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The low-energy effective field theory for electroweak (EW) interactions
is studied here. It embeds the Standard Model (SM) as a particular limit
and parametrizes new physics deviations. We discuss some experimental
resonant diboson searches and four-fermion operator analyses that seem to
push the new physics scale well over the TeV. On the other hand, the more
precise oblique parameter determinations allow new physics resonances in
the few TeV range. This apparent contradiction is easily solved by postu-
lating a Standard Model extension that only couples directly to the bosonic
degrees of freedom of the Standard Model but not to its fermions.
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1. Introduction

These proceedings are mainly based on the results of Refs. [1–7]. We will
be discussing a series of experimental results that seems to point out that
new physics states must be well over the TeV. However, when studied in
∗ Presented by J.J. Sanz-Cillero at the XLIII International Conference of Theoretical
Physics “Matter to the Deepest”, Chorzów, Poland, September 1–6, 2019.

(1937)



1938 F. Alvarado, A. Guevara, J.J. Sanz-Cillero

deeper detail, one finds in the bibliography analyses on strongly interacting
theories beyond the Standard Model (BSM) where resonances in the range of
MR ∼ 1–3 TeV would not at present produce any experimentally measurable
deviation with respect to the SM [4, 5].

LHC resonant diboson searches at 8 TeV and 13 TeV have pointed out
lower-bounds of the order of a few TeV on the mass of the lightest spin-1
triplets (under the EW group). Figure 1 shows one of the strongest bounds,
MV ∼> 4 TeV [8] (see Refs. [3, 9] and references therein for further details).
However, these spin-1 resonance analyses, in general, rely in two very specific
benchmark points of the heavy vector triplet model [10]: HVT-AgV =1 and
HVT-BgV =3. In all cases, the latter provides the more stringent mass bound.
However, in spite of accounting for the production from all possible initial
mechanisms (including EW gauge boson fusion) and having an almost 100%
branching ratio into a diboson BB′ pair (with B and B′ being EW gauge
bosons or a Higgs), this benchmark is actually dominated by the Drell–Yan
resonance production q̄q′ → R. Hence, this fermionic vertex is what this
type of analyses are actually testing [3].

ATLAS-CONF-2018-016

Fig. 1. This plot shows one of the most stringent WW , WZ and ZZ diboson
resonant searches based on fat-jet reconstruction techniques [8]. The experimental
results are compared to the benchmark models HVT-AgV =1 and HVT-BgV =3 [10],
which assume a spin-1 EW triplet. This leads to the lower bound MV > 4.15 TeV
at the 95% C.L.

Another type of searches looks instead for a non-resonant increasing in
the cross section due to possible four-fermion operators in the low-energy
effective field theory (EFT). However, as one can see in Fig. 2, both collider
analyses of dijet and dilepton events at the LHC and low-energy hadronic
experiments have led to really strong bounds on the suppression of these
fermionic EFT operators. The four-fermion terms in the EFT Lagrangian
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are found to be suppressed by Λ ∼> 10–20 TeV in the most stringent cases.
Similar bounds were obtained at LEP and Tevatron. See Refs. [3, 11] and
references therein.

Fig. 2. Summary on four-fermion operators presented at ICHEP 2016 by the CMS
Exotica Physics Group Summary. Bounds on four-fermion effective Lagrangians
are expressed in terms of the sometimes-called “compositeness” scale Λ [12, 13].

