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MULTIFIELD FALSE VACUUM DECAY:
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As in boiling super-heated liquid, first-order phase transitions in QFT
arise from an abrupt decay of an excited state of false vacuum into an ener-
getically more favorable minimum of energy through bubble nucleation. We
review an efficient semi-analytical approach to compute such a tunneling
decay rate with any number of scalar fields and space-time dimensions. It
is based on exact analytical solutions of piece-wise linear potentials with an
arbitrary number of segments that describe any given potential up to the
desired precision. Contributions beyond the linear order as well as the gen-
eralization to more fields are considered and computed through analytical
linear expansions within a few iterations. Thereby, this approach provides
a fast and robust method for evaluating tunneling decay in theories with
multiple scalar fields.
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1. Introduction

As a super-heated liquid boiling into vapor, the decay of the false vacuum
is a first-order phase transition of a state of vacuum, localized in a minimum
of the potential, into a more favorable lower state of energy. It is triggered by
quantum and/or thermodynamic fluctuations of the fields, where the state
tunnels or passes over the potential barrier. This complex phenomenon
in the framework of QFT appears in different contexts of physics, from
particle physics [1–4], cosmology [5–8], baryogenesis [9, 10] to condensed
matter physics [11, 12], among others.

In Section 2, we introduce the main basics of the decay rate in the
framework of multi-field and review a particularly closed form solution [13]
that is the skeleton of our method. We develop the main ideas of polygonal
bounce in Section 3, from the single to multiple fields and conclude with an
outlook in Section 4.
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2. Vacuum decay: General formalism

We wish to consider a scalar field theory on potentials with more than one
minimum as on the left of figure 1; where the state of the vacuum at the local
minimum is classically stable but unbalanced due to the quantum and/or
thermodynamic fluctuations of the fields. Such a decay can be derived in
the WKB approximation of the Schrodinger equations, real time formalism,
among other methods. One of the most known and elegant derivations is
given by Coleman and Callan [3], in the Euclidean Feynman path integral
in the saddle-point approximation (~ → 0), where the amplitude of the
transition is proportional to

Z ∼
∫
Dϕ eSE[ϕ]/~ . (1)
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Fig. 1. (Color online) Left: An example of a potential with two minima with
unstable false state of vacuum at ϕ+ and a stable true one at ϕ−. Center: The
potential on the left after an analytic continuation into the Euclidean space. The
field starts in a non-trivial value of the field ϕ0 such that ends up at the true
vacuum at infinity. Right: The piece-wise linear potential with two segments in
black/blue circumscribed on the potential V in gray.

In this semi-classical limit, the most general expression of the decay
probability per unit volume per unit time is provided by

Γ

V
= A e−SE/~ (1 +O(~)) , (2)

where the pre-factor A depends on functional determinants and represents
the loop correction of the fluctuations of the fields. This contributions are
more involved and are suppressed by the exponential factor. Therefore, the
main contribution dominated by the Euclidean action SE for any number of
space-time dimensions D and fields nϕ is

SE =

∞∫
−∞

dDx

(
1

2

nϕ∑
i

∇ϕ2
i + V (ϕ)

)
. (3)
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Note that in the transition from Minkowski to Euclidean space, there is
only a minus sing difference of the potential VM → −VE or an Euclidean con-
tinuation of the time component. It was proven by [14, 15] that the solution
ϕ is invariant under D Euclidean dimensions, for D > 2 and any number of
fields. This implies that one can re-write and simplify action (3) by using
spherical coordinates in a D-dimensional Euclidean space. Thereby, ϕ be-
comes a function of the radial coordinate ρ =

(
τ2 + |~x|2

)1/2, and remaining
D − 1 angles are integrated out as

SE ≡
2π

D
2

Γ
(
D
2

) ∞∫
0

ρD−1dρ

(
1

2

nϕ∑
i

ϕ̇i
2 + V

)
, (4)

where the leading contributions are the field configurations that solve the
Euler–Lagrange equations

d2ϕi
dρ2

+
D − 1

ρ

dϕi
dρ

=
∂V

∂ϕi
, (5)

called the bounce; other possible field configurations are exponentially sup-
pressed. This solution contains a well-defined finite energy and extremizes
the action non-trivially, thereby, the boundary conditions are defined as

