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We present a comparison of pole mass calculations in the Grimus–
Neufeld model. Pole masses are calculated in three different ways: using
the approximation of Grimus and Lavoura, using a one-loop approximation
and using FlexibleSUSY, an automated spectrum generator. We present
the differences between these calculations and compare them numerically
in the parameter region that could potentially reproduce the measured
neutrino mass squared differences.
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1. Introduction

Neutrino masses are not zero. This has been already known for about
30 years, yet, not much is known about their nature. A popular mecha-
nism that naturally explains the smallness of neutrino masses is the seesaw
mechanism [1]. However, as it usually gives the masses at tree level in a
simple enough way, the phenomenological one-loop studies on the interplay
of the neutrino sector with some other beyond the Standard Model (BSM)
sectors are rather rare. One of the models that can have some restrictions
on the neutrino sector relating it to the scalar sector is the Grimus–Neufeld
model (GNM) [2]. It is a two-Higgs doublet model (2HDM) extended with
a single heavy Majorana neutrino. This set-up gives two non-vanishing light
neutrino masses at one-loop level, which is already enough to explain the
two experimentally measured mass squared differences. The non-trivial fea-
ture of this model is that there is a subtle interplay between the radiative
mass generation and the seesaw mechanism. This interplay is used in the
Grimus–Lavoura (GL) approximation [3, 4], realizing that the seesaw sup-
pressed tree-level mass can numerically be of the same order as loop correc-
tions. We show that this approximation can be understood as a perturbation
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series in couplings rather than in loops. This elucidates an unusual feature
of the seesaw mechanism: the coupling expansion is different from the loop
expansion. The benefit of the GL approach is that the resulting expres-
sions for pole masses are gauge-invariant and finite without the need of any
subtraction scheme.

On the other hand, in the full one-loop calculation of neutrino masses,
one needs to determine mass and field renormalization constants. We will
calculate the one-loop pole masses in the MS scheme and compare them
to the GL approximation. To get an idea what are really the differences
between the first order pole masses in loop expansion versus the first order
pole masses in Yukawa coupling expansion, we systematically ignore the
higher order terms. This means that the off-diagonal one-loop contributions
to the mass matrix do not enter the pole mass expressions, as they come as
O((1 loop)2) = O(2 loop).

Yet another way to calculate masses of neutrinos in the GNM is to im-
plement the model into the automated spectrum generator FlexibleSUSY
[5, 6] (FS). FS also uses MS to calculate neutrino masses at one loop. How-
ever, it does not neglect the mentioned off-diagonal terms, as it evaluates
all the one-loop two-point functions numerically in a full 4 × 4 matrix and
solves the equation for the poles of neutrinos directly. The difference be-
tween our pole mass calculation in MS should formally be of higher order in
the perturbation series. As we will see in the numerical comparisons, this
difference is, in fact, significant and FS calculations are actually closer to
the GL approximation.

In Section 2, we shortly present the essential parts of the model that
will be needed to understand the calculations. In Section 3, we introduce
and explain the differences between the GL approximation, the one-loop
approximation, and the FS calculation of pole masses of neutrinos in the
GNM. In Section 4, we illustrate the differences between the calculations by
a numerical comparison.

2. The model for the masses

A detailed presentation of the model can be found in [2, 7–9]. Here, we
will present only the essential parts for our calculations from the scalar and
the Yukawa sector of the model.

2.1. Scalar sector

The scalar sector of the GNM is a general 2HDM. We will label the two
Higgs doublets as H1 and H2. We choose the Higgs basis, which means that
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〈H1〉 =
1√
2
v , 〈H2〉 = 0 , (1)

where the value v coincides with the value of the vacuum expectation value
(VEV) of the Higgs of the SM (v = 246.22 GeV in our analysis). Hence,
we can call H1 to be an SM-like Higgs doublet and H2 the second Higgs
doublet. Three of the degrees of freedom in H1 are Goldstone bosons. We
work in general Rξ gauge when checking the gauge independence of the
GL approximation and in ξ = 1 gauge for calculations in the full one-loop
approximation. FS calculations are done in ξ = 1 gauge. For simplicity,
we work in the CP symmetric 2HDM potential, which means that CP-odd
and CP-even scalar components of the doublets do not mix at tree level. A
review of the various parametrizations and the analysis of the 2HDM can be
found in [10].