These results are sometimes argued to imply that new-physics strongly
coupled theories and composite particles must be well over the TeV. However,
EW precision tests still allow resonances with masses in the few TeV range:
in Fig. 3, one can observe that the experimental determinations [14, 15] of
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Fig. 3. (Color online) Left-hand side: Scatter plot for the 68% C.L. region, in
the case when only the first V V –AA WSR is assumed [16, 17]. The black (dark
blue) and light gray regions correspond, respectively, to 0.2 < MV /MA < 1 and
0.02 < MV /MA < 0.2. We consider MA > MV > 0.4 TeV in the plot. Right-hand
side: NLO determinations of S and T , imposing the two WSRs [16, 17]. The grid
lines correspond to MV values from 1.5 to 6.0 TeV, at intervals of 0.5 TeV, and the
hW+W− coupling κW = 0, 0.25, 0.50, 0.75, 1. The arrows indicate the directions of
growing MV and κW . The ellipses give the experimentally allowed regions at 68%
(inner/orange), 95% (middle/green) and 99% (outer/blue) C.L.
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the S and T oblique parameters [18, 19] lead to an h → W+W− coupling
κW close to the SM one and spin-1 resonance masses with MV ∼> 1 TeV
(in less constraining theories, where only one V V –AA Weinberg sum rule,
WSR, applies) or MV ∼> 4 TeV (in more constraining scenarios with two
Weinberg sum rules) [16, 17].

In Sec. 2, we remind the basic principles for the construction of the
low-energy EFT based on the non-linear SU(2)L × SU(2)R representation
of the EW Goldstone bosons, including only the SM particles. Section 3
incorporates heavier BSM states. The lightest multiplets of heavy resonances
are included in the present discussion. We will see that the HEFT low-energy
couplings (LECs) are typically O(10−3) in the case of resonances in the few
TeV range. However, if so, one may have expected to detect these resonances
in LHC resonant searches, which currently seem to exclude masses below 4
TeV. Nonetheless, these experimental results heavily rely on a large coupling
of the SM fermions and the BSM resonances. In Refs. [4, 5, 20–22], it is
shown that if these new states are only produced via intermediate EW gauge
bosons, the cross section is small enough to remain undetected at present.
We mention here two examples: production viaWZ vector boson scattering
(VBS) [4, 20–22], and the Drell–Yan (DY) resonant production thanks to a
mixing term between the heavy resonances and the EW gauge bosons [5, 23].
Thus, in Sec. 4, we show that in a general model that couples the new physics
only to the SM bosonic sector (EW gauge bosons and the scalar sector), one
observes a strong suppression of new physics in SM fermion interactions. We
note that this does not imply the absence of the latter interactions. Thus,
one obtains, e.g., four-fermion effective operators in the low-energy HEFT
but with much smaller LECs. The same happens in this type of models
with operators that violate custodial symmetry, such as those contributing
to the oblique T parameter, which are very much suppressed. Some final
conclusions are given in Sec. 5.

2. (Non-linear) HEFT (aka EWχL, aka EWET)

The low-energy effective theory under discussion is indistinctly denoted
as EW effective theory (EWET), EW Chiral Lagrangian (EWχL) and Higgs
Effective Field Theory (HEFT). This HEFT describing the interactions be-
tween the known SM particles at E � 1 TeV is based on three aspects:

1. Symmetries:

— SM gauge symmetries (exact in the SM): the EFT action
is invariant under the EW group GSM = SU(2)L ×U(1)Y , which
gets spontaneously broken down to HSM = U(1)EM ⊂ GSM.
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— SM scalar sector global symmetry (approximate in the
SM): the EFT action will be based on the global chiral symmetry
G = SU(2)L×SU(2)R×U(1)B−L ⊃ GSM of the SM scalar sector,
which gets spontaneously broken down to its custodial subgroup
H = SU(2)L+R × U(1)B−L ⊃ HSM. However, this symmetry is
explicitly broken in the SM by the left↔right asymmetry between
the two SU(2) sectors as only one generator of the SU(2)R com-
ponent of G is gauged (Bµ), on the contrary to SU(2)L, which
has its three generators gauged (Wµ

1,2,3). Notice that this sym-
metry becomes again exact in the gauge and scalar sectors of the
SM in the limit g′ → 0. The other source of custodial symmetry
breaking in the SM is the mass (and Yukawa coupling) asymme-
try between the top-type and bottom-type fermions in the SU(2)
doublet. The EFT will implement this soft explicit breaking in
exactly the same way it occurs in the SM. For more details, see
Ref. [2, 3, 24].

