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We investigate the single virtual photon–photon scattering into two
pions up to 1.5 GeV for the low spacelike virtualities in the dispersive for-
malism. In order to account for the rescattering effects in both S- and
D-waves, we adopt the Omnès representation. The unsubtracted disper-
sion relations describe well the cross-section data and predicts charged pion
dipole polarizability (α1 − β1)π± = 6.1× 10−4 fm3 consistent with the re-
cent COMPASS measurement and χPT. However, for the neutral pion, the
dipole polarizability turns out to be far away from χPT value. In these pro-
ceedings, we show how a once-subtracted dispersion relation can potentially
cure this problem. Besides, the preliminary error analysis is given.
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1. Introduction

The anomalous magnetic moment of the muon aµ = (g − 2)µ is one
of the physical quantities known with a ppm precision. However, it shows
a discrepancy of 3–4σ between theory [1] and experiment [2]. From the
perspective of the ongoing programs at FERMILAB [3] and J-PARC [4],
which aim to reduce the current experimental uncertainty by the factor
of 4, the precise determination of the theoretical error becomes crucial. It
results dominantly from the hadronic contributions, including hadronic vac-
uum polarization (HVP) and the hadronic light-by-light scattering (HLbL).
The latter requires an approach based on the fundamental properties of the
S-matrix, such as unitarity and analyticity to achieve a controllable reduc-
tion of the uncertainty. Apart from the dominant pseudo-scalar pole con-
tributions, the next important contribution to HLbL comes from the two-
particle intermediate states of ππ, πη, and KK̄. In the dispersive formalism,
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it is possible to account for the rescattering of the hadronic final states which
results in the contribution from f0(500), f0(980), a0(980) and f2(1270) reso-
nances.

The first measurement of the single tagged two-photon collisions with
a neutral pion pair final state from the Belle Collaboration [5] covers the
range of Q2 from 3.5 to 30 GeV2. The BESIII Collaboration is currently
analyzing both π+π− and π0π0 production in the 0.2 . Q2 . 2.2 GeV2

region [6], which is relevant for the determination of the HLbL contribution
to aµ. In order to compare the previous results of [7] to the upcoming data,
it is necessary to estimate the errors of the approach, which we address in
this work.

2. Description of the method

Our approach is based on the partial wave (p.w.) dispersion relations,
which implement the unitarity and analyticity constraints. The kinemati-
cally unconstrained p.w. amplitudes rely on a decomposition of the hadronic
tensor Hµν of γγ∗ → ππ into a suitable set of invariant functions [8] Hµν =∑3

n=1 Fn(s, t)Lµνn , where

Lµν1 = qν1q
µ
2 − (q1 · q2)gµν ,

Lµν2 =
(
∆2(q1 · q2)− 2(q1 ·∆)(q2 ·∆)

)
gµν −∆2qν1q

µ
2

−2(q1 · q2)∆µ∆ν + 2(q2 ·∆)qν1∆
µ + 2(q1 ·∆)qµ2∆

ν ,

Lµν3 = −(q1 ·∆)
(
gµνQ2 + qµ2 q

ν
2

)
+∆µ (qν2 (q1 · q2) + qν1Q2) (1)

with ∆ ≡ p1 − p2, where q1, q2 stand for the virtual photon momenta and
p1, p2 are the pion momenta. The first two terms coincide with the basis
used in [9] for the real photon case. Since the invariant amplitudes are free
from kinematic singularities and constraints, one can identify all kinematic
constraints by analyzing projected amplitudes

h
(J)
λ1λ2

(
s,Q2

)
=

1∫
−1

d cos θ

2
dJλ1−λ2,0(θ) εµ(q1, λ1) εν(q2, λ2)H

µν e−iφ(λ1−λ2) ,

(2)
in terms of

AJn =
1

(p q)J

1∫
−1

dz

2
PJ(z)Fn(s, t) , (3)

which are good quantities due to the properties of the Legendre polynomi-
als [10]. In (3), q, p denote the initial and final relative momenta in the c.m.
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frame. The transformation from h
(J)
++, h

