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We explore a possibility of dark matter (DM) interacting with the vis-
ible sector only through gravity. We consider the case of the vector DM
and discuss both perturbative and non-perturbative mechanisms that can
be relevant for DM production. In the first case, we investigate particle
production during reheating phase via the freeze-in mechanism, while the
latter refers to the particle creation in the time-varying background during
inflation. In each case, we find a viable range in parameter space which
reproduces the observed DM relic abundance.
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1. Introduction

The existence of dark matter (DM) is well-established by completely in-
dependent cosmological and astrophysical observations spanning over a wide
range of cosmological scales. However, its nature remains one of the most
puzzling and challenging problems in modern physics. The known proper-
ties of DM can be summarized in the following statement: it is invisible,
extremely elusive, and electrically neutral. It should be emphasized that
the existence of DM has been inferred only from gravitational effects. There
is no direct evidence that DM interacts with forces other than gravity to the
visible matter, however, it is commonly assumed that its interactions with
the Standard Model (SM) are mediated via some non-gravitational forces
∗ Presented at the XLIII International Conference of Theoretical Physics “Matter to
the Deepest”, Chorzów, Poland, September 1–6, 2019.
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of weak strength. This is the well-known weakly interacting massive parti-
cle (WIMP) DM paradigm. However, decades of intensive searches of these
WIMP DM remain fruitless with ever-strengthening constraints. These null
results motivate to explore alternative paradigms for DM.

In this work, we consider an extreme possibility by assuming that DM
interacts only gravitationally with the visible sector. We focus on the case
where DM consists of spin-1 particles and investigate its perturbative and
non-perturbative production mechanisms. In Sec. 2, we study the DM pro-
duction via the freeze-in mechanism, where the SM particles annihilate to
produce DM through the exchange of a graviton in s-channel [1, 2] and SM
Higgs doublets annihilate into DM particles via a dim-6 effective operator [3].
By solving Boltzmann equations in Sec. 3, we find the region in parameter
space that reproduces the observed DM abundance. In Sec. 4, we inves-
tigate DM production via the gravitational particle creation from vacuum
fluctuation during inflation [4]. In particular, we focus on the production of
longitudinal modes of the dark vector boson and find their number density
today. We conclude in Sec. 5.

2. Vector DM production via freeze-in mechanism

To study the production of DM via the freeze-in mechanism, we consider
the following action:

S =

∫
d4x
√−g

{
R

2κ2
+ LSM + LDM

}
, (1)

where κ ≡ √8πGN = M−1
Pl is the effective gravitational constant (GN is

Newton’s constant and MPl is the Planck constant), R is the Ricci scalar,
and LSM(LDM) denote the Lagrangian density of the SM (DM). In the weak-
field approximation of general relativity, the graviton hµν , i.e. the fluctuation
of the metric tensor gµν , is defined as follows

gµν = ηµν + κhµν ,

where ηµν is the Minkowski metric diag(+1,−1,−1,−1). We assume here
that DM has no self-interactions and it does not interact directly with the
SM particles. The only interaction between these two sectors is through
gravity, which couples to their energy-momentum tensors. However, from
the effective field theory perspective, one may expect interactions between
the two sectors through the higher dimensional operators suppressed by the
scale of a new physics Λ, which is assumed here to be of the order of the
Planck mass MPl.
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At the first order in the graviton perturbations, the effective action can
be written as

Seff =

∫
d4xLeff =

∫
d4x

{
L(4) + L(5)

int + L
(6)
int +O

(
κ3, h2

)}
, (2)

where L(4) = L(4)
DM + L(4)

SM is the effective dim-4 renormalizable Lagrangian,
whereas L(5)

int and L(6)
int contain operators of dim-5 and -6 suppressed by M−1

Pl

and M−2
Pl , respectively. The dim-4 Lagrangian for an Abelian vector DM is

L(4)
DM = −1

4
XµνX

µν +
1

2
m2
XXµX

µ , (3)

where the mass for the dark vector boson mX is generated via the Abelian
Higgs mechanism. We assume that the interaction part of the effective action
is given by

L(5)
int =

κ

2
hµν

(
TDM
µν + T SM

µν

)
, L(6)

int =
κ2

2
CX m2

XH†HXµX
µ , (4)

where T SM
µν and TDM

µν denote the energy-momentum tensor for the SM and
DM sectors, respectively, H is the SM Higgs doublet and CX is the dimen-
sionless Wilson coefficient.