2. SM content: the EFT Lagrangian contains the GSM gauge bosons.
The Higgs particle h is incorporated as a chiral singlet under G, while
the EW Goldstones ωa from the G/H spontaneous symmetry breaking
are non-linearly realized via the unitary matrix U(ω) = 1 + iωaσa/v+
O(ω2), where ωa stands for the triplet of EW Goldstones — which
transforms non-linearly under G — σa stands for the Pauli matrices
and v ' 246 GeV stands for the Higgs vacuum expectation value
(v.e.v.). There is an additional freedom in the choice of the uni-
tary matrix, which is usually taken in the exponential form U(ω) =
exp{iωaσa/v} or the spherical representation of the G/H coset, U(ω) =√

1− ωaωa/v2 + iωaσa/v (see, e.g., Refs. [25, 26]). The HEFT also
includes all the SM fermion fields (quarks and leptons) as light degrees
of freedom (d.o.f.).

3. Chiral power counting: the different EFT building blocks carry
an infrared “chiral” scaling [2, 24, 27, 28] where boson fields scale as
O(p0), and covariant derivatives, gauge and Yukawa couplings and
SM particle masses scale as O(p). Regarding SM fermion bilinears,
although a naive dimensional analysis [2, 28] would assign them a
scaling O(p), the EFT stemming from this power counting does not
agree with the phenomenology, as four-fermion operators should be
then part of the leading order (LO) EFT Lagrangian, they would be
suppressed by a scale Λ ∼ v and they should already have been ex-
perimentally observed. For this reason, fermion bilinears ψ̄Γψ in the
interaction Lagrangian need to be assigned a higher scaling, at least
the O(p2) usually assumed [2, 3], which accounts for an implicit ad-
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ditional weak coupling suppression that must always go with the SM
fermion interactions1. Additionally, as custodial symmetry is explicitly
— but softly — broken in the SM, we assign an additional suppres-
sion O(p) to the building blocks and effective operators that break
custodial symmetry. This is necessary in order to avoid large viola-
tions of this symmetry which would lead to large contributions to the
oblique T parameter [18, 19] which would contradict the experimental
data [14, 15].

This allows one to sort out the HEFT Lagrangian in terms of effective
operators with increasing order pd [29–34]:

LHEFT =
∑
d≥2

L(d)
HEFT . (2.1)

The LO Lagrangian occurs at O(p2) and contains indeed the SM one,
this is, LSM ⊂ L(2)

HEFT. It has the general form [3]:

L(2)
HEFT =

∑
ξ

[
i ξ̄γµdµξ − v

(
ξ̄L Y ξR + h.c.

)]
− 1

2g2

〈
ŴµνŴ

µν
〉

2
− 1

2g′2

〈
B̂µνB̂

µν
〉

2
− 1

2g2
s

〈
ĜµνĜ

µν
〉

3

+
1

2
∂µh ∂

µh− V (h/v) +
v2

4
Fu 〈uµuµ〉2 , (2.2)

where ξ describes the SM fermion fields, dµ is the covariant derivative with
the corresponding GSM gauge connection and 〈 . . . 〉2 and 〈 . . . 〉3 refer to
traces under SU(2) and SU(3). In the second line, we have the Yang–Mills
Lagrangian for GSM. In the third line, one has the Higgs potential and
the interaction with the EW Goldstone bosons parametrized by the tensors
uµ = iu(DµU)†u = −∂µωaσa/v + . . . , with U = u2. Since the Higgs h is a
chiral singlet, the Yukawa Y and the factor Fu can be arbitrary functions
of h with an analytical expansion around h = 0, with the HEFT action

