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In this contribution, we present a detailed study of the effects that
decrease the numerical precision in computing QCD radiative corrections to
shape distributions at the next-to-next-to-leading order (NNLO) accuracy.
For a specific example, we study the contributions to the distribution of
soft-dropped heavy-jet mass. We focus on the edge of the phase space
where the shape value becomes small and the cross section is dominated by
large logarithmic contributions. We use the CoLoRFuLNNLO subtraction
method that defines local subtractions in all single and double unresolved
regions of the phase space.
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1. Introduction

Although high-energy lepton colliders do not operate at present, the
interest for observables defined for these machines seems to endure. On the
one hand, the reason is the large amount of high quality data collected at
previous experiments on the Large Electron Positron collider, while on the
other, lepton collisions offer a possible path for the construction of machines
of the future, like the FCC-ee [1].
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The early discovery of the Higgs boson [2, 3] in the LHC program raised
expectations of discovering several other new elementary particles as well,
but as of now this hope did not fulfill. This puts a lot of pressure on both
experimenters and theorists, as signatures of new physics have to be also
searched differently. In absence of a clear peak signaling for a new particle
created in particle collisions, distributions taken at experiments and pre-
dicted in model calculations have to be meticulously compared, too. In such
searches, emphasis is put on precision, as differences between observation
and model prediction can only be noticed if both have sufficiently small un-
certainties. On the experimental side, uncertainties are decreased through
acquiring more data and refining the detector apparatus. On the theory
side, a straightforward, though tedious way to improve the precision of the
predictions is to increase the perturbative order of the computation.

The never-ending quest for precision is important not only in new physics
searches but in the measurement of fundamental parameters of the Standard
Model, such as the strong coupling. If the aim is a measurement for strong
coupling, the predictions used for that purpose have to fulfill some crite-
ria [4], namely the fixed-order prediction should contain at least the NNLO
QCD corrections, and for further refinement, it should be matched to ana-
lytic results of all-order resummations of large logarithmic contributions.

A significant source of uncertainty in the theoretical predictions is due to
the modeling of the hadronization corrections. Besides a dispersive model [5]
developed for lepton collisions, we have only phenomenological models for
describing these effects. Without hadronization models derived from first
principles, the only way to minimize uncertainties associated with it is to
decrease the size of these contributions [6]. This can be achieved by defining
new observables or modify existing ones such that they would become less
sensitive to effects happening at scales of O(1GeV) where hadronization
occurs. One possible way to modify existing observables is to apply the so-
called soft-dropping technique [7] to some well-established observables. This
technique alters the particle content of the event such that it removes par-
ticles particularly sensitive to hadronization. For some of these observables,
it was possible to obtain all-order resummed predictions [8–13].

When all-order results are calculated, one important step in the compu-
tation is the validation of results. One possible way is offered by checking
the resulting logarithmic structure with available fixed-order calculations in
regions of phase space where these logarithms are enhanced. These checks
stretch the fixed-order calculations to their limits because the computation
has to be performed near the edges of the available phase space where loga-
rithmic contributions dominate. In this report, we examine the soft-dropped
version of heavy-jet mass ρ [8]. We examine the numerical precision that can
be achieved for this observable in a computation at NNLO accuracy for very
small values of ρ using the CoLoRFuLNNLO subtraction scheme [14, 15].
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2. The soft-dropped heavy-jet mass

In our definition of heavy-jet mass, we first cluster all the partons in the
final state according to the e+ e− variant1 of the kT algorithm [16]. After the
initial clustering, we end up with two, back-to-back jets. The directions of
these two jets divide the event into two hemispheres, denoted arbitrarily by R
and L. In each of these hemispheres, a Cambridge/Aachen jet algorithm [17]
is used in such a way that records of all pseudojet mergings are kept. Next,
we consider each hemisphere separately, and start with the last pseudojet.
Undoing the last merging leading to this pseudojet, we test if the following
inequality is satisfied:

min [Ei, Ej ]

Ei + Ej
> zcut , (1)

where Ei and Ej are the energies of the two pseudojets before the last merg-
ing, zcut ∈ [0, 1), and it governs the degree of soft drop applied on the pair.
Note that this is a special version of soft drop defined in Ref. [8] with β = 0.
If inequality (1) is fulfilled, we keep both pseudojets and continue with un-
merging them and applying the same test for both unmergings separately.
If the test fails, we discard the tracks building up the softer pseudojet and
continue with unmerging only the harder pseudojet.