(J)
+−, h

(J)
+0 to the kinematically uncon-

strained amplitudes h(J)1,2,3 is given in [7]. We note that this transformation is

valid only for the Born subtracted p.w. amplitudes, h̄(J)λ1λ2
≡ h(J)λ1λ2

−h(J),Born
λ1λ2

,
since Born invariant amplitudes posses an additional pole at the soft-photon
point [11]. For the S-wave the kinematic constraint relates a Born subtracted
amplitude to the generalized dipole polarizability of the pion (α1 − β1)π

h̄
(0)
I,++

(
s,Q2

)
= 2πmπ(α1 − β1)Iπ

(
s+Q2

)
+ . . . , (4)

where we have explicitly written an isospin index I. In order to account for
the hadronic final-state interactions, we implement the modified Muskheli-
shvili–Omnès method, which is based on writing a dispersion relation for
h̄
(J)
i (Ω(J))−1 [12] , where Ω(J) is the Omnès function. The resulting unsub-

tracted dispersion relation has the following form:

h
(J)
I,i (s) = h

(J),Born
I,i (s) +Ω

(J)
I (s)

 0∫
−∞

ds′

π

(
Ω

(J)
I (s′)

)−1
Disc h̄(J)I,i (s′)

s′ − s

−
∞∫

4m2
π

ds′

π

Disc
(
Ω

(J)
I (s′)

)−1
h
(J),Born
I,i (s′)

s′ − s

 . (5)

In the I = 0, the S-wave f0(980) resonance is known to strongly couple to the
{ππ,KK̄} channels. The generalization of (5) to the coupled-channel case
can be found in [7]. For the S-wave I = 2 as well as J = 2 amplitudes, we
use the single-channel dispersion relations. Re-expressing Eq. (5) in terms
of the helicity amplitudes leads to the following sum rule for the generalized
dipole polarizability:

(α1 − β1)Iπ =
Ω

(0)
I

(
−Q2

)
2πmπ

 0∫
−∞

ds′

π

(
Ω

(0)
I (s′)

)−1
Disc h̄(0)I,++(s′)

(s′ +Q2)2

−
∞∫

4m2
π

ds′

π

Disc
(
Ω

(0)
I (s′)

)−1
h
(0),Born
I,++ (s′)

(s′ +Q2)2

 . (6)

Before we discuss the results of the unsubtracted dispersion relation, let
us first specify the left-hand cuts (l.h.c.) and the corresponding form factors
that account for the finite virtuality of the photon. The Born l.h.c. are well-
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defined by the scalar QED which should be multiplied by the electromagnetic
pion (kaon) form factors [13]〈

π+
(
p′
)∣∣ jµ(0)

∣∣π+(p)
〉

= e
(
p+ p′

)
µ
fπ
(
(p′ − p)2

)
,〈

K+
(
p′
)∣∣ jµ(0)

∣∣K+(p)
〉

= e
(
p+ p′

)
µ
fK
(
(p′ − p)2

)
. (7)

To evaluate them in the region of Q2 . 1 GeV2, we improve the vector-
meson dominance (VMD) prediction by performing the simple monopole fits
with the following parameters: Λπ = 0.727(5) GeV with χ2/d.o.f. = 1.22
and ΛK = 0.872(47) GeV with χ2/d.o.f. = 0.69 (see Fig. 1). The l.h.c.
contribution beyond the pion pole is approximated by the vector mesons ω
and ρ, for which the vertex functions are expressed as

〈V (k, λ)|jµ(0)|π(p)〉 = 2 eCVPγ fV,π
(
Q2
)
εµαβγ k

α pβ εγ∗(k, λ) , (8)

which can be justified by the observation that the coupling constant of pho-
ton, vector (V) and pseudoscalar (P) mesons effective interaction gVPγ '
Cρπγ ' Cωπ0γ/3 = 0.33 GeV−1 describes well the cross sections [7], and this
value lies within ∼ 10% of the PDG average gPDG

VPγ = 0.37(2) GeV−1 [2].
The small difference can be attributed to the contribution from other heav-
ier resonances. For the vector-meson transition form factor, there is no
data available in the spacelike region. For the transition form factor (TFF)
fω,π(Q2), we use the dispersive analysis from [14] (see also [15]), while for
the TFF fρ,π(Q2), the VMD model is used.
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Fig. 1. Pion and kaon electromagnetic form factors in the space-like region.
Monopole fits including the uncertainties (solid curves) are compared to the VMD
predictions (dashed curves).
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The Omnès functions for the I = 0, 2 D-wave Ω(2)
I (s) are given by

