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STABILITY OF THE ELECTROWEAK VACUUM
IN A SCALE-INVARIANT EXTENSION OF THE SM∗
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We explore the possibility that scale symmetry is a quantum symme-
try that is broken only spontaneously in flat space and apply this idea to
the Standard Model (SM). The one-loop scalar potential is scale-invariant,
since the loop calculations preserve the scale symmetry, with the DR sub-
traction scale generated spontaneously by the dilaton vacuum expectation
value, 〈σ〉. At the quantum level, the Higgs mass is protected although
the theory is non-renormalizable. It is argued that the instability of the
effective potential in the Higgs sector that is driven by the quartic cou-
pling running towards negative values becomes worse in the scale-invariant
version, since the effective potential becomes unbounded from below.
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1. Introduction

In this letter we explore the proposal that scale symmetry is a quantum
symmetry and study its implications for physics beyond SM. However, this
symmetry is broken in the real world. We shall here consider only sponta-
neous breaking of this (quantum) symmetry1. One motivation of this study
is that scale symmetry plays a role in the ultraviolet (UV) behaviour of the
models. In particular, the SM with a classical Higgs mass parameter mφ = 0
has an increased symmetry: it is scale-invariant at the tree level; this was
invoked [1] to protect mφ naturally [2] from large quantum corrections, but
a full quantum study is needed.

Consider a classically scale-invariant theory. One known issue when
studying scale symmetry at the quantum level is that the regularization of
the loop corrections introduces a dimensionful parameter (the subtraction

∗ Presented at the XLIII International Conference of Theoretical Physics “Matter to
the Deepest”, Chorzów, Poland, September 1–6, 2019.

1 By quantum scale symmetry we mean that the full 1PI quantum action is scale-
invariant.

(1823)
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scale µ) which breaks explicitly the scale symmetry, thus destroying the sym-
metry we actually want to investigate2 and affecting the UV properties of
the quantum theory. To avoid this, the UV regularization must preserve
this symmetry. This is done by using a subtraction function µ(σ) which
generates (dynamically) a subtraction scale µ(〈σ〉) when the field σ acquires
a v.e.v. 〈σ〉 after spontaneous scale symmetry breaking, see [3] and recent
examples at one loop [4–8] and higher loops [9, 10]. Here, σ is the Goldstone
mode (dilaton) of the spontaneously broken scale symmetry.

The model we consider is a scale-invariant SM, defined as SM with clas-
sical mφ = 0 and extended by the dilaton. The goal is to use this scale-
invariant regularization to compute quantum corrections to the scalar poten-
tial. The quantum result is scale-invariant, so it can only have spontaneous
scale symmetry breaking, with a flat direction for the dilaton (σ). This re-
sult should be compared to that in the “usual” dimensional regularization
(DR) of µ = constant scale, which breaks explicitly the scale symmetry at
the quantum level.

Let us consider first a simplified scale-invariant (classical) theory (e.g.
[11–27]) of two real scalar fields φ (Higgs-like) and σ. The potential V is a
homogeneous function

V (φ, σ) = σ4W (φ/σ) , where W (φ/σ) = V (φ/σ, 1) . (1)

We assume that V (φ, σ) has spontaneous scale symmetry breaking i.e. that
σ acquires a non-zero v.e.v. 〈σ〉 6= 0. We thus search for such a solution and
for the necessary condition for this spontaneous breaking to happen. With
〈σ〉 6= 0 it is then easy to see that the minimum conditions Vσ = Vφ = 0
(Vα = ∂V/∂α) are equivalent to

W (ρ) = W ′(ρ) = 0 , ρ ≡ φ/σ . (2)

These equations can have a common solution ρ0≡〈φ〉/〈σ〉, if the couplings
satisfy a particular condition (constraint), see below. Then a flat direction
exists in the plane (φ, σ) with φ = ρ0 σ. Indeed, if (〈φ〉, 〈σ〉) is a ground
state with V = 0, then so is (t〈φ〉, t〈σ〉), t real. Besides, the second deriva-
tives matrix Vαβ w.r.t. α, β = φ, σ has det(Vαβ) ∝ (4WW ′′ − 3W ′ 2) = 0 on
the ground state, so a massless state is indeed present corresponding to the
flat direction. Finally, since ρ0 is a root of both W and of its derivative W ′,
then W (φ/σ) ∝ (φ/σ− ρ0)2, while if V depends only on even powers of the
scalar fields (our model below), then the general structure is

