2 × 103, 5 × 103, 104, 2 × 104,
solid lines are guides to the eyes. (b) Critical temperature for the FM transi-
tion vs. overlap R: results of MC simulations (open circles) and least-squares fit
TFM
c,MC = 27.61R + 31.67 (black solid line); results of the MF approximation, Eq.

(17) (gray dots) and least-squares fit TFM
c,MF = 28R+33.33 (gray solid line); results

from the RS solution, Eq. (35) (black dots) and least-squares fit TFM
c,RS = 28R+32.32

(dashed line).

6. Summary and conclusions

In this paper, the FM transition was investigated in the Ising model
on MNs with partial overlap, and detailed study was conducted for MNs
with two partly overlapping layers (duplex networks). In such MNs, only
a part of nodes belongs to both layers which have, in general, the form of
complex, possibly heterogeneous networks. Edges of the layers correspond
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to FM exchange interactions between spins located in the nodes, so that
spins belonging to the overlap provide coupling between layers. Critical
temperature for the FM transition was evaluated using the heterogeneous
MF approximation as well as the replica method, from the RS solution, and
comparable results were obtained from both methods. In particular, in the
typical case with no correlations between degrees within different layers of
nodes belonging to the overlap, the critical temperature increases linearly
with the size of the overlap, and the critical exponent for the magnetization
does not depend on the size of the overlap. In the case of maximum or
minimum correlation between the above-mentioned degrees for large overlap,
the critical temperature is increased or lowered, respectively. The theoretical
findings show good quantitative agreement with results of MC simulations of
the model on MNs with partly overlapping independent SF layers obtained
from the Configuration Model.

This paper extends the theoretical approach to the problem of FM tran-
sition in the Ising model on MNs with full overlap [35] to the case of MNs
with only partial overlap of layers. Similar extension is possible for other
related models, e.g., for the Ising model exhibiting spin glass transition [36],
and will be a subject of future research.

Appendix A

Critical exponents for the ferromagnetic transition

For completeness, in the framework of the RS approach let us briefly
consider the scaling behavior of the order parameters, i.e., magnetizations
m(A), m(B) of the model in the vicinity of the critical temperatures for
the FM transition. In the case of MN with SF layers, these temperatures
remain finite, and thus the scaling relations for the order parameters are
valid, for γ(A) > 3, γ(B) > 3. Below the transition point from the MF
to the FM phase, the magnetization is expected to increase from zero as
εβm , where ε = (TFM

c,RS − T )/TFM
c,RS. In the case of the Ising model on MNs

with full overlap between independent SF layers, the scaling exponent βm
was determined in Ref. [35]. Here, it is briefly argued that its value is not
affected by the size of the overlap between layers.

Without losing generality, let us assume in the calculations that 3 <
γ(A) ≤ γ(B). In order to find the critical exponents for m(A), m(B), the
right-hand sides of the equations in system (27) should be expanded with
respect to the powers of the order parameters in the vicinity of the respective
critical point. Then, e.g., the sum over the indices of nodes in the first
equation can be divided in two sums, first over N (A) − n nodes belonging
only to the layer G(A) (with v(B)

i = 0) and second over n nodes belonging to
both layers (for the remaining nodes belonging only to the layer G(B), there
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is v(A)i = 0). Since n nodes belonging to both layers are selected from the
layers G(A), G(B) and identified with one another randomly, the first sum
is approximately an (N (A)− n)/N (A) fraction of the respective sum over all
nodes belonging to the layer G(A) and the second sum for sufficiently large n
can be approximated by its expected value, as in Eq. (18). This yields

N∑
i=1

v
(A)
i tanh

[
N
(
T

(A)
1

〈
k(A)

〉
v
(A)
i m(A) + T

(B)
1

〈
k(B)

〉
v
(B)
i m(B)

)]

≈ N (A) − n
N (A)

N(A)∑
l=1

v
(A)
l tanh

(
T

(A)
1 N (A)

〈
k(A)

〉
A
v
(A)
l m(A)

)

+
n

N (A)N (B)

N(A)∑
l=1

N(B)∑
l′=1

v
(A)
l tanh

[
N (A)T

(A)
1

〈
k(A)

〉
A
v
(A)
l m(A)

+ N (B)T
(B)
1

〈
k(B)

〉
B
v
(B)
l′ m(B)

]
. (37)

Unfortunately, it is not possible to simply expand tanh (·) in Eq. (37) with
respect to m(A), m(B) due to the occurrence of the terms such as
N−1