1 In the case of the mass term, the coupling in front of the −ψ̄ψ operator, the fermion
mass, is experimentally known and of the order of the external momenta, mψ = O(p),
so there is no need to assume a further implicit suppression of the ψ̄Γψ bilinears in
this term. On the other hand, in the hΨ̄ψ Yukawa interaction, the naive dimensional
analysis tells us that this interaction operator would be O(p). This would lead to
predictions in contradiction with the experiment. On the other hand, counting this
hΨ̄ψ operator as O(p2), like the other terms in the LO Lagrangian, leads to a con-
sistent agreement. Note that in the SM, this operator is always accompanied by an
explicit weak factor, the Yukawa coupling, which increases the naive scaling of the
Yukawa interaction and makes it O(p2).
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still remaining invariant under G transformations. For instance, symmetry
invariance allows the general structure Fu = 1 + 2ah/v + bh2/v2 + O(h3),
with the SM corresponding to the precise values aSM = bSM = 1. Further
details on the notation can be found in Refs. [2, 3].

The next-to-leading order (NLO) effective Lagrangian is O(p4) and has
the general form of [3]

L(4)
HEFT =

12∑
i=1

Fi(h/v) Oi +
3∑
i=1

F̃i(h/v) Õi +
8∑
i=1

Fψ
2

i (h/v) Oψ
2

i

+

3∑
i=1

F̃ψ
2

i (h/v) Õψ
2

i +

10∑
i=1

Fψ
4

i (h/v) Oψ
4

i +

2∑
i=1

F̃ψ
4

i (h/v) Õψ
4

i . (2.3)

This is the CP even effective Lagrangian. Operator with (without) tilde
are P odd (even) and contain purely bosonic operators (Oi, Õi), operators
with one fermion bilinear (Oψ

2

i , Õψ
2

i ) and four-fermion operators (Oψ
4

i , Õψ
4

i ).
The full list of the 30 (8) P -even (P -odd) effective operators can be found
in Ref [3].

In principle, one may construct more and more complex operators of
higher and higher chiral dimension. However, the importance of this classi-
fication of the effective operators in terms of its chiral dimension pd is that
amplitudes have then the general form (e.g., for a 2→ 2 scattering) of

M ≈ p2

v2︸︷︷︸
LO (tree)

+

 F
r
k (µ) p4

v2︸ ︷︷ ︸
NLO (tree)

− Γkp
4

16π2v2 ln
p2

µ2 + . . .︸ ︷︷ ︸
NLO (1-loop)

+O
(
p6
)
,(2.4)

where p stands for external momenta in the process or any equivalent soft
scale of the EFT like, e.g., the masses of the SM particles. The LO contribu-
tion, O(p2), is provided by all the tree-level diagrams with L(2)

HEFT vertices.
NLO corrections arise at O(p4). The one-loop diagrams with L(2)

HEFT con-
tribute at O(p4) with non-analytic terms like, e.g., the generic logarithm
in the expression above, a finite lnµ2 dependence and possible ultraviolet
(UV) divergences [35–40]. These UV divergences are renormalized through
the other type of O(p4) contributions arising in the computation: tree-level
diagrams with L(2)

HEFT vertices and one L(4)
HEFT vertex, where the couplings Fk

of these L(4)
HEFT operators renormalize the O(p4) one-loop UV divergences.

The dots stand for any other one-loop contribution at NLO that is UV finite
and renormalization-scale-independent.
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We note that in the case of the SM, this chiral expansion is simply the
usual loop expansion: the suppression factors p2

16π2v2
do not have the naively

expected power-like growing with the energy but correspond to the standard
expansion parameters p2

16π2v2
∼ g(

′) 2

16π2 ,
λ2Fer
16π2 ,

λ
16π2 , which remain much smaller

than one all the way up to the Planck scale (barring energies below the GeV
for the QCD coupling constant).