A possible dim-4 kinetic mixing between Xµν and the field tensor for the
weak hypercharge is eliminated by a dark charge conjugation that ensures
the stability of the vector. It is worthwhile to mention that L(5)

int involves
only interactions of the SM and DM with gravity, i.e. there is no dim-5 direct
SM and DM interaction. The L(5)

int will induce tree-level s-channel graviton
exchange amplitudes O(κ2). Note that the same suppression appears for the
contact interactions (4) involving dim-6 operator, see Fig. 1.

κ
graviton

κ

SM

SM

X

X

H†

H

κ2

X

X

Fig. 1. Feynman diagrams that arise from (4). The left panel shows annihilation
process for SM particles to vector DM Xµ via the s-channel graviton exchange
while the right panel shows contact interaction induced by the dim-6 operator.

We briefly motivate the origin of dim-6 operator in (4), i.e. H†HXµX
µ,

[5]. In our model, we assume that mass of the vector DM is generated by
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a heavy complex scalar Φ charged under the gauge U(1)X symmetry. The
covariant derivative of such a scalar field is

DµΦ = (∂µ − igXXµ)Φ ,

so that the kinetic term DµΦ(D
µΦ)∗ contains g2

XXµX
µΦΦ∗. It is assumed

that Φ acquires its vacuum expectation value (VEV), which leads to spon-
taneous symmetry breaking (SSB) of the extra U(1)X gauge symmetry and
generates a mass for the vector DM, m2

X = 2g2
X〈Φ〉2. The dim-6 interac-

tion of Eq. (4) arises through the Higgs doublet coupling to the new scalar
field Φ as

DµΦ(D
µΦ)∗H†H ⊃ g2

XΦΦ
∗H†HXµX

µ → m2
X

2
H†HXµX

µ .

The first step toward computing DM production via the freeze-in from
the SM is to calculate the annihilation amplitudes. To do this, we expand
action (1) in the linearized level in the graviton field. By considering gravi-
ton interactions with spin-0, 1/2, 1 fields, we obtain Feynman rules that are
collected in Table I. Using the Feynman rules we find cross sections for XX
production in annihilation of SM spin 0,1/2 and 1 states. Note that the
scattering amplitude for the SM scalars going into DM vectors is a sum of
contributions from the SM annihilation via graviton exchange and contract
interactions.

TABLE I

Feynman rules for the gravitational vector DM model, where hi, f , V (X) represent
spin-0, 1/2, 1 fields, respectively.

hµν
p H†

Hp′
i
κ

2

[
pµp
′
ν + pνp

′
µ − ηµν

(
p · p′ +m2

H

)]

hµν
p f

f̄
p′

i
κ

8

[(
γµ (p− p′)ν + γν (p− p′)µ

)
− 2ηµν

((
/p− /p′

)
+ 2mf

)]

hµν
p V α

V βp′

− iκ
2

[
Cµν,αβ

(
p · p′ +m2

V

)
+ ηµνpβp

′
α + ηαβ

(
pµp
′
ν + pνp

′
µ

)
− pβ

(
ηµαp

′
ν + ηναp

′
µ

)
− p′α (ηµβpν + ηνβpµ)

]
hi

hi

Xα

Xβ

iκ2CXm2
Xηµν , Cµν,αβ ≡ ηµαηνβ + ηµβηνα − ηµνηαβ
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3. Boltzmann equations

The thermal evolution in our model involves unstable massive parti-
cles φ (inflaton), a stable non-relativistic massive DM particle Xµ and ultra-
relativistic SM species R (radiation). We assume that φ decays into the SM
(radiation) and DM with rates ΓR and ΓX , respectively. The DM X are
created by (and annihilated to) the SM with the cross section 〈σv〉1. To find
the relic abundance of DM species, we generalize the system of Boltzmann
equations [6]

