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Parameterization of amplitudes for two-body interactions is very com-
mon and very important link between the experiment itself and the final
results of the analysis — e.g. resonance spectrum. There are many methods
of parameterization, but only some meet the unitarity condition, which may
prove to be crucial in obtaining results, especially when we care about their
high precision. It turns out that it is quite easy to ensure that the unitarity
condition is fulfilled by amplitude, but amplitudes that break unitarity are
very often created and used, especially those for many resonances. Only
few conditions must be fulfilled to guarantee unitarity and thus increase
the reliability of the obtained results. It is very important presently, when
in many data analyses very small, overlapping or broad signals are studied,
nonunitary effects can significantly influence results and lead to nonphysical
interpretation of obtained parameters.
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1. Introduction

Unitarity — a condition that must satisfy the amplitudes describing the
interactions of a given process — can be compared to probability of fulfilling
the energy conservation condition. Therefore, unitarity should be the ap-
ple of the eye of all those who create such amplitudes — they parameterize
them for various interactions and decays. To demonstrate the importance
of fulfilling this condition, we concentrate on the simplest case: two-body
interactions. The typical and, it would seem, the easiest way to construct
amplitudes containing several resonances is to add the appropriate (as small
as possible — just enough) number of amplitudes. In the next step, it is of
course important to make a good fit to the data, which, however, in itself
does not guarantee the correctness of the obtained results. Here, we show
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that amplitudes constructed in such a way may not be unitary and may
need additional smooth background to describe the data well enough. Such
backgrounds may or may not have physical meaning but, in fact, can be
interpreted as an effective influence of all omitted in given parameterization
singularities and thresholds at higher energies. These singularities usually
lie far from the physical region and can be very model-dependent, there-
fore their direct interpretation as real resonances can be very doubtful. Of
course, resonances which one can find in, for example, Particle Data Group
Tables should be model-independent (within their errors). They should also
play the leading role in construction of full amplitudes (phase shifts and
inelasticities), both elastic and inelastic. Parameters of such resonances (for
example mass, width, couplings . . . ) do, however, depend very much on
whether the amplitudes used in analyses were unitary or not.

Square of module of amplitude is proportional to cross section for given
process and, of course, varies with energy. Therefore, unitarity (probability)
is difficult to apply directly to amplitude (at least not intuitive). A function
which behaves like probability is S-matrix whose module is equal to one
what strongly constrains analytical structure of unitary amplitude related
with S-matrix by

A(k) =
S(k)− 1

2ik
, (1)

where k is momentum of interacting particles. Generally, the S-matrix can
be expressed as a ratio of two Jost functions D(k)

S(k) =
D(−k)
D(k)

. (2)

2. Amplitudes for one-channel scattering

In one-channel case, the S-matrix is just a function of energy and, of
course, S(k) = e2iδ(k), where δ(k) is phase shift. Let us construct at the
beginning amplitude for the simplest case — for one resonance. To find its
position in our S-matrix (or amplitude, see Eq. (1)), the easiest is to assume
minimum condition — one zero of the denominator D(k) (i.e. pole of S(k))
at k = kj on the 2nd Riemann sheet and automatically one zero of numerator
(zero of S(k)) at k = −kj on 1st Riemann sheet (see Fig. 1 (a))

S(k) =
−k − kj
k − kj

. (3)

One can, however, easily check that in such a “one pole” case |S(k)| 6= 1,
therefore, our amplitude A(k) is not unitary. It turns out that it is enough
just to add second-symmetric pole and zero (hereafter called “second pole”)
of S(k) at k = −k∗j and k = k∗j , respectively (see Fig. 1 (b)). One then gets
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(a) (b)

Fig. 1. Schematic positions of poles and zeroes of (a) nonunitary and (b) unitary
amplitude for single resonance in the complex momentum plane. Thick black line
denotes physical region.