3. HEFT + resonances: what might we expect?

The HEFT can be extended up to higher energies by incorporating the
lightest multiplets of heavy resonances to the Lagrangian. Reference [3] in-
corporated the lightest multiplets of vector, axial vector, scalar, pseudoscalar
and spin-1/2 fermion resonances. EW singlets, doublets and triplets and
color singlets and octets were considered. These are all the resonances that
may contribute at tree-level to the low-energy HEFT Lagrangian at NLO [3].

The high-energy Lagrangian can be sorted out in the (symbolic) form of

LHE[R, `ight] = L(2)[`ight] + LR[R, `ight] ,

with LR = LKin
R +RχR[`ight] +O

(
R2
)
. (3.1)

The extended Lagrangian [2, 3] is based on the same symmetry breaking
pattern G/H and approximate symmetries of the HEFT. Only the interac-
tion Lagrangian with one resonance field is needed for the contributions to
the O(p4) HEFT. The precise form of the χR[`ight] tensors for the various
resonances R are provided in Ref. [3], being all of them O(p2).

In order to integrate out the heavy resonances and extract the low-energy
effective Lagrangian, one needs first to solve the heavy resonance equations
of motion (EoM) in terms of the light d.o.f. The low-energy limit of this
classical solution has the form of

Rc`[`ight] ∼ 1

M2
R

χR[`ight] + O
(
p4

M4
R

)
. (3.2)

We make then the substitution R → Rc` in the full high-energy action
LHE [41]. This provides a non-local effective Lagrangian which, nonetheless,
accepts at low energies an expansion in terms of an infinite series of local
operators, where the first contribution arises at O(p4) in the form of [2, 3, 41]

∆L(4)
HEFT ∼

∑
R

1

M2
R

(χR[`ight])2 . (3.3)

The various O(p4) couplings of the low-energy EFT receive contributions
proportional to the resonant couplings (FV , GV , FA . . .) and suppressed by
1/M2

R. To illustrate this, let us show, for instance the contribution from a
vector multiplet V and an axial vector A, both being EW triplets
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L(4)
HEFT =

F1

4

〈
fµν+ f+µν − fµν− f−µν

〉
+ F4〈uµuν 〉 〈uµuν 〉+ . . . (3.4)

with F1 = − F 2
V

4M2
V

+
F 2
A

4M2
A

= −v
2

4

(
1

M2
V

+
1

M2
A

)
, (3.5)

F4 =
G2
V

4M2
V

=
v2

4

(
1

M2
V

− 1

M2
A

)
, . . . (3.6)

where the fµν± building blocks are P -even or P -odd covariant combinations of
the W and B field-strength tensors [2]. In these equations, we are assuming
that the underlying resonance theory only has P -even interactions. Other-
wise, there are additional contributions [2, 3]. Finally, some UV completion
hypotheses are assumed (like, e.g., V V –SAA WSRs [42, 43]) which lead to
phenomenological predictions like those on the right-hand side of Eqs. (3.5)
and (3.6) [1, 41, 44]. Here, we are just showing a pair of selected coupling,
F1 and F4 with h = 0 (also denoted as a1 and a4), related to the oblique
S parameter [25, 45] and WW → WW scattering [4, 20–22], respectively.
Figure 4 shows the values for these two LECs that derived from the exper-
imental measurements of the S and T parameters for asymptotically-free
BSM theories [18, 19], i.e., accepting two WSRs [1] (black areas).

Fig. 4. (Color online) Predictions for theO(p4) LECs a1 = F1(0) and a4 = F4(0) for
asymptotically-free BSM theories (accepting two WSRs), as a function of MV [1].
The light-shaded regions cover all possible values for MA > MV , while the blue
(top solid), red (middle dotted) and green (bottom dahed) lines correspond to
M2

V /M
2
A = 0.8, 0.9 and 0.95, respectively. The oblique S and T constraints restrict

the allowed values to the dark areas.