ϕi(0) = ϕ0 6= ϕ+ ,
dϕi
dρ

∣∣∣∣
0

= 0 , lim
ρ→∞

ϕi (ρ) = ϕi,+ . (6)

We can forget about the context that led us to derive these equations and
interpret ϕi(ρ) as the position of a particle with time ρ, (5), moving in hyper-
surface −V and subject to a somewhat peculiar viscous damping force with a
coefficient inversely proportional to time. This non-trivial term comes from
the addition of extra number of space-time dimensions required in QFT,
while in quantum mechanics it is simply D = 1. In order to satisfy the
boundary conditions, the initial particle must start in a value outside the
false vacuum ϕ+ at time ρ = 0, as in the center panel of figure 1, otherwise it
hits the trivial solution. Due to its damping term, if ϕ0 is very far from the
true vacuum φ−, the particle undershoots, while if it is too close, the particle
overshoots ϕ+. Thereby, there is always an intermediate point that satisfies
all boundary conditions, as proven by Coleman. In the analogy with the
super-heated fluid, the damping term can also be understood as the energy
spent in the surface tension of the bubble. Unlike quantum mechanics, this
term allows phase transitions effects even without barrier.
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Except for the case of quantum mechanics D = 1, these equations are
almost impossible to solve analytically and are numerically difficult for the
given boundary conditions (6). It is even more difficult for more than inter-
acting fields, where the set of equations are coupled and the trajectory in
field space (see figure 4) is curved (non-trivial). Nevertheless, for the single
scalar field case, there are models where the solution can be found in closed
form. One of the simplest exact solutions is the piece-wise linear potential,
shown in the right panel of figure 1. The closed form bounce in D = 4
space-time dimensions is given by joining the solutions of each piece of the
potential

dV

dϕ
= 8aϕ+ V0 , ϕ(ρ) = v + aρ2 +

b

ρ2
, (7)

where a is constant that defines the slope of the line, and b and v are con-
stants of integration. The generalization of this simple solution to any num-
ber of segments, space-time dimension and fields is what we called the polyg-
onal bounce [16]. This solution constituted the basic idea of our method,
which finds the bounce solution for a general potential up to desired precision
in a quasi-analytical form. In the next sections, we describe this simple case
and progressively generalize it to multi-fields and space-time dimensions.

3. Polygonal bounce

In this section, we introduce the semi-analytical method to compute the
decay rate in multi-field potentials with an arbitrary number of fields at
finite and zero temperature up to desired precision, called polygonal bounce
and developed in [16].

We start from the pure single field (polygonal) linear potential in Sec-
tion 3.1 and compute the action for a benchmark model. We introduce
second order terms in the potential through perturbative corrections in Sec-
tion 3.2, where the convergence improves. In Section 3.3, we show how to
compute the decay rate pre-factor that comes from loop corrections. We re-
view the basic ideas for the multi-field potential in Section 3.4, and end with
the description of the upcoming package [17] of the method in Section 3.5.

3.1. Single field polygonal bounce

Consider a piece-wise linear potential with an arbitrary number of seg-
ments circumscribed by the potential V , as shown in the top left panel of
figure 2; in particular, the case of two linear pieces of the potential, i.e.N = 3
field points, and D = 4 was described in Section 2 and developed carefully
in [13]. For any number of field points N and space-time dimensions, the
solution is
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ϕs(ρ) = vs +
4

D
asρ

2 +
2

D − 2

bs
ρD−2

, (8)

where as is a constant fixed by the potential, and vs, bs and Rs are constants
by the boundary conditions from the matching of each segment (see [16] for
more details). The potential with N = 7 field points (black/blue line) and
its bounce solution are shown in the top left and top right panels of figure 2
respectively.
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Fig. 2. (Color online) Top left: The polygonal potential with N = 7 field points in
black/blue, circumscribed by the actual potential V in gray. Top right: The bounce
field configuration of the polygonal potential on the left. Bottom: The bounce
action S(N)

D for different values of energy gaps between the false and true vacua. It
is computed with the polygonal bounce approach for different field point values N
normalized to the maximalN = 400 uniform segmentation inD = 4. It is compared
with other packages in the literature as CosmoTransition [18], AnyBubble [19].