S(k) =
(−k − kj)

(
−k + k∗j

)
(k − kj)

(
k + k∗j

) . (4)

One can easily check that now |S(k)| = 1 and phase shift δ = (−α−β+γ+
ω)/2, where α, β, γ and ω are phases of the poles p, p′ and zeroes z′ and z,
respectively, presented in Fig. 2.

Fig. 2. Phases of all poles and zeroes on Fig. 1 (b) compared with their sum δ —
phase shifts of the amplitude.
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All those phase components depend on real and imaginary part of kj
by ArcTan( −Im kj

k−Re kj
) what shows that only pole p and zero z′ lying closer to

physical region than their mirror pole p′, and zero z can together produce
increase of the phase shift δ by π/2 what is characteristic for single reso-
nances. The role of the second pole is smaller and, moreover, decreases with
the energy (nowhere is, however, equal to zero). Only at the threshold, i.e.
right in the middle between p, z′ p′ and z influence of the all these poles and
zeroes on the amplitude is the same.

Hereafter, the method of analysis of resonances using poles and zeroes
will be call “pole method”.

2.1. Most commonly used amplitudes

The most popular amplitude usually used in experimental analyses is the
Breit–Wigner (BW) type amplitude whose nonrelativistic form is

BW(E) =
Γ/2k

MBW − E − iΓ/2
, (5)

where Γ and MBW are the full width and mass of a resonance, respectively.
Using relation (1), one can easily calculate SBW(E) and check if it is unitary.
From definition of BW(E), one gets SBW(E) = MBW−E+iΓ/2

MBW−E−iΓ/2 what shows
that |SBW(E)| = 1 and that single BW approximation is unitary. The Breit-
Wigner formula is only an approximation of a real physical amplitude and
works well only near the resonance mass, especially for narrow resonances.
For example, threshold behavior of such an amplitude (i.e. in the limit E −→
2m) is wrong because SBW(E) −→ 2m−E∗

j

2m−Ej (where Ej = MBW − iΓ/2) and
δ(E) −→ ArcTan( Γ/2

MBW−2m) 6= 0 (also cross section σ(E) 6= 0). In the case
of unitary S-matrix defined by Jost functions with two poles and zeroes (see
Eq. (4)), corresponding limits are correct, i.e. S(k) −→ −kj∗kj

−kj∗kj , so δ(k) −→ 0

and σ(k) −→ 0.

2.2. Breit–Wigner and pole mass definition and value

Due to different analytical structure of BW amplitude and that given by
pole method, masses of a resonance calculated from these two amplitudes are
different. In BW approach, mass MBW is defined by energy at which phase
shifts cross π/2. In the pole method, this mass is identified with the real part
of the dominant pole. For pole p at a− ib, where a > 0 and b > 0, the phase
shift is given by δ(k) = ArcTan( 2bk

k2−a2−b2 ) + ArcTan( −2bk
−k2−a2−b2 ). It is seen

that due to nonzero value of b (half of width of a resonance) and presence
of the second term, δ(k) will not cross π/2 at k = a, so MBW > 2

√
a2 +m2.
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For example, this difference for very well known ρ(770) is few MeV. For
wider resonances, it is bigger. It is also worth mentioning the difference
between phases of the BW amplitude and that given by the dominant pole
even around the resonance mass. The reason is a nonzero “additional” phase
produced by second pole p′ and zero z (see Fig. 1 (b)).

3. Amplitudes for more channels and more resonances

For one channel amplitudes but with more resonances, very popular is
an isobar model being a sum of amplitudes for single resonances. According
to Eq. (1), the sum Atot(k) for two amplitudes A1(k) and A2(k) is

S1(k)−1
2ik +

S2(k)−1
2ik what, in elastic region leads to Stot(k) = S1(k)+S2(k)−1 = e2iδ1(k)+

e2iδ2(k)− 1. Of course |Stot(k)| 6= 1 what means that this sum i.e. the isobar
model violates unitarity.