ρ̇φ + 3(1 + w)Hρφ = −(ΓR + ΓX)ρφ , (5)

ρ̇R + 4HρR = ΓRρφ + 2〈EX〉〈σv〉1
[
n2
X −

(
neq
X

)2]
, (6)

ṅX + 3HnX = ΓX
ρφ
mφ
− 〈σv〉1

[
n2
X −

(
neq
X

)2]
, (7)

where ρφ,R and nX are corresponding energy and number densities, neq
X is

the equilibrium number density of X, 〈EX〉 ' mX is an averaged energy of
the DM field, w is the equation-of-state parameter for the inflaton field1, and
mφ denotes its mass. For the sake of simplicity, we make here the simplifying
assumption that ΓX → 0. Moreover, we also neglect the possibility of the
inflaton annihilation into DM species. Time evolution of the Hubble rate is
governed by the first Friedmann equation, i.e.

H2 =
κ2

3
(ρφ + ρX + ρR) .

To solve the above Boltzmann equations, it is instructive to introduce di-
mensionless variables

Φ̃ = ρφ
a3(1+w)

T 4
RH

, R = ρR
a4

T 4
RH

, X = nX
a3

T 3
RH

,

where TRH denotes the (end of) reheating temperature, when ΓR = H,

TRH =

(
90

κ2π2g∗(TRH)

) 1
4

γH
1
2
I .

In the above expression HI denotes the Hubble rate at the end of inflation,
g∗(TRH) counts effective number of relativistic degrees of freedom (d.o.f) at
TRH, and γ2 ≡ ΓR/HI = HRH/HI parametrizes the efficiency of reheating.

1 It is assumed here that during reheating, the total energy density ρtot is dominated
by the inflaton component, i.e. ρtot ∼ ρφ. In particular, at the end of inflation
ρR = ρX = 0.
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To find approximate semi-analytical solutions to the above system of
coupled equations, we assume that during reheating, i.e. the epoch between
H−1

I and H−1
RH, the total energy density ρ is dominated by the inflaton

field, while after reheating, during the radiation-dominated period, the main
contribution to the total energy density comes from the SM radiation. Those
assumptions allow to solve the first two Boltzmann equations that provide
relations between the Hubble rate and the scale factor and also between the
temperature and the scale factor

T (a) '
{
Tmaxa

− 3
8

(1+w) for ae<a<aRH

TRH
aRH
a for a ≥ aRH

and

H(a) =

{
HIa

− 3
2

(1+w) for a<aRH

HRH

(
aRH
a

)2
for a>aRH

,

where Tmax is the maximal temperature that was obtained during the reheat-
ing and ae(RH) denotes the scale factor at the end of inflation (reheating).
After obtaining H(a) and T (a), we can solve the last Boltzmann equation
which, in terms of new variables, takes the form of

dX

da
= − 〈σv〉1

HT 3
RH

a2
(
n2
X −

(
neq
X

)2)
. (8)

The Gondolo–Gelmini formula for the thermally-averaged cross section is [7]:

〈σv〉 = 1

8m4
XTK2(mX/T )2

∞∫
4m2

X

ds
√
s
(
s− 4m2

X

)
σ(s)K1

(√
s

T

)
,

with

σ(s) =
−1

16πs
(
s− 4m2

X

) t−∫
t+

dt|M|2 ,

where t± = −(
√
s/4−m2

X ∓
√
s/4 )2 and we have assumed that masses of

the SM d.o.f. are negligible.
The total cross section for the SM annihilations into spin-1 DM can be

written as a sum of the following three contributions:

〈σv〉1 = N0 〈σv〉0→1 +N1/2 〈σv〉1/2→1 +N1 〈σv〉1→1 ,

where N0 = 4, N1/2 = 45, N1 = 12 denote the number of d.o.f. of the SM
scalars, fermions and vectors, respectively (before the EW SSB), whereas,
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〈σv〉0,1/2,1→1 refers to the thermally averaged cross sections for the SM
scalars, fermions and vectors to the vector DM, respectively. Assuming
that nX � neq