W (φ/σ) ∝
(
φ2/σ2 − ρ2

0

)2
. (3)

2 One could use a regularization that does not keep manifest scale symmetry and at-
tempt to restore it “by hand” at the end, but this would miss scale-invariant operators
if the theory is non-renormalizable, see later.
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Note that the vanishing vacuum energy V (〈φ〉, 〈σ〉) = 0 follows from the
(spontaneously broken) scale symmetry, see Eq. (2). A scale-invariant regu-
larization of this theory leads to a scale-invariant quantum potential, which
thus remains of the form of Eq. (1). Hence the above discussion around
Eqs. (1), (2), and (3) remains true at the quantum level, including the pos-
sibility of spontaneous-only breaking of the scale symmetry.

One of the two minimum conditions in (2) fixes the ratio ρ0 = 〈φ〉/〈σ〉
in terms of the (dimensionless) couplings of the theory. Thus, all v.e.v.s of
such a theory, including 〈φ〉 are proportional to 〈σ〉 6=0 which is a parameter
(unknown) of this theory. The second minimum condition, after eliminating
ρ0 between the two equations in (2), gives a relation among the couplings
of the theory in the order of perturbation in which V is computed. This
means one coupling, say λσ (the dilaton self-coupling), is defined in terms
of the rest λσ = f(λj 6=σ) + loops. This relation follows from demanding
that V has a flat direction that is itself a consequence of our requiring that
scale symmetry, which is a quantum symmetry, be broken spontaneously (in
that order). The relation λσ = f(λj 6=σ) + loops is corrected in a given order
of perturbation theory by O(λj) relative to previous order; it is ultimately
related to the vanishing of the vacuum energy V (〈φ〉, 〈σ〉) ∼W (ρ0) = 0, see
minimum conditions (2).

We stress that the above picture, that builds on previous studies [3–
10], is very different from that obtained in the “traditional” DR scheme
(µ = constant scale) that is often used in classically scale-invariant models
e.g. [18–27]; in such a case, scale symmetry is broken explicitly by the (regu-
larization of) quantum effects and then conditions (1), (2) are not true any
more at quantum level and the flat direction is lifted by quantum corrections.

What about the hierarchy problem? In the absence of gravity (not in-
cluded here), the Standard Model has no hierarchy problem. However, this
situation is no longer true under the reasonable assumption that there is
some “new physics” beyond SM, e.g. a large v.e.v. of a new scalar field that
couples to Higgs, etc. In the model we consider, defined by the invariant
version of the SM extended by the dilaton, we have “new physics” beyond
the SM, represented by the v.e.v. 〈σ〉 that breaks spontaneously the scale
symmetry. 〈σ〉 can be very large compared to 〈φ〉 where the latter fixes the
electroweak scale3. We simply enforce such a hierarchy by choosing a very
weak coupling of the visible to the hidden sector of the dilaton [31]. Such a
hierarchy is however stable under quantum corrections, so mφ ∼ 〈φ〉 � 〈σ〉
without tuning at the quantum level [4, 8], and we verify this in our model
at one-loop. This is expected to remain true to all orders in perturbation
theory since scale symmetry is preserved by the regularization and is broken

3 Such a hierarchy can be generated dynamically [28, 29] or as in [30].
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only spontaneously. We thus have an example of a quantum stable hierar-
chy, with a vanishing vacuum energy at the loop level that follows from the
demand of spontaneous-only broken quantum scale symmetry.

In the following, we apply these ideas to the scale-invariant version of
the SM (with mφ = 0) extended by the dilaton. The Higgs and the dila-
ton have a potential dictated solely by the classical scale symmetry and
thus can contain higher dimensional operators such as φ6/σ2, φ8/σ4, etc.
(φ is the neutral Higgs boson). We then compute the one-loop potential
with a scale-invariant regularization, so a flat direction is maintained at the
quantum level. Even if the tree-level potential does not include the afore-
mentioned higher dimensional operators (by tuning their couplings to zero),
they are generated at one loop with finite coefficient [8] or as two loop or
higher counterterms [9, 10] — this means the scale-invariant quantum the-
ory is non-renormalizable. Further, the quantum consistency of the theory
is shown by verifying the Callan–Symanzik equation of the potential in the
presence of these non-polynomial operators, gauge and Yukawa interactions.
We also compare the scale-invariant one-loop potential to its counterpart
computed in the “usual” DR scheme that breaks scale symmetry explicitly
(µ = constant), in the presence at tree level of these (non-polynomial) effec-
tive operators.