Instead of using amplitudes one can use the S-matrices and, for two
resonances as above, create product S1(k)× S2(k) which, by definition, ful-
fils unitarity. For N > 2 resonances, the method is the same, Stot(k) =
ΠN
j Sj(k). Another effective and popular way of parameterization of multi-

resonance amplitudes is to use K-matrix, whose relation with the S-matrix
is S = (1+ iK)/(1− iK). Sum of two K-matrices does not violate unitarity.

Analytical structure of amplitudes for n > 1 channels becomes more
complicated. The number of Riemann sheets increases to 2n and, due to
sign ambiguity k2 = ±

√
k21 +m2

1 −m2
2, each pole splits into 2n−1 poles. All

these poles lie on various Riemann sheets and are shifted more or less (it
depends on strength of coupling between channels) with respect to position
of the original pole.

Figure 3 presents Riemann sheets for two channels and schematic posi-
tions of poles and zeroes corresponding to one resonance. Names of Riemann
sheets are given by signs of imaginary parts of momenta in all channels. For
example, in the two-channel case, mark (−,+) means that Im(k1) < 0 and
Im(k2) > 0.

An example of positions of such shifted S-matrix poles is presented in
Table I for three resonances found in two-channel analysis of scalar–isoscalar
ππ interactions below 2 GeV (analysis similar to that in [1]). Underlined are
poles which play a leading role in the full amplitude, therefore, can be con-
sidered as resonances. They were identified checking distances of all found
poles from the physical region in complex conformal variable z defined by
z= k1+k2√

m2
K−m2

π

. The results of such an analysis have been confirmed by anal-

ysis of phases and squared modules of amplitudes (proportional to cross sec-
tion) corresponding to each pole. For example, Figs. (4) and (5) present them
for pole poles 1, 1’, 2, 2’ separately and for corresponding pairs of poles. In
both cases, one pole is dominant and the second one plays a minor role.
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This is particularly well seen in Fig. 5 where role of the pole 2’ is so small
that lines for poles 2 and 2+2’ are almost indistinguishable.

Fig. 3. Riemann sheets for two channels with poles (crosses) and zeroes (circles)
for one resonance

TABLE I

Positions of two-channel S-matrix poles found in analysis of scalar–isoscalar ππ
interactions below 2 GeV. Underlined are poles related with resonances.

Pole ReEpole [MeV] ImEpole [MeV] Riemann sheet

1 639.6 −323.9 (−,−) : III
1’ 511.4 −230.6 (−,+) : II
2 982.0 −36.9 (−,+) : II
2’ 432.4 −8.4 (−,−) : III
3 1431.7 −79.3 (−,−) : III
3’ 1394.9 −120.6 (−,+) : II

Analysis of amplitudes for more than 2 channels is even more compli-
cated and demanding. One of the reasons is that one cannot define and
use similar conformal variable z. The simplest and very effective method
of recognition of resonances among set of many S-matrix poles is just an
analysis of influence of all found poles on the phase shifts and cross section
as was shown in Figs. (4) and (5). Another method relies on presentation of
positions of all poles in 3 dimensional combinations of real and/or imaginary
parts of complex momenta in all channels. Reasonable choice of axes and
careful analysis of distances of these poles from physical region enables to
identify the most prominent poles. An example of results of such 3-channel
analysis can be found in [2] (Tables 3–7).
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Fig. 4. Phase shifts and squared modules of amplitudes produced by single poles
from Table I and their pairs. Dash-dotted lines are for pole 1, dashed for 1’ and
solid for both these poles together.
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Fig. 5. Phase shifts and squared modules of amplitudes produced by single poles
from Table I and their pairs. Dash-dotted lines are for pole 2, dashed for 2’ and
solid for both these poles together.