∑N
l=1 v

(A)3
l , etc., which diverge even if the second moments of the dis-

tributions of the weights associated with each layer are finite. Nevertheless,
the two sums in Eq. (37) can be expanded in the converging series with
respect to the powers of the order parameters. This is achieved by first
approximating them by integrals

N∑
i=1

v
(A)
i tanh

[
N
(
T

(A)
1

〈
k(A)

〉
v
(A)
i m(A) + T

(B)
1

〈
k(B)

〉
v
(B)
i m(B)

)]

≈ N (A) − n
N (A)

1− µ(A)

N (A)

N(A)∫
1

dy

(
N (A)

y

)µ(A)

tanh

M (A)

(
N (A)

y

)µ(A)


+
n

N (A)N (B)

1− µ(A)

N (A)

N(A)∫
1

dyl

N(B)∫
1

dyl′

(
N (A)

yl

)µ(A)

× tanh

M (A)

(
N (A)

yl

)µ(A)

+M (B)

(
N (B)

yl′

)µ(B)
 , (38)

where M (A) = (1 − µ(A))〈k(A)〉AT (A)
1 m(A), M (B) = (1 − µ(B))〈k(B)〉B

T
(B)
1 m(B), then performing changes of variables u = M (A)(N (A)/y)µ

(A) in
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the first integral and u1 = M (A)(N (A)/yl)
µ(A) , u2 = M (B)(N (B)/yl′)

µ(B) in
the second one as well as taking the limit N (A), N (B) →∞, which yields

N∑
i=1

v
(A)
i tanh

[
N
(
T

(A)
1

〈
k(A)

〉
v
(A)
i m(A) + T

(B)
1

〈
k(B)

〉
v
(B)
i m(B)

)]

≈ N (A) − n
N (A)

(
1− µ(A)

)(
γ(A) − 1

)(
M (A)

)γ(A)−2
∞∫

M(A)

du
u tanhu

uγ
(A)

+
n

N (A)

(
1− µ(A)

)(
γ(A) − 1

)(
γ(B) − 1

)(
M (A)

)γ(A)−2 (
M (B)

)γ(B)−1

×
∞∫

M(A)

du1

∞∫
M(B)

du2
u1 tanh (u1 + u2)

uγ
(A)

1 uγ
(B)

2

, (39)

and, finally, by expanding the two integrals in the above equation in the
power series with respect to m(A), m(B) using methods described in Ref. [10]
and Ref. [35], respectively. Eventually, after some tedious calculations and
omitting at the right-hand side the terms which are never dominant for
γ(B) > γ(A) > 3 (in particular, those proportional to (M (B))γ

(B)−1), the
first equation from system (27) in the vicinity of TFM

c,RS can be written as[
1〈

k(A)
〉
T

(A)
1

−
(
γ(A) − 2

)2(
γ(A)−1

) (
γ(A)−3

)]M (A)−R(A)

(
γ(A)−2

) (
γ(B)−1

)(
γ(A)−1

) (
γ(B)−2

)M (B)

=

(
γ(A) − 2

)2
γ(A) − 1

I
(
γ(A)

)(
M (A)

)γ(A)−2
− 1

3

(
γ(A) − 2

)2
M (A)3(

γ(A) − 1
) (
γ(A) − 5

)
−R(A)

[(
γ(A) − 2

)2 (
γ(B) − 1

)
M (A)2M (B)(

γ(A) − 1
) (
γ(A) − 4

) (
γ(B) − 2

)
+

(
γ(A) − 2

)2 (
γ(B) − 1

)
M (A)M (B)2(

γ(A) − 1
) (
γ(A) − 3

) (
γ(B) − 3

) +

(
γ(A) − 2

) (
γ(B) − 1

)
M (B)3(

γ(A) − 1
) (
γ(B) − 4

) ]
,

(40)

where

I (λ) =

∞∫
0

x1−λ (tanhx− x) dx for 3 < γ(A) < 5 .