What we would like to emphasize from these and similar other results
in the bibliography [4, 5, 20–22, 25] is that vector triplets with a mass in
the range of a few TeV are associated with LECs |Fj | ∼ 10−3–10−4 [1].
Recent LHC experimental analyses on WW and WZ VBS have been able
to reduce the uncertainty in a4 and a5 (F4 and F5 for h = 0) down to
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|a4,5| ∼< 10−1, making use of large-radius jet substructure techniques [46]
(see Fig. 5). These bounds are still very far away from the O(10−3) order
of magnitude one would expect for resonance masses in the 1–3 TeV range2.
LEP EW precision data on the S-parameter [14, 15] provides the best known
LEC, a1 = F1(0), which reaches an uncertainty of |a1| ∼< 10−3 [22]. Future
e+e− colliders are expected to cut this uncertainty down by at least a factor
five [15, 48].

4
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Fig. 5. Constraints on the α4 = a4 = F4(0) and α5 = a5 = F5(0) LECs from WZ

and WW VBS analyses. Figure borrowed from Ref. [46].

4. Suppressing HEFT fermion operators: a simple model

At this point, one may wonder whether it is possible to reconcile the
seemingly contradictory results from LEC analyses (with precisions in gen-
eral far from the requested |Fj | ∼ 10−3 for resonances in the TeV) and the
diboson resonant and four-fermion operator searches (with lower bounds
MR ∼> 4 TeV and Λ ∼> 10–20 TeV, respectively). The simple solution pro-
posed in Refs. [6, 7] was partly motivated by the previous analysis [23] for
qq̄ ′ → R Drell–Yan production of spin-1 resonances R at the LHC. Therein,
a quark and an antiquark merged into an EW gauge boson which induced
a resonant signal through a kinetic mixing with a spin-1 EW triplet R.
This mixing introduced, however, a very strong suppression of the fermionic
branching ratios with respect to the dominant R → WW,WZ diboson

2 The latest CMS study on VBS [47] leads to bounds on these couplings two orders of
magnitude more precise, |a4,5| ∼< 10−3 [20]. However, it must be taken with a grain
of salt since this analysis does not include unitarization: the WW , WZ and ZZ
scattering amplitudes eventually violate the unitarity bound and become unphysical
in the TeV region under study. This unitarity violation, very likely, leads to an
overestimate of the precision of these a4,5 measurements [20].
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channel. As it happened with more recent VBS and DY production stud-
ies [4, 5, 20–23], in order to generate the spin-1 resonance, one needs to first
produce intermediate EW gauge bosons, suppressing the cross sections by
additional factors of the EW gauge couplings. In Refs. [6, 7], we go one
step further in this direction and extract the general impact on the HEFT
Lagrangian, at low energies, stemming from not having a direct interaction
between the SM fermions and the spin-1 resonances. Thus, we consider the
vector and axial-vector resonance Lagrangians discussed in Sec. 3, but re-
stricted to interactions with just the SM bosons, i.e., disconnecting the SM
fermion vertices [2, 3, 6, 7]

LV = LKin
V +

〈
Vµνχ

µν
V

〉
2
, (4.1)

χµνV =

(
FV f

µν
+

2
√

2
+
F̃V f

µν
−

2
√

2

)
+
iGV

2
√

2
[uµ, uν ] +

λ̃hV1√
2

((∂µh)uν − (∂νh)uµ) ,

with an analogous Lagrangian for the axial vector EW triplet A (with ap-
propriate replacements like, e.g., FV Vµνf

µν
+ → FAAµνf

µν
− , etc.) [6].

At low energies, this induces and effective Lagrangian of the form of

∆LHEFT

∣∣∣∣
R

= LR
∣∣∣∣
R→Rc`

= L(4)
HEFT + L(6)

HEFT + . . . (4.2)

The LO, O(p2), HEFT Lagrangian is not corrected by these resonances. At
NLO, O(p4), the V and A contribution has the form of [2, 3]

L(4)
HEFT = −

∑
R=V,A

1

M2
R

〈
χµνR χRµν

〉
2
. (4.3)

It is important to note that, in addition to the absence of bilinear and
four-fermion operators, the effective Lagrangian does not receive custodial-
breaking terms at NLO.