If scale symmetry is preserved by one-loop V , there is no dilatation
anomaly which is a result of explicit scale symmetry breaking by quantum
calculations with µ = constant. Contrary to common lore, the couplings still
run with momentum [6–8] since the vanishing of the beta functions is not a
necessary condition for scale invariance. Their one-loop running is identical
to that in the theory with explicit scale symmetry breaking (µ = constant),
but at two loop, they start to differ in theories with spontaneous versus
explicit breaking [7, 10].

This analysis in flat space-time should be extended to include the effects
of gravity which we ignored. Since Einstein gravity breaks scale symmetry,
a natural setup to include such effects is then to consider the Weyl or Brans–
Dicke–Jordan theory of gravity, see examples in [4, 28, 29, 32–38]. In such a
setup it may still be possible to perform a scale-invariant regularization and
then examine such a scale-invariant theory at quantum level.

2. SM with a scale-invariant one-loop potential

2.1. The tree-level scale-invariant potential

Consider the SM Lagrangian with tree-level Higgs mass mφ = 0, so it is
scale-invariant. The Higgs sector is weakly coupled to the “hidden” sector of
the dilaton σ with
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L = |DµH|2 +
1

2
(∂µσ)2 − V0 , (4)

where

H =

(
G+

1√
2

(
φ+ iG0

) ) (5)

and

V0 =
λφ
3!

(
H†H

)2
+
λm
2

(
H†H

)
σ2 +

λσ
4!
σ4 +

4λ6

3

(
H†H

)3
σ2

+ · · · , (6)

where the dots stand for higher powers of H†H. The neutral Higgs (φ) and
dilaton part is

V (φ, σ) =
1

4!
λφ φ

4 +
1

4
λm φ

2 σ2 +
1

4!
λσσ

4 +
λ6

6

φ6

σ2
+ . . . (7)

We take λφ, λσ > 0 and λm < 0 and that the two sectors of φ and σ are
weakly coupled, with |λm| < λφ. Regarding the terms suppressed by powers
of σ, they respect the (classical) scale symmetry of the action, so they can be
present in the theory. They are well-defined since σ acquires spontaneously
a v.e.v. 〈σ〉 6= 0 under conditions that we identify shortly (see (a) in Eqs. (9),
(11) below). One can expand such terms about the ground state, into an
infinite sum of familiar polynomial (effective) operators

λ6
φ6

σ2
= λ6

φ6

〈σ〉2

(
1−2

σ′

〈σ〉
+ 3

σ′2

〈σ〉2
+ · · ·

)
, σ = 〈σ〉+σ′, σ′ : fluctuation.

(8)
However, we prefer to use the form in Eq. (7) since it keeps manifest the
scale symmetry of L. Finally, we keep λ6 6=0 but set to 0 the coefficients of
(H†H)4/σ4 and higher terms.

Consider first λ6 = 0. We demanded spontaneous breaking of scale
symmetry, so we seek the condition for which 〈σ〉 6= 0. The minimum of V
exists if derivatives Vφ = Vσ = 0, giving

(a) : λσ =
9λ2

m

λφ
[1 + loops] and (b) :

〈φ〉2

〈σ〉2
=
−3λm
λφ

[1 + loops] ,

(9)
so also 〈φ〉 6= 0; here, “loops” stands for loop corrections.

Let us then assume that λσ is indeed that of (a) up to “loop” effects that
one can identify order by order in perturbation theory and that we ignore
for the classical discussion here. If (a) is true, we have spontaneous breaking
of scale symmetry and
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V =
1

4!
λφσ

4

(
φ2

σ2
+

3λm
λφ

)2

(10)

with V = 0 at the minimum. A flat direction, corresponding to the Gold-
stone of scale symmetry (dilaton) exists in the plane (φ, σ). The neutral
Higgs acquires a mass m2

φ̃
= (λφ/3)(1− 3λm/λφ)〈φ〉2, while the EW Gold-

stone bosons are massless. Thus, spontaneous scale symmetry breaking trig-
gers EW symmetry breaking, with a vacuum energy V = 0.