X , we rewrite Eq. (8) as

X(T0) =

aRH∫
ae

da
〈σ|v|〉1
HT 3

RH

a2
(
neq
X

)2
+

a0∫
aRH

da
〈σ|v|〉1
HT 3

RH

a2
(
neq
X

)2
,

where a0 denotes the present-day scale factor and we can adopt a0 → ∞
since in this limit, the production rate is exponentially suppressed.

Finally, the relic abundance of the vector DM is defined as

ΩXh
2 =

ρX
ρc
h2 =

mXnX(T0)

ρc
h2 , (9)

where the present-day number density is given by

nX(T0) = X(T0)T
3
RHγ

4
1+w

s0

sRH
, (10)

Fig. 2. Relations between the Hubble rate at the end of inflation HI and vector
DM mass mX that reproduces the observed relic abundance Ωobs

DMh
2.
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with s0(sRH) being the entropy density at the temperature T0(TRH). We use
relations (9)–(10) and require the parameters to be such that the present-
day abundance ΩXh2 reproduces the value measured by Planck Ωobs

DMh
2 =

0.1198 ± 0.0015 [8]. The results are shown in Fig. 2 in HI–mX plane for
several values of the equation-of-state parameter w ∈ {−1

4 , 0,
1
2}, reheat ef-

ficiency γ ∈ {10−3, 10−2, 10−1}, and CX ∈ {10−3, 10}. We note that the
difference between the case with Wilson coefficient CX = 10−3 and CX = 10
is rather small and is important only in the small mass limit. This means
that the contribution from the term N0〈σ|v|〉0→1 to the vector DM pro-
duction is small compared to the N1/2,1〈σ|v|〉1/2,1→1. On the other hand,
this mechanism of DM production is very sensitive to reheating efficiency.
The allowed range in parameter space is quite large in the limit of efficient
reheating and shrinks significantly as γ declines.

4. Gravitational production of vector DM

In this section, we study DM matter production in the rapidly expanding
early Universe. We consider the following action for a massive vector DM:

S =

∫
d4x
√−g

(
−1

4
gµαgνβXµνXαβ +

1

2
m2
Xg

µνXµXν

)
.

The background metric is the Friedmann–Lemaître–Robertson–Walker
(FLRW) form, i.e. ds2 = dt2 − a2(t)d~x 2. To derive equation of motion
(e.o.m.) for the Xµ field, it is convenient to go to the Fourier space

Xµ(t, ~x ) =

∫
d3k

(2π)3/2
Xµ
(
t,~k
)
ei~k·~x ,

where the reality of Xµ implies Xµ(t,~k ) = X ∗µ(t,−~k ). Three physical com-
ponents of the vector field satisfy, ~k · ~X = kXL,~k × ~X = ±k| ~X±|. It should
be emphasized that the X0 mode is non-dynamical and can be express as

X0 =
−ikẊL

k2 + a2m2
X

. (11)

The e.o.m. for the transverse modes is

X ′′± +
(
k2 + a2m2

X

)
X± = 0 ,

and for the longitudinal mode, it is

X ′′L +
2k2

k2 + a2m2
X

a′

a
X ′L +

(
k2 + a2m2

X

)
XL = 0 , (12)

where the prime denotes the derivative with respect to conformal time τ
which is related to the physical time t by dt = a(τ)dτ .



Production of Purely Gravitational Vector Dark Matter 1817

For the two transverse modes X±, we get e.o.m in a form of the oscillator
equation with frequency ω2

T = k2+a2m2
X , whereas in the case of longitudinal

mode XL, we redefine XL as follows:

XL =

√
k2 + a2m2

X

amX
X̃L (13)

in order to rewrite Eq. (12) in a form of the oscillator equation, i.e.