The O(p6) contribution to the HEFT Lagrangian is given by [6, 7]

L(6)
HEFT = −

∑
R=V,A

2

〈
∇ρ
(
χRρν

M2
R

)
∇µ
(
χµνR
M2
R

)〉
2

, (4.4)

where the FV,A and F̃V,A couplings induce a g(′) 2 suppressed low-energy
operator with four derivatives that contributes to the EW gauge boson self-
energy

L(6)
HEFT ⊃ L

(6)
HEFT

∣∣∣∣
(∇f)2

= −2F 2
V

M4
V

〈
∇ρf+ ρν∇µfµν+

〉
2

+ . . . (4.5)
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However, these type of terms induce contributions in a whole set of ob-
servables that seem to have little to do with the original operators, with
the structure shown on the right-hand side of Eq. (4.5). The key-point is
that they may be simplified by means of the gauge field EoM and redefi-
nitions of their fields into interaction operators with at least three or more
fields already present in L(4)

HEFT, where two covariant derivatives turn into
two powers of g(′), i.e., into two powers of mW,Z . Thus, although some of
the EoM-simplified operators have the structure of the O(p4) HEFT La-
grangian, they are still O(p6) suppressed; the additional suppression is now
hidden within the LEC instead of being in the operator structure. In par-
ticular, since the gauge field EoM has the form ∇µfµν± ∼ g(′) 2Jν + . . . ,
the O(p6) Lagrangian hides indeed four-fermion operators with a very sup-
pressed coefficient. This is illustrated diagrammatically in Fig. 6.

Fig. 6. The ud̄ → W+ → R+ → W+ → ud̄ scattering (1st diagram) turns into
an amplitude with an O(g2p4) correction to the W self-energy at E � MR (2nd

diagram). The EoM-simplifications of these L(6)
HEFT terms just tell us that the latter

2nd diagram with two W propagators (∆W (q) ∼ −i/q2) is equivalent to the local
four-fermion scattering in the 3rd diagram [7].

Observing the experimental four-fermion analyses (see Refs. [3, 11] and
references therein) in the usual parametrization Leff = 2π

Λ2

∑
i,j=`,r ηijJ

µ
i Jj µ,

the most stringent bounds are, in general, obtained for ηrr = η`` = ηr` =
η`r = −1: Λ ∼> 20 TeV. The prediction from a vector and an axial–vector
triplet with interaction given by Eq. (4.1) yields the prediction

2π

Λ2 =
1

M2
V

× 4m4
Z − 8m2

Zm
2
W + 7m4

W

24v2M2
V︸ ︷︷ ︸

= 9.6× 10−5

(
1TeV2

M2
V

)
× r3 + 1

r2(r − 1)︸ ︷︷ ︸
> 1

, (4.6)

where we have assumed here a P -even interaction. We have used the LO
relationsm2

W = g2v2/4 andm2
Z = (g2+g

′ 2)v2/4. Finally, in this expression,
we assume two V V –AA WSRs [1], which lead to r = M2

A/M
2
V > 1, F 2

V =
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v2r/(r − 1) and F 2
A = v2/(r − 1). Hence, Λ is not simply the mass of the

lightest BSM states but it is highly increased by a large additional factor.
Indeed, when the strongest four-fermion bounds Λ ∼> 20 TeV are translated
into a vector mass lower-bound, one obtains values that go from MV ∼>
1.9 TeV for V and A extremely degenerate case (with r = 1 + 10−3), MV ∼>
0.6 TeV for the slightly degenerate scenario (with r = 1.1), and the really
loose bound MV ∼> 0.3 TeV for an V –A splittings with r = 2 or larger [6, 7].
Therefore, in spite of the large scales Λ found by these four-fermion analyses,
it is very easy to devise theoretical frameworks where they actually imply
very loose constraints on the masses of new physics states.