The boundary conditions to obtain v, b and R come from the segmen-
tation ϕ(Rs) = ϕ̃s, continuity ϕs(Rs) = ϕs+1(Rs), and differentiability
ϕ̇s(Rs) = ϕ̇s+1(Rs) of the bounce, which determine the complete set of coef-
ficients and radii R of the polygonal bounce solutions. We found that these
conditions can be solved analytically if and only if we solve the equation

asR
D
s −

D

4
(ϕ̃s+1 − vs)RD−2

s +
D

2 (D − 2)
bs = 0 (9)
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in a closed form, which is simple for D = 2, 3, 4, 6 and 8 space-time di-
mensions. These equations are left with a single parameter that has to be
computed numerically when N > 3. Nevertheless, since a part of the so-
lution is known in a closed form, this parameter is conveniently chosen to
be the initial radius R0 instead of the ϕ0, which is more stable and simpler
to obtain, in particular in the thin wall limit1. While some completely nu-
merical packages in the literature fail in the thin wall regime, our method
computes the bounce and with similar speed in both thick and thin lim-
its. Moreover, this approach solves the numerical instabilities when ρ → 0
boundary ρ→∞ with its semi-analytical behavior.

As our benchmark, we present a linearly displaced quadratic potential
defined as V = λ

8 (ϕ2 − v2)2 + ε(ϕ−v2v ) with λ = 1/4 and v = 1, as shown
in the top left panel of Fig. 2 in gray. Its resulting bounce action is on the
bottom, computed with the polygonal method for different field point values
and normalized to 400 points. The solid lines show the convergence of the
action with respect to the number of segments N in D = 4 which goes below
permille level accuracy with O(100) field segments. Each line corresponds
to different ε that defines the differences in energy of the two minima, i.e.
ε ∝ |ṼN − Ṽ1|. The inset shows the same for a smaller number of segments
and the dotted lines show the comparison to other methods and tools. It
includes CosmoTransition [18], AnyBubble [19], and shooting method. This
approach was also tested in a model with the known exact bounce solution
and in D = 3, where the convergences are similar.

Note that since the number of field points N is arbitrary, one can in-
crease the number of segments until the actual potential is fully described.
The exact solution of the bounce is provided when the number of segments
goes to infinity N → ∞. Nevertheless, few segments O(10) find a relevant
precise action, comparable to other methods in the literature. Besides, the
boundary conditions are solved analytically, which makes our method robust
and relatively fast to compute the decay rate. In general, we found that the
pre-factor contributes within O(1) percent to the decay rate, thereby ex-
tremely high precision of the bounce is unnecessary since it is overcome by
the quantum and/or thermodynamic fluctuations of the bounce.

3.2. Extending polygonal bounce

In this section, we describe the inclusion of terms beyond linear order
of the potential to the bounce through a linear perturbation around the

1 As in [2], when the bounce ϕ is very close to the true vacuum ϕ̃1, the solution is
given by ϕ(ρ)− ϕ̃1 = 2(ϕ0 − ϕ̃1)ID/2−2(mρ)/mρ where m2 ≡ V ′′(ϕ̃1). Thereby, the
initial condition ϕ(Rin) ≡ ϕ0 is exponentialy fine tuned, especially in the thin wall
limit where Rin � 1/m.
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polygonal bounce. This procedure exploits the semi-analytical properties
of the polygonal bounce to compute the corrections completely analytically.
The inclusion of non-linear terms might describe the potential more suitably,
as shown in the top left panel of figure 3 for N = 7 field points. In such
cases it significantly enhances the converge of the action.
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Fig. 3. (Color online) Top left: The polygonal potential with N = 7 field points in
dashed black/blue and with the inclusion of non-linear terms in solid black/blue,
circumscribed by the potential V in gray. Top right: The bounce field configuration
of the polygonal potential on the left, PB dashed and extension PB solid. Bottom:
The bounce action S(N)

D for different values of energy gaps between the false and
true vacua, similar to figure 2, and computed for different field point values N
normalized to N = 400 uniform segmentation in D = 4. The results are compared
with other methods and polygonal bounce in gray.