2.2. Yukawa sector and neutrino masses

We start from the flavour basis, where the three light neutrinos are la-
beled by their charged weak partners. Then, including one singlet Weyl
spinor N with a Majorana mass M , the Yukawa Lagrangian part that leads
to neutrino masses is written as

LYuk = −Y 1
νi`iH1N − Y 2

νi`iH2N + H.c. , i = e, µ, τ , (2)

where i is the flavour index and ` is the lepton doublet in terms of Weyl
spinors. We can always find the unitary transformation U on the light SM-
like neutrino fields in the lepton doublet ` that will lead to the following
form of Yukawa couplings [2]:

Uν = ν ′ , Y 1
ν U = (0, 0, y) , Y 2

ν U =
(
0, d, d′

)
. (3)

After the electroweak symmetry breaking takes place, ν3 gets a Majorana
mass from the effective dimension 5 operator after the N field is integrated
out

m3 ≈
y2v2

2M
(4)

in the limit, where M is large. This is the usual type I seesaw mechanism
[1, 11]. With the parametrization of Eq. (3), the seesaw mechanism in
the GNM can be illustrated by the Feynman diagram shown in Fig. 1 (a)1.
From the basis choices, Eq. (3) and Eq. (1), we can see that this is the only
seesaw-generated mass in the model, since ν3 is the only neutrino directly
interacting with the SM-like Higgs doublet. This means that the other two
light neutrinos stay massless at tree level.

1 See the Weyl spinor notation in e.g., [12] for Feynman rules with Weyl spinors.
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At one-loop level, the second Higgs doublet allows for a similar diagram
for neutrino ν2, shown in Fig. 1 (b). As one can see, the principle difference of
Fig. 1 (b) from Fig. 1 (a) is that the scalar propagator line is closed and forms
a loop, instead of the two lines ending in the Higgs VEV. Hence, the diagram
in Fig. 1 (b) is responsible for radiative mass generation for ν2, which is also
suppressed by ∼ 1

M similarly to the tree-level seesaw mechanism.

.

.

ν3 N ν3

y y

〈H1〉 〈H1〉 .

.

ν2 N

H2

ν2

d d

(a) Seesaw mechanism (b) Radiative mass for ν2

Fig. 1. Seesaw and radiative mass generation in Weyl spinor notation [12]. The
arrow shows chirality propagation.

From now on, we write µ to denote loop-level masses and m to denote
tree-level masses. The basis choice of Eq. (3) lets us identify the four dis-
tinct neutrino one-loop mass states νi with the heavy mass µ4 ≈ m4, the
small seesaw mass µ3, the radiative mass µ2, and zero mass. Hence, the
matrix U is actually an approximate PMNS (Pontecorvo–Maki–Nakagawa–
Sakata) matrix, UPMNS, which relates the mass eigenstates to the flavor
states of neutrinos. As the PMNS matrix is given by the experiment, the
only parameters that are still free in the neutrino Yukawa sector are y, d and
d′. The further step is to relate these parameters to the measured neutrino
mass differences, for which we need to calculate pole masses of neutrinos.

3. Pole mass calculation

We define the two-point Green’s functions for neutrinos according to
their Lorentz structure as in Fig. 2, where Γ and Σ are scalar functions; the
spinoric indices are factored out. The arrow shows the chirality propagation
of Weyl spinors, hence Γ stands for a chirality flipping (mass-like) two-
point function, and Σ for a chirality preserving one (usually noted as field
renormalization part). As neutrinos in the GNM are Majorana particles, we
do not have two independent contributions for field renormalization, hence
there is only one Σ with no label for chirality. The Σ matrix is Hermitian
for stable particles. In the calculations presented in the conference [13], we
assumed that Γ is also Hermitian. However, that is not true in general. As
a result, the pole masses for GL approximation changed, as shown here (i.e.
in Eq. (12)). The one-loop expressions, Eq. (9), stay the same. This correc-
tion for the GL approximation has an impact in those parameter points in
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which the singular values of Γ do not coincide with the eigenvalues squared.
A better agreement between the GL approximation and FS is seen in the
corrected plots, shown in Fig. 3 and Fig. 4, than in the ones presented in
the conference.