On the other hand, the EW precision observables and their expected
improvement in future colliders [15, 48] might be a more efficient approach
if we happen to be in this type of non-direct SM-fermion coupling scenar-
ios. The first custodial breaking operators appear at O(p6) in these model
in Eq. (4.1): after employing the gauge field EoM and field redefinitions,
we find that there is a contribution to Longhitano’s a0 term in L(4)

HEFT but
carrying the original O(p6) suppression, this is, with a very suppressed con-
tribution to the T -parameter. On the other hand, the S-parameter is ruled
by Longhitano’s a1 coupling [25, 45] which arises already at O(p4) without
any additional implicit suppression. At tree-level, we have the predictions

S = −16π2a1 =
4πv2

M2
V

(r + 1)

r
,

T =
2

α
a0 = −4πv2

M2
V

×
(
m2
Z −m2

W

)
4M2

V

m2
Z

m2
W︸ ︷︷ ︸

= 6.0× 10−4

(
1TeV2

M2
V

)
× r3 + 1

r2(r − 1)︸ ︷︷ ︸
> 1

, (4.7)

where again we have assumed that the BSM extension obeys two V V –AA
WSRs (which imply r = M2

A/M
2
V > 1). We have compared these results

with the experiment [14, 15] in Fig. 7 and the corresponding MV bounds
can be seen in Table I [6, 7]. One can see that these experimental determi-
nations are much more constraining and lead to masses MV ∼> 3 TeV in this
most constraining scenario with two V V –AA WSRs. These bounds become
softer if one assumes less stringent BSM theories where only the first WSR
applies [16, 17]. From this point of view, a factor five improvement in the
precision of the oblique parameters measurements at future colliders [15, 48]
seems to be a very promising way to either discover new physics in the few
TeV range or definitely exclude it up to masses MV ∼ 10 TeV. Note that
we are just showing tree-level predictions and one-loop corrections are not
discussed here.
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Fig. 7. (Color online) Allowed values for S and T for LEP data at 68% (light gray),
95% (medium gray/pale green) and 99% C.L. (dark gray/violet). Left-hand side:
S vs. T for r − 1 = 10−4, 10−3, 5 × 10−3, 10−2 and 0.5. Right-hand side: S vs. T
for r = 2, 3, 4, 5 (zoom of the left-hand side figure). Notice that the plots converge
rapidly for r ≥ 3 to the thick line.

TABLE I

Bounds on MV for different values of r using the allowed region for S and T at
68% and 95% C.L. from LEP [14, 15].

r = M2
A/M

2
V Lower bound For MV

68% C.L. 95% C.L.

1 + 10−3 5.2 TeV 4.0 TeV
1.1 5.1 TeV 3.9 TeV
2 4.5 TeV 3.4 TeV
∞ 3.7 TeV 2.8 TeV

5. Conclusions

We would like to end these proceedings with an optimistic message:
new physics may be just around the corner, at a few TeV, crouching. The
“bosonic” EW precision measurements do not disfavour this statement. All
one needs is a proper (and strong) suppression of the R → ff̄ ′ interaction.
Theories where the BSM sector only couples to the SM bosons, and has
no direct coupling to SM fermions, naturally reproduce these features with-
out any necessity of further tuning, while they still allow for measurable
deviations from the SM in appropriate “bosonic” observables.

Resonances with MR ∼ 2 TeV are hence still perfectly allowed. At LHC
searches, resonance production via vector boson scattering or Drell–Yan are
naturally small in these models. They are difficult to pin down and they re-
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quire large integrated luminosities. Four-fermion operator studies with dijet
and dilepton signatures (sometimes called “compositeness” studies) may not
lead to any successful result even in the long term for this type of scenarios.
On the other hand, low-energy searches and an important improvement in
the bosonic EW precision observables may be our best option to discover
new physics if it has the structure of this type of models.
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