To introduce this procedure, consider the polygonal bounce ϕ = ϕPB as
an Ansatz field configuration to solve the equation of motion of a general
potential V as

ϕ̈PB +
D − 1

ρ
ϕ̇PB − 8a = δdV (ϕPB(ρ)) , (10)

where δdV (ρ) is defined as residual term that comes from the non-linear
contributions of the potential and vanishes on the piece-wise linear potential.
These contributions can be taken into account by the inclusion of a linear
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expansion of the field ϕ→ ϕPB +ξ and Taylor series of the potential around
the polygonal bounce ϕPB of equation (10)

ξs(ρ) = νs +
2

D − 2

βs
ρD−2

+
4

D
αsρ

2 + Is(ρ) , (11)

V = Ṽs − ṼN + ∂Ṽs (ϕs − ϕ̃s) +
∂2Ṽs

2
(ϕs − ϕ̃s)2 + . . . , (12)

which implies

Is =

ρ∫
ρ0

dy y1−D
y∫

ρ1

dxD−1∂2Ṽs (ϕPB − ϕ̃s) , (13)

where the constants ∂Vs, ∂2Vs, . . . are determined by matching the values
and (higher) derivatives of V , ρ1, ρ1. When N increases, the segmentation
becomes arbitrarily dense and thus the terms beyond the linear one in (12)
become progressively negligible.

The boundary conditions are the same as for the polygonal bounce,
ϕs(Rs) = ϕs+1(Rs+1) = ϕ̃s and ϕ̇s(Rs) = ϕ̇s+1(Rs+1), where they can
be solved completely analytically after a linear expansion around the radii
from the polygonal solution as

Rs → Rs (1 + rs) , rs � 1 (14)

which makes this contributions fast and convenient to implement. The ac-
tions from the polygonal bounce and its extension are displayed in the bot-
tom panel of figure 3 as gray (top) and color (bottom) solid lines respectively.
In this case, the convergence is up to three times faster than the pure polyg-
onal bounce.

3.3. Pre-factor: loop correction

The properties of the polygonal bounce solution can be exploited to
compute the pre-factor of the decay rate Eq. (2) semi-analytically. This
loop correction was originally derived in [3] and studied in different aspects
that include numerical methods in D = 3 [20, 21] and D = 4 [22, 23],
precision calculations in presence of gauge interactions [24], scale-invariant
instantons and extended gauge theories [25]. Nevertheless, not many explicit
analytical results on the pre-factor are available with a notable exception of
the thin wall limit [26].

The total decay rate at one loop in D = 4 is

Γ =

(
S4

2π

)2 ∣∣∣∣det′(−∂2 + V ′′(ϕ(ρ)))

det(−∂2 + V ′′(ϕ−))

∣∣∣∣−1/2

e−S4−δ4 , (15)
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where S4 is the semi-classical action computed from the bounce solution ϕ(ρ)
and det′ is the determinant of the fluctuation operator O, i.e. the second
variation of the action. Finally, δ4 is the perturbative one-loop counterterm
of the action that absorbs the renormalization infinities.

As in the work of Dunne [23], the fluctuation operator is decomposed
in a multipole expansion due to the O(4) symmetry of the semi-classical
solution

Ol = − d2

dρ2
− 3

ρ

d

dρ
+
l(l + 1)

ρ2
+ V ′′(ρ) . (16)

Here, it is convenient to use the Gel’fand–Yaglom theorem [27] that relates
the ratio of determinants to the value of the ratio of eigenfunctions ψl(ρ) of
Ol evaluated at infinite Euclidean time

detOl
detOfree

l

= Rl(ρ =∞)(l+1)2 , Rl(ρ) =
ψl(ρ)

ψfree
l (ρ)

. (17)

One can consistently compute the eigenfunctions of Eq. (16) on the ex-
tending polygonal bounce solution, i.e., Eqs. (8) and (11), where V ′′ = ∂2Ṽ
is constant introduced in (12). With this simplification, the solutions of the
fluctuation operator can be obtained in a closed form for each segment and
joined to get a new semi-analytical solution of the pre-factor. This approach
can be expanded to an arbitrary number of space-time dimensions and help
us understand the pre-factor in multiple scalar field potentials.

3.4. Multi-field polygonal bounce

In this section, we describe the generalization of the polygonal bounce
approach to an arbitrary number of scalar fields. We start with an Ansatz
ϕ̄is obtained from an chosen set of points in field space ϕ̃is that connects
the two minima, for instance a straight line as shown in the top left panel
of Fig. 4; and its corresponding longitudinal polygonal bounce is in the top
right, where i is the field index i = 1, . . . , nf and s = 1, . . . , N − 1 for each
segment.