A complementary equation corresponding to the second equation of system
(27) can be obtained from Eq. (40) by replacing (A) with (B) and vice versa.
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The left-hand (linear) part of the system of equations consisting of
Eq. (40) and the complementary equation is identical with that of Eq. (28)
in the case of independent SF layers. The right-hand (nonlinear) part is
almost identical with that in the analogous system of equations for the Ising
model on MNs with full overlap between independent SF layers [35]; the only
difference is the presence of factors R(A), R(B) which do not affect the scal-
ing behavior of the magnetizations. Hence, it can be immediately concluded
that if 3 < γ(A) < 5 and γ(A) < γ(B), the expected scaling behavior for the

magnetization in the vicinity of TFM
c,RS is m(A,B) ∝ ε

1

γ(A)−3 , and if γ(A) > 5

and γ(A) < γ(B), it is m(A,B) ∝ ε1/2 [35]. More generally, if 3 < γ(A) < 5
or 3 < γ(B) < 5, the expected scaling behavior for the magnetization in the
vicinity of TFM

c,RS is m(A,B) ∝ ε
1

γmin−3 , where γmin = min
{
γ(A), γ(B)

}
, i.e., it

is determined by the more heterogeneous layer, and if γ(A) > 5, γ(B) > 5, it
is m(A,B) ∝ ε1/2 [35]. Thus, the critical exponent βm for the order param-
eters of the Ising model on MNs with partial overlap between independent
SF layers in the vicinity of the critical temperature for the FM transition
from the PM phase is equal to that for the Ising model on MNs with full
overlap, and is not affected by the size of the overlap.

Appendix B

Effect of degree correlations between layers on the critical temperature

In the framework of the RS approach, it is relatively easy to study the
dependence of the critical temperature for the FM transition on the cor-
relation between degrees within different layers of nodes belonging to the
overlapping part of the layers of the MN. As mentioned in Sec. 4.1, different
ways of matching nodes from the two layers G(A), G(B) obtained from the
static model in order to build the MN with partial overlap lead to different
above-mentioned correlations. In particular, using specific ways of matching
nodes MNs with extremally, i.e., minimally or maximally correlated lay-
ers can be constructed. By matching nodes more or less randomly, MNs
with different correlations between weights, and thus between mean degrees
within different layers of nodes belonging to the overlap, can be obtained.
The correlation coefficient

∑N
i=1 v

(A)
i v

(B)
i lies then between the maximum

and minimum possible values for the maximally and minimally correlated
layers, respectively, and for a typical (most probable) case of totally random
matching of nodes, its expected value is given by Eq. (18). As follows from
Eq. (28), the critical temperature TFM

c,rS is determined by this correlation co-
efficient, thus below its value is evaluated for the extreme cases of minimally
and maximally correlated layers.
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Let us assume that the MN with minimally correlated layers is obtained
by matching nodes l belonging to the layer G(A) with nodes l′ = N (B)− l+1
belonging to the layer G(B) for l = 1, 2, . . . n (Sec. 4.1). Then,

N
〈
k(A)

〉 N∑
i=1

v
(A)
i v

(B)
i = N (A)

〈
k(A)

〉
A

n∑
l=1

v
(A)
l v

(B)

N(B)−l+1

=
(
1− µ(A)

)(
1− µ(B)

)(
N (A)

)µ(A) (
N (B)

)µ(A)−1 〈
k(A)

〉
A

×
n∑
l=1

l−µ
(A)
(
N (B) − l + 1

)−µ(B)

. (41)

Replacing summation with integration, performing change of variables y =
x/N (B) and taking the limit N (B) →∞ in the integral, it is obtained that

N
〈
k(A)

〉 N∑
i=1

v
(A)
i v

(B)
i

=
(
1− µ(A)

)(
1− µ(B)

)(
N (A)

)µ(A) (
N (B)

)µ(A)−1 〈
k(A)

〉
A

×
n∫

1

x−µ
(A)
(
N (B) − x+ 1

)−µ(B)

=
(
1− µ(A)

)(
1− µ(B)

)(N (A)

N (B)

)µ(B) 〈
k(A)

〉
A

×
R(B)∫

1/N(B)

y−µ
(A)

(
1− y − 1

N (B)

)−µ(B)

dy

=
(
1−µ(A)

)(
1−µ(B)

)(N (A)

N (B)

)µ(B)〈
k(A)

〉
A
B
(
R(B), 1− µ(A), 1− µ(B)

)
,

(42)

where B denotes the incomplete Euler beta function. Similarly,
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N
〈
k(B)

〉 N∑
i=1

v
(A)
i v

(B)
i = N (B)

〈
k(B)

〉
B

n∑
l=1

v
(A)
l v

(B)

N(B)−l+1

=
(
1−µ(A)

)(
1−µ(B)

)(N (A)

N (B)

)µ(B)−1〈
k(B)

〉
B
B
(
R(B), 1− µ(A), 1− µ(B)

)
(43)

(note partial assymetry between Eqs. (42) and (43); in particular, the overlap
coefficient R(B) appears in both equations in the beta function). Hence, in
the case of the model on an MN with minimally correlated layers such that
J (A) = J (B) = J , N (A) = N (B) and thus R(A) = R(B) = R, the critical
temperature for the FM transition is given by Eq. (31) with the replacement

R→
(
1− µ(A)

)(
1− µ(B)

)
B
(
R, 1− µ(A), 1− µ(B)

)
.