Independently of number of analyzed channels and number of resonances
crucial is the use of correct i.e. unitary amplitude. Recent analysis of pion
electromagnetic form factor [3] can serve as an example. Authors present
various ways of parameterization of e+e− → π+π− cross section and of
vector–isoscalar ππ elastic and inelastic amplitude. In Table II, there are
compared parameters of ρ states obtained using the Gounaris–Sakurai ap-
proximation and unitary and analytic approach. The latter gives signifi-
cantly different results than those from PDG Tables and those obtained us-
ing the Gounaris–Sakurai model. Mass difference for ρ(770) is about 9 MeV
and for ρ′ and ρ′′ about 170 MeV and 78 MeV respectively. The sign of these
differences agrees with what was presented in Section 2. A small phase pro-
duced by the second pole (denoted in Section 2 by p′) leads to a shift of
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the main pole p (i.e. shift of the mass) to lower energies in comparison with
mass determined by the value of phase shift equal to π/2. In the case of
ρ(770), this shift should be few MeV and for wider states, should be bigger
what agrees with numbers in Table II.

TABLE II

Parameters of ρ states obtained using the Gounaris–Sakurai model and unitary
and analytic approach are compared with values from Particle Data Tables [4].

Parameter PDG [MeV] G–S [MeV] U&A [MeV]

mρ 775.26 ± 0.25 774.81 ± 0.01 763.88 ± 0.04
mρ′ 1465.00 ± 25.00 1497.70 ± 1.07 1326.35 ± 3.46
mρ′′ 1720.00 ± 20.00 1848.40 ± 0.09 1770.54 ± 5.49
Γρ 149.10 ± 0.80 149.22 ± 0.01 144.28 ± 0.01
Γρ′ 400.00 ± 60.00 442.15 ± 0.54 324.13 ± 12.01
Γρ′′ 250.00 ± 100.00 322.48 ± 0.69 268.98 ± 11.40
χ2 pdf 0.98 1.84

14 param. 11 param.

3.1. Another bond for amplitudes — crossing symmetry

Crossing symmetry is a natural consequence of symmetry between am-
plitudes “seen” from different channels — for example, s and t channels.
Implementation of this condition to amplitudes is quite easy for identical
particles and dispersion relations (with two subtractions) for ππ amplitudes
were proposed few decades ago by Roy [5] and were later developed and ap-
plied in a number of works in the early 2000s e.g. [6] and [7]. For nonidentical
mesons like π and K, similar analysis was performed recently [8].

It is very advisable to introduce this crossing symmetry to the ampli-
tudes we create because it is a very demanding requirement and makes the
amplitude similar to the real one — physical. Introducing this requirement
can, therefore, have serious consequences for our amplitudes and signifi-
cantly change the physical results we draw from them. For example, in the
case of scalar–isoscalar ππ amplitudes, crossing symmetry has led to spec-
tacular successes. One of them was to eliminate the long-standing up-down
ambiguity in these amplitudes (in favor of the down solution) [9], and the
second one to reduce by factor about 6 the uncertainty caused by the signif-
icant dispersion of experimental data. This reduction was possible thanks
to the application of a newly derived set of the Roy-type dispersion rela-
tions GKPY with one subtraction [7]. Particularly spectacular turned out
to be the impact of these new dispersion relation on parameters of resonance
(pole) f0(500) (popularly called σ). In Particle Data Tables edited in 2012,
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its mass has changed from 400–1200 MeV to 400–550 MeV, and the width
from 250–500 MeV to 200–350 MeV [10, 11]. This even led to the change of
the name from f0(600) to f0(500).

4. Conclusions

Construction of amplitudes is a very important element of analyses of
results of an experiment. However, it has many peculiarities and it is full
of traps that can significantly change the final results. The condition of
unitarity is very important and quite easy to introduce when building am-
plitudes which must meet several conditions, such as for example, the pres-
ence of two symmetrical poles and zeroes for each resonance. When drawing
conclusions from the analysis of multi-channel amplitudes fitted to the ex-
perimental data, it is extremely important to correctly identify the leading
poles and link them to the existing (or new) resonances. To avoid ambi-
guities that appear in the literature in determining the parameters of these
resonances, it should always be clearly explained how they were identified
and what amplitudes were used.

The work was created as a result of the implementation of the Polish
research project No. 2018/29/B/ST2/02576 financed from the funds of the
National Science Centre, Poland NCN.
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