When the soft-drop procedure is iteratively applied to all pseudojets of
both hemispheres, we obtain the hemisphere masses using only those tracks
that survive after the previous steps of tests. The soft-dropped heavy-jet
mass is obtained from

ρ =
max

[
m2

R,m
2
L

]
E2

J

, (2)

where mR and mL correspond to the two hemisphere masses computed from
the remaining tracks and EJ is the energy of the hemisphere having larger
hemisphere mass.

In this contribution, we focus on computing the fixed-order predictions
in NNLO QCD for ρ� 1.

3. Numerical stability issues related to subtraction schemes

Beyond leading order in QCD perturbation theory, kinematic singulari-
ties arise due to unresolved emissions of partons. After integrating over the
phase space, these singularities cancel with virtual corrections order-by-order
for all infrared-safe observables. In practical applications, due to complexity,
it is not possible to perform the related phase-space integrals analytically.
To overcome this problem when only one unresolved parton may be radiated,
subtraction schemes [18–21] were invented where all kinematic singularities

1 To obtain the e+ e− variant, we turned off the possibility to recombine into a beam
jet.
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associated to unresolved emissions are subtracted from the real radiation
cross section, and in order to leave the cross section unchanged, added back
after summing and integrating over the unresolved degrees of freedom. In
this way, all real emissions are regularized and the integrated subtraction
terms ensure that the virtual corrections become finite in d = 4 dimensions.

To facilitate the required numerical integration, the computation has to
be carried out with a numerical computer program. Due to internal organi-
zation of computers, real numbers can only be stored with a finite number
of digits. This results in a loss of precision when sufficiently large numbers
(regardless of sign) are stored. In practical terms, this means roughly four-
teen significant digits in end results. This numerical precision is more than
sufficient for the end results but when higher-order computations are carried
out, this limitation in precision can be troublesome at intermediate steps.
The closer the phase-space points are generated to the kinematic singular-
ities of unresolved emissions, the larger the cross section becomes. Hence,
the analytically correct subtraction terms may lead to large numerical mis-
match due to the finite number of stored digits. Thus, we end up with
ubiquitous incorrect large numbers spoiling the convergence of our Monte
Carlo integration.

This behavior was observed early on when the first NLO QCD computa-
tions were performed and as a solution, a small (technical) cut was imposed
on the physical phase space such that

ymin ≤ min
i,j

(pi + pj)
2

Q2
, (3)

where Q is the CM energy of the collision and ymin is chosen not to have
any observable effect on the computed cross section. This is achieved by
computing the cross section for various values of ymin and the value is selected
for which the cross section starts to saturate.

Strictly speaking, this operation should also be performed for all the
distributions computed, and select a value for ymin for which all the distri-
butions saturate. In NLO calculations, it was found that if a suitable value
is found which corresponds to a saturated cross section, this value also works
for distributions.