The MN with maximally correlated layers is obtained by matching nodes l
belonging to the layer G(A) with nodes l′ = l belonging to the layer G(B) for
l = 1, 2, . . . n. Again, replacing summation with integration and assuming
n� 1, it is obtained that

N
〈
k(A)

〉 N∑
i=1

v
(A)
i v

(B)
i

≈
〈
k(A)

〉
A

(
1− µ(A)

) (
1− µ(B)

)
1−

(
µ(A) + µ(B)

) (
R(A)

)−µ(A) (
R(B)

)1−µ(B)

,

N
〈
k(B)

〉 N∑
i=1

v
(A)
i v

(B)
i

≈
〈
k(B)

〉
B

(
1− µ(A)

) (
1− µ(B)

)
1−

(
µ(A) + µ(B)

) (
R(A)

)1−µ(A) (
R(B)

)−µ(B)

. (44)

Hence, in the case of the model on an MN with minimally correlated layers
such that J (A) = J (B) = J , N (A) = N (B) and thus R(A) = R(B) = R, the
critical temperature for the FM transition is again given by Eq. (31) with
the replacement

R→
(
1− µ(A)

) (
1− µ(B)

)
1−

(
µ(A) + µ(B)

) R1−µ(A)−µ(B)
.

Exemplary dependence of TFM
c,RS on R for various correlations between

weights (and thus mean degrees) within different layers of nodes belonging
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to the overlapping part of the MN is shown in Fig. 3. In general, for large R,
the critical temperature for the FM transition increases with the rise of
the above-mentioned correlation and is maximum in the case of maximally
correlated layers.

Fig. 3. Critical temperature for the FM transition obtained from the RS solution
TFM
c,RS vs. the overlap R for the Ising model J = 1.0 on an MN with two independent

SF layers with N (A) = N (B) and identical degree distributions with 〈k(A)〉A =

〈k(B)〉B = 28, γ(A) = γ(B) = 4.5 (µ(A) = µ(B) = 2/7) obtained from the static
model. Results of Eq. (31) in the case of uncorrelated layers (black solid line),
maximally correlated layers (gray solid line) and minimally correlated layers (dotted
line).

REFERENCES

[1] R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002).
[2] A.-L. Barabási, Network Science, Cambridge University Press, Cambridge

2016.
[3] S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Rev. Mod. Phys. 80, 1275

(2008).
[4] A. Barrat, M. Barthélemy, A. Vespignani, Dynamical Processes on Complex

Networks, Cambridge University Press, Cambridge 2008.
[5] G. Bianconi, Phys. Lett. A 303, 166 (2002).
[6] M. Leone, A. Vázquez, A. Vespignani, R. Zecchina, Eur. Phys. J. B 28, 191

(2002).
[7] K. Suchecki, J.A. Hołyst, Phys. Rev. E 74, 011122 (2006).
[8] K. Suchecki, J.A. Hołyst, Phys. Rev. E 80, 031110 (2008).

http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/RevModPhys.80.1275
http://dx.doi.org/10.1103/RevModPhys.80.1275
http://dx.doi.org/10.1016/S0375-9601(02)01232-X
http://dx.doi.org/10.1140/epjb/e2002-00220-0
http://dx.doi.org/10.1140/epjb/e2002-00220-0
http://dx.doi.org/10.1103/PhysRevE.74.011122
http://dx.doi.org/10.1103/PhysRevE.80.031110


1668 A. Krawiecki

[9] L. Viana, A.J. Bray, J. Phys. C: Solid State Phys. 18, 3037 (1985).
[10] D.-H. Kim, G.J. Rodgers, B. Kahng, D. Kim, Phys. Rev. E 71, 056115

(2005).
[11] Do-Hyun Kim, Phys. Rev. E 89, 022803 (2014).
[12] S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Phys. Rev. E 66, 016104