Ω
(2)
I (s) = exp

 s

π

∞∫
4m2

π

ds′

s′
δ
(2)
I (s′)

s′ − s

 , (9)

where the corresponding phase shifts are taken from the Roy analysis [16].
For the S-waveI= 0 (I=2) amplitude, we employ the coupled-channel (sin-
gle channel) Omnès function from a dispersive resummation scheme [17, 18],
which implements constraints from analyticity and unitarity. The method
is based on the N/D Ansatz [19], where the set of coupled-channel (single-
channel) integral equations for the N -function are solved numerically with
the input from the left-hand cuts which we present in a model-independent
form as an expansion in a suitably constructed conformal mapping variable.
These coefficients can be matched to χPT at low energy [20]. Here, we use
a data driven approach and determine them from fitting to Roy analyses for
ππ → ππ [16], ππ → KK̄ [21] and existing experimental data. In Fig. 2,
we show the results of the N/D analysis for the I = 0 ππ phase shifts us-
ing single- or coupled-channel analyses as well as a comparison between the
corresponding Omnès functions [22].
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Fig. 2. Left panel: The result of the N/D analysis of the I = 0 ππ phase shifts for
the S-wave in the single- (dashed) and coupled-channel (solid) cases. Right panel:
Modulus of the corresponding Omnès functions.

3. Results and discussion

We start the discussion of the results with the S-wave contribution. We
have found that account for the rescattering of the Born terms in the coupled-
channel formalism is essential for describing both the f0(500) and f0(980)
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resonances in the total cross sections. This result is an extension of [23]
to the coupled-channel case. Similarly to [23], we calculated the dipole
polarizabilities of charged and neutral pions (α1 − β1)π, as shown in (4).
Unsubtracted dispersion relations allow us to extract the following charged
pion dipole polarizability: (α1−β1)π± = 6.1×10−4 fm3, which is consistent
with NLO χPT (α1 − β1)

χPT
π± = 6.0 × 10−4 fm3 [24] and with the recent

COMPASS measurement: (α1−β1)exp
π± = 4.0(1.2)stat(1.4)syst×10−4 fm3 [29].

For the neutral pion dipole polarizability, we obtain (α1 − β1)π0 = 9.5 ×
10−4 fm3, thus being far from the NLO χPT value of (α1−β1)χPT

π0 = −1.0×
10−4 fm3 [25]. Even though the charged channel is the dominant one, the
question might arise of how suitable the current input is when estimating
(g−2)µ. The neutral pion dipole polarizability discrepancy can be cured by
taking into account the correction from heavier l.h.c., i.e., the first term in
Eq. (6). The dominant l.h.c beyond the pion pole comes from vector-meson
t- and u-channel exchanges. Since they are much stronger for the neutral
channel due to ω-exchange, the π0 polarizabilities are expected to get large
corrections [23]. Even though the dispersive integral is formally convergent
due to the asymptotically bounded behavior of our Omnès function and
the discontinuity of the amplitude h̄0I,++, it acquires significant corrections
from the integration over large negative s. Therefore, the implementation
of the dispersion relations with higher intermediate states beyond ρ and ω
corresponds to introducing at least one subtraction, which can be fixed to
the NLO χPT (with some adjustments as explained below) given by [26]

(α−β)π± =
e2

4πmπ

{
8 (Lr9 + Lr10)

F 2
0

+
−Q2

F 2
0

[
J̄ ′π
(
−Q2

)
+

1

2
J̄ ′K
(
−Q2

)]}
,

(α−β)π0 =
e2

2πmπ

{
−Q2 −m2

π

F 2
0

J̄ ′π
(
−Q2

)
+
−Q2

4F 2
0

J̄ ′K
(
−Q2

)}
,

(α−β)K± =
e2

4πmK

{
8 (Lr9 + Lr10)

F 2
0

+
−Q2

F 2
0

[
1

2
J̄ ′π
(
−Q2

)
+J̄ ′K

(
−Q2

)]}
,

(α− β)K0 =
e2

8πmK

−Q2

F 2
0

{
J̄ ′π
(
−Q2

)
+ J̄ ′K

(
−Q2

)}
, (10)

with F0 ' Fπ = 92.4 MeV and the following loop function:

J̄i(s) =
1

16π2

[
2 + σi(s) log

(
σi(s)− 1

σi(s) + 1

)]
, σi(s) =

√
1−

4m2
i

s
, (11)

For Q2 = 0, we fix π± polarizability to the COMPASS result [29], while
for π0 and K (I = 0) we used (Lr9 + Lr10) = (0.84 ± 0.64) × 10−3 taken
from [27] similar to [12]. The Q2 dependence is fully governed by (10),
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where in the single-channel case we used the pion-loop contributions only.
The comparison between unsubtracted and once-subtracted results is shown
in Fig. 3. For I = 0, the single-channel descriptions coincide in the region of
f0(500) both for Q2 = 0, 0.2 GeV2 cases. The coupled-channel description,
in turn, shows a slight difference for Q2 = 0, which becomes significant for
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Fig. 3. Comparison of the p.w. amplitudes |h(0)I,++| for once-subtracted (dashed line)
and unsubtracted (solid line) dispersion relations; Born results are shown by the
dotted lines. First row: I = 0, single channel; second row: I = 0, coupled channel;
third row: I = 2, single channel.
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the finite Q2. This behavior can be ascribed to the lack of experimental
information on the kaon polarizabilities and the poor convergence of SU(3)
χPT. For I = 2, we note the discrepancy of about 10%–25% (

√
s < 0.6 GeV)

at Q2 = 0.2 GeV2 which, however, does not affect strongly the total cross
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Fig. 4. Total sections for γγ → π0π0 (left column) and γγ → π+π− (right column)
processes. First row: cross sections for the real case in comparison to the data.
Second (third) row: σTT (σTL) cross sections for Q2 = 0.5 GeV2. The Born results
are shown by dashed curves.



On the Importance of Left-hand Cuts in the γγ∗ → ππ Process 1909

section. Since the NLO χPT is expected to be valid only in the region
Q2 . 0.2 GeV2, the introduction of the additional subtraction reduces the
predictive power of the dispersion relations. In the future, the upcoming
data from the BESIII Collaboration in the range of 0.2 . Q2 . 2.2 GeV2 [6]
will allow to fix the subtraction constant directly from the data and hence,
extract essential information on Q2 dependence of the polarizabilities.

In contrast to the S-wave case, it is necessary to add the light vector-
meson intermediate states to describe the f2(1270) region. The resulting
cross sections are shown in the first row of Fig. 4, where the reasonable
agreement with the data can be seen. These results have to be further
confronted with the data and, therefore, we attempt to estimate the uncer-
tainties of the given approach. For this purpose, we take into account the
fitting error for gVPγ which contributes to the D-wave. The uncertainties of
the S-wave treatment originate mainly from the hadronic rescattering part,
since the Born terms are well-known. Aiming for a conservative evaluation,
we compare results using two different data driven coupled-channel Omnès
functions: from our N/D analysis (see Fig. 2) and from [28]. It can be seen
that for the real photons case this leads to the negligible difference, which
can be also attributed to the numerical errors. However, the results for
the single virtual process show a noticeable difference both in f0(500) and
f0(980) regions. To further account for the uncertainties coming from the
photon virtuality, we include the errors of the monopole fit for pion and kaon
electromagnetic form factors. For the vector meson l.h.c., we include the dis-
persive estimation uncertainty of fωπγ(Q2) and consider conservatively the
error bar of the fρπγ(Q2) at Q2 = 0.5 GeV2 in the VMD treatment to be at
around 15%.

4. Summary

We have presented a dispersive analysis of the γγ∗ → ππ reaction from
the threshold up to 1.5 GeV in the ππ-invariant mass. In order to cap-
ture the dynamical {ππ,KK̄} origin of the f0(980) resonance, we used a
coupled-channel dispersive approach for the S-wave. It was shown that un-
subtracted dispersive formalisms, which account only for Born left-hand cuts
perform similarly to the once-subtracted description with vector left-hand
cuts in the region of f0(500), thus justifying the choice of the former. For
the D-wave, we adopted the single-channel Omnès approach, that requires
t- and u-channel vector-meson exchange contribution to the left-hand cut.
The obtained results for the γγ → π+π−, π0π0 cross sections are in the rea-
sonable agreement with the experimental data. For the finite Q2, we made
a dispersive prediction of the cross section and provided preliminary error
estimates.
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