.

νj νi
iΓij =

.

νj νi
iσpΣij =

Fig. 2. Chirality flipping and chirality preserving two-point functions for neutrinos.

We indicate the Hermitian conjugate by Γ̄ , where the bar means that
we conjugate only couplings that appear in front of the loop integrals, but
we do not conjugate the loop integrals themselves. However, for diagonal
terms, we can always achieve Γii = Γ̄ii by adjusting the Majorana phases.

Having Γ and Σ, we can get pole masses from solving the equation for
µ [14]

det
(
µ2Σ − Γ̄Σ−1Γ

)
= 0 . (5)

Since we usually do not know the full expression of the two-point functions,
we expand them in a perturbation series, hence we solve Eq. (5) perturba-
tively

µ =
∑
n

εnµ[n] , Σ =
∑
n

εnΣ[n] , Γ =
∑
n

εnΓ [n] , (6)

where ε is the order parameter of the perturbation series. Usually, ε is identi-
fied with the loop counting parameter, but this is not the only identification
possible. Further, we will consider two cases: where the power of ε counts
the number of loops and where it counts the number of Yukawa couplings.

3.1. One-loop approximation

In the loop expansion of the two-point functions, the zeroth order (i.e.
tree level) 4× 4 mass matrix for the neutrinos in the GNM is

Γ [0] = −


0 0 0 0
0 0 0 0
0 0 m3 0
0 0 0 m4

 with m3 ≈
y2v2

2M
, m4 ≈M . (7)

Σ[0] is the identity matrix. We generate the loop functions using Fey-
nArts [15] and FormCalc [16, 17]. Σ[1] has contributions in all of its 4 × 4
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matrix elements at one loop. However, due to the basis choice of Eq. (3),
some elements in Γ [1] are zero, giving the structure

Γ [1] =


0 0 ∗ ∗
0 ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 . (8)

With this structure in mind, we write Eq. (6) to the order of n = 1, insert
into Eq. (5) and solve for the first order in ε, evaluating functions at each
zeroth order solution. The result for the four one-loop pole masses is

µ1 = 0 , µ3 = m3− 1
2

(
Γ

[1]
33

(
m2

3

)
+Γ̄

[1]
33

(
m2

3

))
−m3Σ

[1]
33

(
m2

3

)
,

µ2 =−Γ [1]
22 (0) , µ4 = m4− 1

2

(
Γ

[1]
44

(
m2

4

)
+Γ̄

[1]
44

(
m2

4

))
−m4Σ

[1]
44

(
m2

4

)
. (9)

This solution is written in the form which is independent of the renormal-
ization scheme, i.e. counterterms appear in the loop functions Γ [1] and Σ[1]

that arise from the redefinition of tree level Γ [0] and Σ[0]. This basically
means that we need to define a scheme for absorbing the ultraviolet (UV)
divergences that arise in Γ [1] and Σ[1]. For example, the OS scheme would
lead to µ3 = m3 and µ4 = m4. However, in this specific case, the one-loop µ1
and µ2 are finite and gauge-invariant without any subtraction scheme. This
is obvious for µ1, but for µ2, the cancellation of divergences in Γ [1]

22 (0) might
not sound so obvious. The fact that µ2 is gauge-invariant and finite comes
directly from the fact that the zeroth order solution for µ2 is 0. This means
that, assuming multiplicative renormalization, we do not have any countert-
erm to absorb potential UV divergences or counteract gauge dependencies
at one loop. Thus, the one-loop expression must be gauge-independent and
finite by itself. This nice interplay between the renormalization and the per-
turbation series expansion will be put even further in the Grimus–Lavoura
approximation.