(2002).
[13] S. Yoon, A.V. Goltsev, S.N. Dorogovtsev, J.F.F. Mendes, Phys. Rev. E 84,

041144 (2011).
[14] M. Ostilli, J.F.F. Mendes, Phys. Rev. E 78, 031102 (2008).
[15] A.L. Ferreira, J.F.F. Mendes, M. Ostilli, Phys. Rev. E 82, 011141 (2010).
[16] A. Aleksiejuk, J.A. Hołyst, D. Stauffer, Physica A 310, 260 (2002).
[17] C.P. Herrero, Phys. Rev. E 69, 067109 (2004).
[18] M. Bartolozzi, T. Surungan, D.B. Leinweber, A.G. Williams, Phys. Rev. B

73, 224419 (2006).
[19] C.P. Herrero, Eur. Phys. J. B 70, 435 (2009).
[20] C.P. Herrero, Phys. Rev. E 91, 052812 (2015).
[21] S. Boccaletti et al., Phys. Rep. 544, 1 (2014).
[22] Kyu-Min Lee, Jung Yeol Kim, Sangchul Lee, K.-I. Goh, Multiplex Networks,

in: Networks of Networks: The Last Frontier of Complexity, G. D’Agostino,
A. Scala (Eds.), Springer, 2014.

[23] Kyu-Min Lee, Byungjoon Min, Kwang-Il Goh, Eur. Phys. J. B 88, 48 (2015).
[24] S.V. Buldyrev et al., Nature 464, 1025 (2010).
[25] G.J. Baxter, S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Phys. Rev.

Lett. 109, 248701 (2012).
[26] Kyu-Min Lee et al., New J. Phys. 14, 033027 (2012).
[27] Byungjoon Min, Su Do Yi, Kyu-Min Lee, K.-I. Goh, Phys. Rev. E 89,

042811 (2014).
[28] Fei Tan, Yongxiang Xia, Wenping Zhang, Xinyu Jin, Europhys. Lett. 102,

28009 (2013).
[29] Jung Yeol Kim, K.-I. Goh, Phys. Rev. Lett. 111, 058702 (2013).
[30] K.-M. Lee, C.D. Brummitt, K.-I. Goh, Phys. Rev. E 90, 062816 (2014).
[31] S. Gómez et al., Phys. Rev. Lett. 110, 028701 (2013).
[32] A. Solé-Ribalta et al., Phys. Rev. E 88, 032807 (2013).
[33] Qingchu Wu, Yijun Lou, Wenfang Zhu, Math. Biosci. 277, 38 (2016).
[34] L.G. Alvarez Zuzek, C. Buono, L.A. Braunstein, J. Phys.: Conf. Ser. 640,

012007 (2015).
[35] A. Krawiecki, Physica A 492, 534 (2018).
[36] A. Krawiecki, Physica A 506, 773 (2018).
[37] S. Jang, J.S. Lee, S. Hwang, B. Kahng, Phys. Rev. E 92, 022110 (2015).
[38] A. Chmiel, K. Sznajd-Weron, Phys. Rev. E 92, 052812 (2015).

http://dx.doi.org/10.1103/PhysRevE.71.056115
http://dx.doi.org/10.1103/PhysRevE.71.056115
http://dx.doi.org/10.1103/PhysRevE.89.022803
http://dx.doi.org/10.1103/PhysRevE.66.016104
http://dx.doi.org/10.1103/PhysRevE.66.016104
http://dx.doi.org/10.1103/PhysRevE.84.041144
http://dx.doi.org/10.1103/PhysRevE.84.041144
http://dx.doi.org/10.1103/PhysRevE.78.031102
http://dx.doi.org/10.1103/PhysRevE.82.011141
http://dx.doi.org/10.1016/S0378-4371(02)00740-9
http://dx.doi.org/10.1103/PhysRevE.69.067109
http://dx.doi.org/10.1103/PhysRevB.73.224419
http://dx.doi.org/10.1103/PhysRevB.73.224419
http://dx.doi.org/10.1140/epjb/e2009-00240-2
http://dx.doi.org/10.1103/PhysRevE.91.052812
http://dx.doi.org/10.1016/j.physrep.2014.07.001
http://dx.doi.org/10.1140/epjb/e2015-50742-1
http://dx.doi.org/10.1103/PhysRevLett.109.248701
http://dx.doi.org/10.1103/PhysRevLett.109.248701
http://dx.doi.org/10.1088/1367-2630/14/3/033027
http://dx.doi.org/10.1103/PhysRevE.89.042811
http://dx.doi.org/10.1103/PhysRevE.89.042811
http://dx.doi.org/10.1209/0295-5075/102/28009
http://dx.doi.org/10.1209/0295-5075/102/28009
http://dx.doi.org/10.1103/PhysRevLett.111.058702
http://dx.doi.org/10.1103/PhysRevE.90.062816
http://dx.doi.org/10.1103/PhysRevLett.110.028701
http://dx.doi.org/10.1103/PhysRevE.88.032807
http://dx.doi.org/10.1016/j.mbs.2016.04.004
http://dx.doi.org/10.1088/1742-6596/640/1/012007
http://dx.doi.org/10.1088/1742-6596/640/1/012007
http://dx.doi.org/10.1016/j.physa.2017.08.039
http://dx.doi.org/10.1016/j.physa.2018.04.102
http://dx.doi.org/10.1103/PhysRevE.92.022110
http://dx.doi.org/10.1103/PhysRevE.92.052812