Consider now λ6 6= 0, with λ6> 0 for a well-defined V at large φ. Then
Eqs. (9) become

(a) : λσ = ρ2
0

[
2λ6 ρ

4
0 − 3λm

]
+ loops , where

(b) : ρ2
0 ≡
〈φ〉2

〈σ〉2
=

1

12λ6

[
−λφ +

(
λ2
φ − 72λ6 λm

)1/2]
+ loops . (11)

We assume from now on that λσ is indeed given by relation (a), up to small
quantum corrections (ignored here), to ensure spontaneous scale symmetry
breaking; this relation is “protected” by scale symmetry. The potential is
then

V =
λ6

6
σ4

(
φ2

σ2
− ρ2

0

)2(
φ2

σ2
+ ξ2

0

)
, (12)

in agreement with (3). Here, ξ2
0 = (λφ + 2 (λ2

φ − 72λ6λm)1/2)/(12λ6) > 0.
If λ6 → 0, one recovers Eq. (10). The neutral Higgs mass can again be
computed and recovers the above value for small λ6; the dilaton is again
massless, with the flat direction mildly changed by λ6. To conclude, sponta-
neous scale symmetry breaking triggers EW symmetry breaking and ensures
V = 0 on the ground state. We would like to know if this can remain true
at quantum level.

The scale 〈σ〉 of “new physics” beyond SM should be larger than 〈φ〉 ∼
O(100) GeV. In Weyl or Brans–Dicke–Jordan theory of gravity (not consid-
ered here) that can generalise this study, one actually expects 〈σ〉 ∼MPlanck.
So a hierarchy 〈φ〉 � 〈σ〉 may be generated dynamically [28, 29]. Here, we
take a common view of a very weak coupling of the hidden (σ) to visible (φ)
sector: |λm| � λφ [31]; then4 from Eq. (11), λσ � |λm|. This classical “tun-
ing” can ensure a hierarchy of scales 〈φ〉 � 〈σ〉 (λ6 only brings sub-leading
corrections, since the hierarchy is controlled by λm, the main coupling of the
two sectors).

4 This hierarchy is stable under renormalization group [31] due to a shift symmetry,
σ → σ + constant.
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This concludes the picture of the classical potential with scale symmetry.
At the quantum level, one question is whether the (quantum) scale symme-
try, when spontaneously broken, maintains the hierarchy m2

φ̃
∼ 〈φ〉2 � 〈σ〉2

without additional tuning of the couplings. If quantum corrections λ2
φ〈σ〉2

are generated, a tuning of the Higgs self-coupling λφ would be needed and
this would re-introduce the hierarchy problem.

2.2. The one-loop scale-invariant potential

Let us compute the one-loop potential by preserving scale symmetry at
quantum level and thus avoid its explicit breaking by the UV regularization.
The method is described in [4, 6–10]. To do this, note that we already have
a v.e.v. 〈σ〉 that can act as a subtraction scale. The starting point is in
d = 4− 2ε dimensions where the tree level potential is modified into

Ṽ = µ(σ)2ε V , µ(σ) = z σ1/(1−ε) , (13)

Ṽ is thus scale-invariant in d = 4− 2ε. The function µ(σ) generates a sub-
traction scale µ(〈σ〉) when σ acquires a v.e.v. spontaneously. The definition
of µ(σ) follows on dimensional grounds, with z an arbitrary dimensionless
subtraction parameter [7]. If we set µ(σ) = constant, one immediately recov-
ers the “traditional” DR scheme that breaks explicitly the scale symmetry in
d = 4−2ε. We thus have two possible analytical continuations to d = 4−2ε of
the classical scale-invariant theory in d = 4: one is scale-invariant (Eq. (13)),
the other is not (µ = constant), and they lead to distinct quantum theories
(of different symmetry) [8, 10], as discussed below. The one-loop potential
in d = 4− 2ε is then [8, 10]

V1 = Ṽ − i

2

∫
ddp

(2π)d
Tr ln

[
p2 − Ṽij + iε

]
. (14)