X̃ ′′L + ω2
L(τ)X̃L = 0 , (14)

where

ω2
L(τ) ≡ k2 + a2m2

X −
k2

k2 + a2m2
X

(
a′′

a
− 3a2m2

X(
k2 + a2m2

X

) a′2
a2

)
. (15)

Note that ω2
± is always positive, while ω2

L(τ) can be negative. It can be
shown that this happens for mX � HI. This phenomenon leads to the so-
called tachyonic enhancement and results in the growth of the super-horizon
modes (k < aH) during inflation. Therefore, in what follows, we focus on the
longitudinal modes because it turns out that in this case, the gravitational
production is much more efficient than in a case of transverse modes.

Our ultimate goal is to find the present-day energy density of DM parti-
cles produced by the vacuum fluctuations during inflation. For this purpose,
we start with quantizing the longitudinal mode as[

ˆ̃XL(τ, ~x ),
ˆ̃ΠL(τ, ~y )

]
= iδ(3)(~x− ~y ) , (16)

where

ˆ̃XL(τ, ~x )=

∫
d3k

(2π)3/2

[
εL
(
~k
)
â
(
~k
)
XL

(
τ,~k

)
ei~k·~x + ε∗L

(
~k
)
â†
(
~k
)
X ∗L
(
τ,~k

)
e−i~k·~x

]
(17)

and ˆ̃ΠL(τ, ~x) =
˜̂
X ′L(τ, ~x) denotes the canonical momenta. It is easy to check

that (16) implies[
â
(
~k
)
, â†
(
~k′
)]

= δ(3)
(
~k − ~k′

)
,

[
â
(
~k
)
, â
(
~k′
)]

= 0 =
[
â†
(
~k
)
, â†
(
~k′
)]
,

(18)
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with the time-independent Wronskian normalized as

W [XL,X ∗L ] ≡ X ′LX ∗L −X ′∗L XL = −i .

Using the energy-momentum tensor we get the energy density as

ρX = T00 =
1

2a2

(∣∣∣ ~̇X −∇X0

∣∣∣2 + 1

a2

∣∣∣~∇× ~X
∣∣∣2 +m2

Xa
2X2

0 +m2
X
~X2

)
.

In the following computations, we replace the above expression with its
vacuum expectation value. We define the vacuum state by the following
Bunch–Davies initial condition, i.e.,

lim
τ→−∞

X̃L =
1√
2k

e−ikτ .

Using Eqs. (11), (13), (17) and (18), we find

d〈ρL〉
d ln k

=
k3

2π2a4

{∣∣X ′L∣∣2 − (X ′LX ∗L + X ′∗L XL

) k2

k2 + a2m2
X

a′

a

+

[
k4(

k2 + a2m2
X

)2 (a′a
)2

+ k2 + a2m2
X

]
|XL|2

}
. (19)

Therefore, in order to find 〈ρL(τ)〉, one should first determine solutions to
Eq. (14) at some time τ .

Assuming that during inflation the Universe undergoes almost purely
the de Sitter expansion, we find that d〈ρL〉/d ln k at the end of inflation is
proportional to

d〈ρL(τe)〉
d ln k

∝


(
k
ae

)4
for sub-horizon modes aeHI � k(

kHI
ae

)2
for super-horizon modes k � aeHI

,

where ae denotes the scale factor at the end of inflation. Then we obtain
the evolution of 〈ρL(τ)〉 after inflation as follows

d〈ρL(τ)〉
d ln k

∝


a−4 , max[a(τ)mX , a(τ)H(τ)]� k

a−2 , max[a(τ)mX , k]� a(τ)H(τ)

a−3 , max[a(τ)H(τ), k]� a(τ)mX

.