When distributions are required for small values of an observable, extra
care has to be taken because it is very easy to significantly cut into impor-
tant regions of phase space altering the shape of the distribution without
having a major effect on the cross section. Hence when beyond leading order
calculations are carried out for small values of an observable, i.e. close to
the edge of the phase space, it is inevitable to investigate the behavior of
shape of the distribution as a function of the ymin parameter. This is even
more important in NNLO computations where the singularity structure is
much more complex than at NLO.
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4. NNLO QCD contribution to the soft-dropped heavy-jet mass
for small values

The cross section for the soft-dropped heavy-jet mass, treating the strong
coupling as the perturbative parameter, can be written as

σ[ρ] = σLO[ρ] + σNLO[ρ] + σNNLO[ρ] + . . . , (4)

where the beyond LO contributions can be decomposed as

σNLO[ρ] = σRNLO[ρ] + σVNLO[ρ] ,

σNNLO[ρ] = σRR
NNLO[ρ] + σRVNNLO[ρ] + σVV

NNLO[ρ] . (5)

In (5), the R and V superscripts indicate the presence and number of real
and virtual parton emissions. All contributions to the distribution of the
heavy-jet mass have to be analyzed separately to prove the independence of
the predictions of the technical cut parameter.

We show the double-virtual, real-virtual and double-real contributions
to the distribution of ρ in Figs. 1–3 obtained at least at four different values
of ymin. For illustrative purposes, we chose the range of ρ ∈ [e−14 ' 10−6, 1],
and used zcut = 10−4 to parametrize the soft-drop procedure. We see that
over this full range, the distribution of σVV

NNLO[ρ] is independent of the tech-
nical cut for ymin ≤ 10−7. The distribution of σRVNNLO[ρ] is independent of the
technical cut if ymin ≤ 10−8 except maybe for the first bin. From the point
of view of numerical stability, the σRR

NNLO[ρ] term is the most challenging.
The distributions with ymin ≤ 10−8 appear independent of the technical cut

d
σ

d
lo
g
ρ
[p
b
]

log ρ

ymin = 10−4

ymin = 10−5

ymin = 10−6

ymin = 10−7

ymin = 10−8

ymin = 10−9

zcut = 10−4, β = 0

Fig. 1. The double-virtual (VV) contribution to the soft-dropped heavy-jet mass
computed for various values of the technical cut parameter (ymin).
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Fig. 2. The same as Fig. 1 but for the real-virtual (RV) contribution.
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Fig. 3. The same as Fig. 1 but for the double-real (RR) contribution.

for log ρ ≥ −10. For smaller values of the heavy-jet mass, we also find in-
dependence of ymin but only within the large uncertainties of the numerical
integration. We conclude that ymin ≤ 10−8 is suitable for the real-virtual
and ymin = 10−7 is so for the double-real contributions. Decreasing the value
of ymin in the latter case does not give significantly different distributions
due to the large uncertainties. In this case, the predictions with ymin = 10−7

and 10−9 are compatible apart from the second bin where the difference is
roughly one sigma. The double-virtual contribution being finite does not
require a very small technical cut.



Soft-Dropped Observables with CoLoRFuLNNLO 1897

In order to see the relative size of each of the contributions, we show those
together in Fig. 4 using the optimal values for the technical cut parameter.
Finally, the total NNLO QCD contribution to the soft-dropped heavy-jet
mass distribution with zcut = 10−4 is computed for the first time and shown
in Fig. 5.
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RR, ymin = 10−7

zcut = 10−4, β = 0

Fig. 4. The three contributions at NNLO QCD to the distribution of soft-dropped
heavy-jet mass with the technical cut selected to be the optimal choice.
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Fig. 5. The total NNLO QCD contribution to the soft-dropped heavy-jet mass.
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5. Conclusions

We computed for the first time at fixed-order in perturbation theory
the soft-dropped version of the heavy-jet mass observable defined in lepton
collisions for small values at NNLO accuracy in QCD. As we were interested
in the small values of the observable, we have to find the optimal value of the
technical cut parameter for which the predictions are independent of it. We
emphasize that a study of this should be performed whenever a distribution
is to be obtained for an observable close to kinematic limit in order to truly
obtain a physical value for the contribution. We used the CoLoRFuLNNLO
subtraction scheme, hence it was sufficient to analyze the distribution for
various values of the technical cut parameter. If a computation of this kind
is performed with a slicing method, the saturation has to be studied not just
as a function of the slicing parameter but also as a function of the technical
cut.
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