This is computed in the Landau gauge. The field-dependent squared masses
are eigenvalues of the matrix of second derivatives denoted Ṽij where sub-
scripts i, j stand for: the EW Goldstone scalars G0, <(G+), =(G+), neutral
Higgs φ and dilaton σ. Unlike the EW Goldstone modes or fermions and
gauge bosons, the field-dependent masses of φ and σ acquire a correction
∝ε relative to their values induced by V alone, from derivatives of µ(σ)

m2
t =

µ(σ)2ε

2
h2
tφ

2 , m2
W =

µ(σ)2ε

4
g2

2 φ
2 , m2

Z =
µ(σ)2ε

4

(
g2

1 + g2
2

)
φ2,

m2
G =

µ(σ)2ε

6

[
λφ φ

2 + 3λmσ
2 + 6λ6

φ4

σ2

]
,

M2
k = µ(σ)2ε

[
m2
k + ε δk

]
, k = φ, σ , (15)
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where mt (ht) is the field-dependent top mass (Yukawa coupling), mW,Z

denote the gauge boson masses and mG denote the three EW Goldstone
field-dependent masses. Finally, M2

k are eigenvalues of Ṽαβ , while m2
k are

eigenvalues of the 2 × 2 sub-matrix Vαβ of Vij with Vαβ = ∂2V/∂α ∂β,
α, β = φ, σ. Then, one finds at one loop (κ = (4π)2)

V1 = µ(σ)2ε

×

V − 1

4κ

 ∑
j=φ,σ;G,W,Z,t

njm
4
j (φ, σ)

(
1

ε
−ln

m2
j (φ, σ)

cj µ2(σ)

)
+

4 (Vαβ Nβα)

µ2(σ)

 (16)

with summation over α, β = φ, σ and Nαβ = µ(µαVβ + µβVα) − µαµβ)V
and µα = ∂µ/∂α. Besides, nj = {3, 1, 6, 3,−12} for j = {G,S,W,Z, t}, with
S = φ, σ; cj = 4π e3/2−γE if j = φ, σ, t,G and cj = 4π e5/6−γE if j = W,Z.
The one-loop term (Vαβ Nβα) is a new correction, absent in the case of
µ = constant (i.e. explicit scale symmetry breaking by the regularization).

The SM one-loop potential U1 becomes

U1 = V + V (1) + V (1,n) , (17)

where

V (1) =
1

4κ

∑
j=φ,σ;G,t,W,Z

njm
4
j (φ, σ) ln

m2
j (φ, σ)

cj (z σ)2
, (18)

V (1,n) =
1

48κ

[ (
−16λmλφ − 18λ2

m + λφλσ
)
φ4 − λm (48λm + 25λσ)φ2σ2

−7λ2
σσ

4 + (λφλm + 6λ6λσ)
φ6

σ2
+ 8λ6 (4λφ − 2λm)

φ8

σ4

+λ6 (192λ6 + 2λφ)
φ10

σ6
+ 40λ2

6

φ12

σ8

]
, (19)

and the U1 is manifestly scale-invariant.
There is also a finite one-loop contribution V (1,n) due to “evanescent”

corrections (∝ ε) to the field-dependent masses of φ and σ (Eq. (15)), induced
by derivatives of µ ∼ σ. Therefore, V (1,n) is not present in the other case
of µ = constant when the regularization breaks the scale symmetry; thus,
V (1,n) can distinguish between these two cases at one loop5. Further, in the
classical decoupling limit of the hidden sector from the SM, λm → 0 and
λ6→0, then V (1,n) vanishes.

5 These two cases are different quantum theories (have different symmetry).
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V (1,n) also contains terms non-polynomial in fields like λmλφφ6/σ2 that
remain present even if we set λ6 = 0.

At two loop, such non-polynomial operators, including higher order φ8/σ4,
etc., emerge as two-loop counterterms [10] even if we set λ6 = 06.

Although we do not show it, one can immediately Taylor expand both
V (1) and V (1,n) about the non-zero v.e.v. of σ, with σ = 〈σ〉 + σ′ and
eventually of φ too, φ = 〈φ〉 + φ′. One then obtains a representation with
only polynomial operators in the field fluctuations (φ′, σ′).