Evolution of d〈ρL〉/d ln k with time is shown in Fig. 3. As the Universe
evolves, the redshift of the energy density varies for different modes. We
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Fig. 3. Scaling of the energy density as a function of the scale factor for heavy i.e.
HRH < mX (left diagram) and light HRH > mX (right diagram) vector DM. The
main contribution to the total energy density comes from the mode k∗ ≡ a(τ : H =

mX)mX . Here, ke ≡ aeHe and kRH ≡ aRHHRH.

see that at the end of inflation (a = ae) the main contribution to the total
energy density comes from modes with the shortest wavelength. However,
after inflation, those modes receive the strongest suppression proportional
to a−4. Note that the energy density of modes with k = k∗ is the least
redshifted. It turns out that the present-day number density of DM particles
could be expressed in terms of number density d〈n∗〉/d ln k at H(T∗) = mX .
After some tedious calculations, we have:

— For DM vector bosons with mass HRH < mX < HI

d〈n∗〉
d ln k

=


1

8π2H
2(1+3w)
3(1+w)

I m
1−3w
3(1+w)

X

(
k
ae

)2
, k<k∗

1
8π2H

2(3w2+3w+2)
(w+1)(3w+1)

I m
2

1+w

X

(
ae
k

) 3(1−w)
(1+3w) , ke > k > k∗

.

— For DM vector bosons with mass mX < HRH

d〈n∗〉
d ln k

=



1
8π2HIγ

2(1−3w)
3(1+w)

(
k
ae

)2
, k < k∗

1
8π2m

3/2
X H

5/2
I γ

−1+3w
3(1+w)

(
ae
k

)
, k∗ < k < kRH

1
8π2m

3/2
X γ

1−3w
1+w H

3(w+3)
2(3w+1)

I

(
ae
k

) 3(1−w)
1+3w , ke > k > kRH

.

Above, the equation-of-state parameter w corresponds to the total energy
density, i.e. p = wρtot. The role of w is to allow for an extra freedom while
describing gravitational evolution during reheating. More microscopically,
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w would be an effective parameter that takes into account the presence of
an inflaton, radiation and perhaps another components of the Universe at
that time. We note that the number density per log frequency has a peak
structure if and only if w ∈ (−1

3 , 1). Then, d〈n∗〉/d ln k is dominated by
modes with k = k∗ ≡ a(τ : H = mX)mX . The observed value of DM
number density, nX(T0), is related to the number density n∗ ≡ 〈n∗〉 at
T∗ : H(T∗) = mX as

nX(T0) = n∗

(
a∗
a0

)3

= n∗
s0

s∗
,

where s0(s∗) refers to the entropy density at T = T0(T = T∗), respectively.
The entropy density is

s∗ =
p+ ρ

T∗
=

4

3

ρR

T∗
=

4κ−2m2
X

T∗
,

Fig. 4. Relations between the Hubble rate at the end of inflation HI and vector
DM mass mX that reproduces the observed relic abundance Ωobs

DMh
2.
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where T∗ is determined by the following condition:

T∗ = TRH ×


(
mX
γ2HI

)1/4
, HRH < mX(

mX
γ2HI

)1/2
, mX < HRH

.

Relations between HI and mX for several values of w and γ that re-
produce the observed value of DM density Ωobs

DMh
2 are shown in Fig. 4. We

limit ourselves to mass mX � HI, since in this case, we expect the tachyonic
enhancement in longitudinal mode production. We see that if the reheat-
ing was extended in time (i.e. for γ = 10−4), then the Hubble rate at the
end of inflation has to be larger than in the case of very efficient reheating
(γ = 10−1) to produce particle with the same mass. Moreover, we notice
that gravitational particle production is most relevant for relatively light
DM vector bosons.

5. Conclusion

In this work, we have demonstrated that massive vector particles that
communicate with the SM sector only through gravity can serve as a viable
DM candidate. It was shown that even in the minimal scenario, there exist
mechanisms, i.e. freeze-in from SM and pure gravitational production from
vacuum fluctuations during inflation that can reproduce the observed relic
abundance of the vector DM. In each case, we showed the viable range in
parameter spaceHI–mX that produces the correct relic abundance. We have
found out that the thermal mechanism of particle production prefers rather
effective scenario for reheating and could produce very heavy (O(1017) GeV)
vector DM, while the pure gravitational production is most relevant for
particles with masses smaller than the Hubble rate during reheating.
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