Looking at the expressions of Eq. (9), one can see that the off-diagonal
terms of the two-point functions are absent in these expressions: they are
formally of a higher loop order. Consider, however, that we choose the MS
scheme to absorb the divergences of all the two-point functions, and try to
get the pole masses numerically. We then can straightforwardly solve Eq. (5)
with the full, numerical one-loop 4× 4 matrices. The differences in the pole
masses should, in principle, be of a higher order in the perturbation series.

3.2. Grimus–Lavoura approximation

We are interested only in the three light neutrino states, i.e. the states
that are already known to exist. We would like to have a gauge-invariant
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and finite relation between the Yukawa parameters Eq. (3) and pole masses
of light neutrinos. Then, inspired by the example of radiative neutrino mass
generation, we can try to define our perturbation series in such a way, that
all of the neutrinos are massless at zeroth order. The next order should then
give the finite and gauge-invariant expressions for neutrino masses. How can
we do that?

By looking at the two diagrams in Fig. 1, we see that the seesaw diagram,
in fact, has the same number of Yukawa couplings as the loop diagram: the
coupling expansion is different than the loop expansion. This means that
we can try to expand in couplings. To achieve that, we write all the fermion
masses in terms of couplings and the VEV of the Higgs. Then, to expand to
the second power in couplings, we observe that it is enough to consider one
loop, as higher loops will include only higher powers in couplings. Hence, we
can use the same tree and one-loop functions and expand them in powers of
Yukawa couplings. The tree level and the one-loop level has to be treated
together, since we do not want to have a loop ordering, but a coupling
ordering instead. With this procedure, we recover the same expressions for
neutrino mass matrix entries as in [3]. The structure of the 4 × 4 mass
matrices is now different from the ones shown in Eq. (7) and Eq. (8)

Γ [0] = −


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 m4

 , Γ [1] =


0 0 0 ∗
0 ∗ ∗ ∗
0 ∗ m3 + ∗ ∗
∗ ∗ ∗ ∗

 . (10)

Inserting this Γ [0] + εΓ [1] into Eq. (5) and collecting terms near the same
power of ε will give solutions for µ2 and µ3, satisfying

µ22µ
2
3 =

[
Γ 2
23 − Γ22 (Γ33 −m3)

] [
Γ̄ 2
23 − Γ̄22

(
Γ̄33 −m3

)]
, (11)

µ22 + µ23 = Γ22Γ̄22 + 2Γ23Γ̄23 + (m3 − Γ22)
(
m3 − Γ̄33

)
. (12)

Both of these expressions are finite and gauge-invariant without any UV
subtraction. Moreover, it can be shown [8] that the expression of Eq. (11)
does not depend on d′ from Eq. (3), but only on y, d and the scalar po-
tential parameters. The expression in Eq. (12) depends on all the Yukawa
parameters from Eq. (3) and the scalar potential parameters. Note that the
off-diagonal terms are important already at the first order in the expansion,
in contrast to the Eq. (9). Note also that Γ [1] in the GL approximation
is different from Γ [1] in the loop expansion, as the perturbation expansion
parameter is different.
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3.3. FlexibleSUSY mass calculations

One of our goals is to explore the possibilities to use generalized tools,
such as FS for parameter scans of the GNM. FS calculates the BSM masses
in the MS scheme at one loop “out of the box”. However, it does not neglect
the off-diagonal terms, which are neglected as higher order contributions in
Eq. (9). So far, we will use FS as a black box to get the pole masses of
neutrinos and see if we get comparable results to the explicit calculations of
Eqs. (9), (11), and (12).