2.3. Absence of dilatation anomaly

Let us analyze the situation of the dilatation current Dµ and its diver-
gence [6, 7]. For a set of fields φj (φ, σ, etc.),

Dµ =
∂L

∂(∂µφj)
(xν∂νφj + dφ)− xµ L ,

∂µD
µ = (dφ + 1) (∂µφj)

∂L
∂(∂µφj)

+ dφ φj
∂L
∂φj
− dL , (20)

with dφ the mass dimension of φ, dφ = (d−2)/2 for a scalar in d dimensions.
For standard kinetic terms and using the equations of motion, we find for a
potential V in d dimensions

∂µD
µ = dV − d− 2

2
φj

∂V
∂φj

. (21)

Consider now that V is scale-invariant at both classical and quantum level as
in our case. Therefore, for a dimensionless parameter ρ, V has the property
V(ρ φj) = ρ2d/(d−2) V(φj) in d = 4− 2ε dimensions (homogeneous function).
Differentiating this equation with respect to ρ and then taking ρ→ 1 gives
2d/(d − 2)V = φj ∂V/∂φj so the r.h.s. of Eq. (21) vanishes. Therefore,
∂µD

µ = 0 at both classical and quantum level, so there is no anomalous
breaking of the quantum scale symmetry. Nevertheless, the couplings still
“run” and have non-zero beta functions with their corresponding poles in L.

To understand this better, let us also see what happens if V is not scale-
invariant in d = 4− 2ε. This happens when V = µ2εV (φj) which is the case
of the “traditional” DR scheme with the explicit scale symmetry breaking,
with µ a fixed scale (not a function of the fields) and V the potential, scale-
invariant in d = 4 (assuming no mass terms). Then V (ρ φj) = ρ4 V (φj), but

6 The two-loop beta functions of such terms are non-zero even if λ6 = 0, so setting
these to zero (at some scale) will not remove them since they are again generated at
a different scale [10].
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V is no longer scale-invariant in d = 4− 2ε. Then from Eq. (21),

∂µD
µ = dµ2ε V − 2(d− 2)µ2ε V (φj) = 2ε µ2ε V = 2ε µ2ελj

∂V

∂λj
. (22)

While at the classical level the r.h.s. vanishes when ε → 0, at the quantum
level the quartic couplings λj in V acquire a pole βλj/ε which cancels the
ε in front, to give a finite non-zero r.h.s. ∂µDµ ∝ βλj (∂L/∂λj). This is the
familiar scale anomaly breaking of the conservation of this current in the
“traditional” DR scheme7,8.

In conclusion, it is scale invariance of the action in d = 4−2ε that ensures
that no scale anomaly is present. This invariance in d = 4− 2ε is lost in the
“usual” DR regularization with explicit breaking (µ = constant). Thus, the
vanishing of the beta function is not a necessary condition for the theory
to be scale-invariant; one must also specify how the quantum theory was
regularized, with or without respecting its scale symmetry. In other words
the non-vanishing of the beta function does not mean the theory cannot be
scale-invariant.

3. Additional comments

It is interesting to note that the chiral symmetry breaking at low en-
ergies can also be viewed as the spontaneous breaking of the scale invari-
ance due to strong interactions. Parametrizing the renormalization scale as
µ = et σ and taking into account the 1-loop running of the strong coupling
constant, dgs(t)

dt = − b0g3s
2 , one finds the renormalization group invariant scale

expressed as

Λss = 〈σ〉e−
1

b0 g
2
s (t) . (23)

This implies that the contributions to the quark masses that are due to
strong interactions can be parametrized by scale-invariant terms in the ef-
fective Lagrangian

δLs = −σ e
− 1

b0 g
2
s (t) q̄q . (24)

The consistency of the boundary values for the running couplings with
high scale physics that may fix the value of 〈σ〉 should be investigated. This
discussion requires that one extends this quantum calculation to the case of
curved space time while respecting this symmetry. The appropriate setup
is in the context of Weyl gravity or Brans–Dicke–Jordan theory of gravity.
For investigations along this direction, see [28, 29, 32–42].