Ferromagnetic Transition in a Simple Variant of the Ising Model . . . 1669

[39] A. Chmiel, J. Sienkiewicz, K. Sznajd-Weron, Phys. Rev. E 96, 062137
(2017).

[40] A. Krawiecki, T. Gradowski, G. Siudem, Acta Phys. Pol. A 133, 1433 (2018).
[41] Jeehye Choi, K.-I. Goh, New J. Phys. 21, 035005 (2019).
[42] S.-W. Son et al., Europhys. Lett. 97, 16006 (2012).
[43] R. Parshani, S.V. Buldyrev, S. Havlin, Phys. Rev. Lett. 105, 048701 (2010).
[44] G. Dong et al., Phys. Rev. E 85, 016112 (2012).
[45] C. Buono, L.G. Alvarez-Zuzek, P.A. Macri, L.A. Braunstein, PLoS ONE 9,

e92200 (2014).
[46] M. Mézard, G. Parisi, M.A. Virasoro, Spin Glass Theory and Beyond, World

Scientific, Singapore 1987.
[47] H. Nishimori, Statistical Physics of Spin Glasses and Information Theory,

Clarendon Press, Oxford 2001.
[48] M.E.J. Newman, in: Handbook of Graphs and Networks: From the Genome

to the Internet, S. Bornholdt, H.G. Schuster (Eds.), Wiley — VCH, Berlin
2003, p. 35.

[49] M. Catanzaro, M. Boguñá, R. Pastor-Satorras, Phys. Rev. E 71, 027103
(2005).

[50] K.-I. Goh, B. Kahng, D. Kim, Phys. Rev. Lett. 87, 278701 (2001).
[51] D.-S. Lee, K.-I. Goh, B. Kahng, D. Kim, Nucl. Phys. B 696, 351 (2004).
[52] K. Binder, D. Heermann, Monte Carlo Simulation in Statistical Physics,

Springer-Verlag, Berlin 1997.

http://dx.doi.org/10.1103/PhysRevE.96.062137
http://dx.doi.org/10.1103/PhysRevE.96.062137
http://dx.doi.org/10.12693/APhysPolA.133.1433
http://dx.doi.org/10.1088/1367-2630/ab0602
http://dx.doi.org/10.1209/0295-5075/97/16006
http://dx.doi.org/10.1103/PhysRevLett.105.048701
http://dx.doi.org/10.1103/PhysRevE.85.016112
http://dx.doi.org/10.1371/journal.pone.0092200
http://dx.doi.org/10.1371/journal.pone.0092200
http://dx.doi.org/10.1103/PhysRevE.71.027103
http://dx.doi.org/10.1103/PhysRevE.71.027103
http://dx.doi.org/10.1103/PhysRevLett.87.278701
http://dx.doi.org/10.1016/j.nuclphysb.2004.06.029

	1 Introduction
	2 The model
	2.1 Multiplex networks with partial overlap
	2.2 The Hamiltonian

	3 Investigation of the ferromagnetic transition usingthe mean-field approximation
	3.1 The model for a multiplex network with partial overlap
	3.2 Heterogeneous mean-field theory
	3.3 Mean-field critical temperature for the ferromagnetic transition

	4 Investigation of the ferromagnetic transitionusing the replica method
	4.1 The model for a multiplex network with partial overlap
	4.2 The replica symmetric free energy
	4.3 Critical temperature for the ferromagnetic transition

	5 Comparison with numerical results
	6 Summary and conclusions