4. Numerical comparison of pole masses

We compare the one-loop calculation and the FS calculation relative to
the GL calculation. In order to do that, we do the following:

— From Eq. (11) and Eq. (12), we find a solution for d and d′ that gives
the experimentally measured mass differences [18] as pole masses, iden-
tifying

µ22 = ∆m2
12 , µ23 = ∆m2

13 =⇒
(
d, d′

)
. (13)

— Instead of having a Yukawa coupling y, we parametrize it by the “mass
correction” parameter Z3

y2v2

2m4
= m3 = Z3µ3 . (14)

— The parameters d and d′ are now functions of Z3, UPMNS and the
scalar potential parameters, i.e. of masses and mixings of the scalar
particles, noted as mS and US(

d, d′
)GL
i

= fi (mS, US, UPMNS, µ4, Z3) . (15)

— We take the benchmark point B1 from [19] for the scalar potential:

mH = 300 , mA = 411 , mH± = 442 , GeV , sinθH−h ≈ 0.07 . (16)

Then, the only free parameters are m4 and Z3. We take the solutions
for d and d′ for given Z3 and m4 and put them as an input to FS and the
MS renormalized expressions of Eq. (9), resulting in the mass values which
we compare with the initial values of Eq. (13). We use LoopTools [16] to
evaluate the expressions at the renormalization scale of 200 GeV, which is
the scale at which FS does the pole mass calculation. In this way, we can
compare the first order of the perturbation series: GL approximation versus
one loop approximation versus FS pole mass calculation.

The numerical comparisons are presented in Fig. 3 and Fig. 4. To be sure
that we do actually get the right solutions for d and d′, we check if we get the
pole masses of Eq. (13) back. From Fig. 4, we can actually see that when
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the heavy Majorana mass is higher than 106 GeV, we run into numerical
problems in all of the calculations. In the range, where the calculation can
be trusted, i.e.m4 < 106 GeV, we see that the GL approximation (horizontal
solid/orange line at zero) and one-loop approximation give quite different
results in most of the ranges in Z3 and m4. The FS calculation, in fact,
is closer to the GL approximation. This hints the importance of the off
diagonal terms even if they formally are of the higher loop order in the loop
expansion. As the output of FS seems rather stable and not far from the
GL approximation when the seesaw mass is less than 106 GeV, FS seems to
be a promising tool to do parameter scans in this model.
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Fig. 3. (Color online) The difference between GL (solid, orange), one-loop (dashed,
green) and FS (dotted, blue) pole mass calculations as functions of Z3 with m4 =

105 GeV, using the benchmark potential point from Eq. (16). The plot shows
the relative differences of calculated pole masses versus pole masses in the GL
approximation.
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Fig. 4. (Color online) The difference between GL (solid, orange), one-loop (dashed,
green) and FS (dotted, blue) pole mass calculations as functions of log10m4 with
Z3 = 1.5, using the benchmark potential point from Eq. (16). The plot shows
the relative differences of calculated pole masses versus pole masses in the GL
approximation.

5. Conclusions

The seesaw mechanism has an interesting feature in perturbative pole
mass calculations: the expansion in terms of couplings does not coincide
with the expansion in terms of loops. When we expand in loops, the one-
loop off-diagonal contributions to the mass matrix are neglected, since they
are of a higher order in the perturbative expansion of the pole masses. By
making an expansion in couplings, we could reproduce the expressions of the
GL approximation [3]. We compared the pole mass calculations in these two
expansions and found that they give significantly different results numeri-
cally. We also compared these calculations with the FS pole masses. The
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FS results were closer to the GL approximation than our one-loop calcula-
tion. This could be explained by the importance of the off-diagonal terms
in the GNM. To check if this is really the case, a calculation of pole masses
with full one-loop 4 × 4 matrices will be done in the future and compared
to the calculation of FS. So far, it seems that FS is a promising tool to do
phenomenological studies with the GNM at least up to the seesaw scale of
∼ 106 GeV, where numerical problems seem to go out of control.

The difference between one-loop calculations and GL calculations leads
to an interesting question: when can we really trust a loop expansion and
when the coupling expansion is more sensible? Since in some parameter cases
the difference between the calculations could be as much as 50%, this looks
like an important question to answer if we want to estimate the theoretical
error of a calculation.
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Dominik Stöckinger and Wojciech Kotlarski for helpful discussions and
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