7 Even if at classical level it was conserved.
8 If V contained mass terms, ∂µDµ also contains a “classical” breaking of scale symme-
try term, m2φ2.
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4. Quantum instability

The careful study of the renormalization group improved SM potential
has revealed new extrema located at field strengths larger than 1011 GeV.
The upshot depends critically on the precise value of the measured Higgs
mass and on the measured value of the top quark Yukawa coupling. In
particular, one finds that for the central value of the top mass and for the
central value of the measured Higgs mass, the physical electroweak symme-
try breaking minimum becomes metastable with respect to the tunnelling
from the physical EWSB minimum to a deeper minimum located at super-
Planckian values of the Higgs field strength. The lifetime of the metastable
SM Universe is much larger than the presently estimated age of the Universe,
however the instability border in the space of parametersMtop–MHiggs looks
uncomfortably close, which suggests that the result is rather sensitive to
modifications that can be brought in by the BSM extensions. The ques-
tion of stability in the presence of non-renormalizable operators was raised
in [10]. This question has been studied further in [43]. In particular, a map
of the vacua lifetime in SM with new non-renormalizable scalar couplings
was presented. Moreover, the RGE improvement of the new couplings has
been included and shown to have a significant impact on the resulting life-
time. The results were also obtained by a fully numerical approach instead
of the analytical approximations previously used in the literature.

Now, it is an interesting question how the stability issue gets modified
in the context of the quantum scale-invariant extension of the SM9. First of
all, there appear non-renormalizable operators suppressed by the powers of
the expectation value of the dilaton, the 〈σ〉. The suppression scale needs
to be assumed to be pretty high to avoid significant modifications of the
Standard Model predictions, since all couplings of the additional field σ
which are not assumed numerically small to arrange for the hierarchy of
the EW scale are suppressed by 〈σ〉. Besides, the new, with respect to the
SM, corrections to the couplings of the non-renormalizable operators are
proportional to powers of the small couplings λσ, λm. Hence, the influence
of the non-renormalizable operators in the stability of the EW vacuum is
the same in the pure SM and in the quantum scale-invariant SM. However,
the interesting new effect does appear and it is related to the exact scale
invariance of the potential. The result of this invariance to all orders in
perturbation theory is the general structure of the scalar potential which
takes the form of

Veff(φ, σ) = M4W (θ) , (25)

where M2 = φ2 + σ2 and tan(θ) = φ
σ . This structure makes it obvious

that the running of the Higgs quartic coupling λeff towards negative values
9 This section is based on the work with Paweł Olszewski, paper in preparation [44].
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implies that the function W (θ) becomes negative for θ > θ0 for certain
value θ0 corresponding to the vanishing effective potential. However, if such
a finite θ0 does exist, this implies an incurable instability, since by making
M suitably large for θ > θ0, one can make the effective potential as negative
as one wishes. The upshot is that to stabilise the electroweak vacuum in the
simplest quantum scale-invariant extension of the SM, one has to prevent the
effective Higgs quartic coupling from becoming negative. Precise numerical
calculations confirm the validity of the reasoning sketched above. However,
one should notice that the coupling to gravity should be carefully taken
into account. When one couples the flat space action to Weyl gravity or to
Brans–Dicke gravity [39–42, 45], the picture may become modified.

5. Conclusion

We explored the possibility that scale symmetry is a quantum symmetry
of the SM that is broken only spontaneously. Following previous develop-
ments on this idea, we considered the case of the classically scale-invariant
version of the SM which has vanishing tree-level mass for the Higgs (φ) and
is extended by the dilaton σ (the Goldstone mode of scale symmetry). The
v.e.v. 〈σ〉 6= 0 breaks scale symmetry spontaneously and generates dynami-
cally a subtraction scale µ ∼ 〈σ〉. The classical scalar potential is dictated by
scale symmetry and may contain non-polynomial effective operators such as
φ6/σ2, etc.; these may be expanded into a sum of infinitely many polynomial
operators in fields (suppressed by 〈σ〉).

The one-loop computation of the potential respected the scale symmetry
of the classical Lagrangian. As a result, a scale-invariant one-loop potential
for the Higgs and dilaton is obtained. The quantum potential has corrections
from gauge and Yukawa interactions and also from the higher dimensional,
non-polynomial operators. The latter were included in the classical La-
grangian and their couplings are one-loop renormalized, with beta functions
that we computed from the potential (and which are otherwise difficult to
compute by other means). Tuning the couplings of these non-polynomial
operators to zero at the tree-level will not allow to avoid their presence at
the quantum level; they re-emerge at the loop level with a finite one-loop
coefficient and as two-loop counterterms, due to the non-renormalizability
of theories with quantum scale invariance.

It has been argued that the instability of the effective potential in the
Higgs sector that is driven by the quartic coupling running towards negative
values becomes worse in the scale-invariant version, since the effective po-
tential becomes unbounded from below. This presentation has been based
on [10, 43, 44, 46].
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