Similar to Section 3.2, we improve the Ansatz by a linear expansion
around the initial estimate ϕis(ρ) = ϕ̄is + ζis in the equation of motions

¨̄ϕis +
D − 1

ρ
˙̄ϕis︸ ︷︷ ︸

8āis

+ ζ̈is +
D − 1

ρ
ζ̇is︸ ︷︷ ︸

8ais

=
dV

dϕi
(ϕ̄+ ζ) , (18)

together with a linear Taylor expansion of the potential around the initial
field points diṼs = diV (Rs), as

dV

dϕi
'

diṼs + diṼs+1 + d2
ij Ṽsζ̃js + d2

ij Ṽs+1ζ̃js+1

2
, (19)
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Fig. 4. Top left: Path in field space with the initial straight dashed line Ansatz ϕ̄
with empty circles and the first iteration of the PB solution in solid black/blue and
full circles; the result from shooting is shown in black/purple. Top right: Iterations
of the bounce field configuration for ϕ1(ρ). Bottom: Multi-field polygonal solution
in D = 4 with N = 15 segmentation points. The starting Ansatz is the straight
dashed line connecting the two minima, shown as black dots, together with the
saddle point. The solid lines are subsequent iterations that converge to the final
path that solves the bounce equations. Insets show the action compared to other
approaches.

where the gradient in (19) has to be expanded up to the second derivative
of the potential since it contains information of the interaction of the fields
and describes curved paths in field space. In contrast to the single field case,
the idea is to look for a set of new field points ϕ̃is + ζ̃is that satisfies the
boundary conditions ϕis(Rs) = ϕis+1(Rs) and ϕis(Ri) = ϕis+1 and solves
equations (18) on the linear expansion (19) as shown in figure 4. This is
realized iteratively and it converges once the path in field space does not
change anymore, i.e. ζ̃is ' 0. The multi-field bounce solution for a constant
derivative of the potential dV/dϕi is again polygonal type

ζis(ρ) = vis +
2

D − 2

bis
ρD−2

+
4

D
aisρ

2 . (20)

Here, ais corresponds to the leading constant expansion of the gradient of
the potential around some deformed path, defined by ϕ̃is+ ζ̃is. Since part of
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the solution is known in a closed form, it lets us to transform the boundary
conditions into a system of linear equations, which are solvable efficiently.
Thereby, the multi-field polygonal bounce is computed fast and increases lin-
early with the number of fields and field points. As an example, we consider
a simple two field potential V (ϕi) =

∑2
i=1(−µ2

iϕ
2
i +λ2

iϕ
4
i )+λ12ϕ

2
1ϕ

2
2 + µ̃3ϕ2

with µ2
1, µ2

1 = 100, λ1 = 0.1, λ2 = .3, λ12 = 2 and µ̃3 as shown in Fig. 4.
From the insets, the PB action is quite precise even with N = 15 and reaches
roughly permille precision with N = 100.

3.5. Package: FindBounce

The creation of a robust and efficient package for the evaluation of the
lifetime of a false vacuum is in progress [17]. It is based on the polygonal
bounce idea, which grows linearly with the number of fields and field points,
and computes the bounce transition in quantum and thermal multi-field
theories up to the desired precision at a competitive speed. The package
is called FindBounce, it is simple to use with the native Mathematica look
and feel. It is easy to install and comes with detailed documentation and
physical examples. It computes the bounce action in a non-trivial 20 field
potential in 3 seconds and within 1% accuracy.

4. Conclusions and outlook

We developed a semi-analytical, simple and efficient approach to com-
pute the false vacuum decay rate of potentials with any number of fields up
to the desired precision at zero and finite temperature. Besides, it provides
an analytical insight into the pre-factor and the multi-field phase transitions
of the vacuum. This approach is also useful to study potentials with multiple
minima and resonant tunneling effects [28]. The convergence is linear con-
cerning the number of fields and segments, which make it fast and robust.
Since part of the solution is known in polygonal bounce, the bounce is com-
puted by finding a more stable initial condition that allows us to compute
in very thin wall regimens. We are releasing a Mathematica package that
computes the bounce action at competitive speed: around 3 seconds for 20
fields potential and within 1% accuracy.
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