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RADIATIVE CORRECTIONS TO e+e− → HADRONS + γ
AND e+e− → µ+µ− + γ∗
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The review of the recent developments in the field of radiative cor-
rections and their implementation in the Monte Carlo event generator
Phokhara is presented. Furthermore, discussion of the importance of ob-
tained results for future measurements of the hadronic cross section is per-
formed.
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1. Introduction

One of the most important observables in particle physics is the hadronic
cross section. It constitutes important input for the parameters used in tests
of the Standard Model and its extensions. Its value governs the running
of the electromagnetic coupling constant at low energy up to the mass of
Z0 boson and is, therefore, very important for the precision of analysis of
the electroweak interaction. It constitutes the crucial input for determina-
tion of strong coupling constant, quark masses, Z0 mass, and its width and
low-energy quantities such as pion or nucleon form factors. Furthermore, the
hadronic cross section is very important for a precise determination of the
muon anomalous magnetic moment (g − 2)µ. The physical quantity, which
experimental value deviates from the Standard Model predictions more than
3σ [1, 2]. The error of this discrepancy is dominated by the hadronic con-
tributions [1, 2], which cannot be calculated perturbatively with desired
precision. One of the crucial contributions to the hadronic part comes from
the hadronic vacuum polarization (HVP) diagrams. This contribution can
be calculated using dispersive integral approach, which relates the HVP to
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the measured value of the e+e− → hadrons cross section. As the error of the
Monte Carlo event generators used for data analysis constitutes part of the
systematic uncertainty of the measurement, including higher order radiative
corrections is necessary to ensure the appropriate precision of the simula-
tions. The dominant contribution to the HVP part and its uncertainty come
from the pion-pair production. Its precise determination is limited by the
observed discrepancy between BaBar and KLOE measurements [3]. As this
discrepancy might have originated partly from the missing radiative correc-
tions, including the higher order effects in the data analysis may help to
resolve this issue. On the other hand, the e+e− → µ+µ−γ reaction can also
influence the precise determination of the hadronic cross section. This reac-
tion is often used for monitoring the luminosity and, therefore, introduces
an additional contribution to the systematic error of the experiment.

In these proceedings, we report on the latest upgrade of the Monte Carlo
event generator Phokhara [4, 5]. In Section 2, we review the information
about the radiative return method. In Section 3, we describe the contribu-
tions to the reactions e+e− → hadrons + γ and e+e− → µ+µ− + γ at the
next-to-leading order (NLO) and beyond. Then, in Sections 4 and 5, the
most important developments are discussed, the complete NLO radiative
corrections for π+π−γ channel and NNLO initial-state corrections to the
radiative return cross section.

2. Radiative return method

One of the possibilities to measure the hadronic cross section is based
on the radiative return method [6, 7]. In this approach, the cross section
with the emission of a photon(s) from an initial state can be cast into the
following form:

dσ(e+e−→ hadrons+γISR)
(
Q2
)
= H

(
Q2, θγ

)
dσ(e+e−→ hadrons)

(
Q2
)
,

(1)
where H(Q2, θγ) is a radiator function, which depends on the invariant mass
of the final state — Q2, and polar angles of emitted photon(s) θγ .

This method allows measuring hadronic cross section over the wide range
of energies, from the threshold for production of a given final state up to the
nominal energy of the experiment. The radiator function is fully calculable
within QED but its precise knowledge involves the calculation of radiative
corrections. Moreover, relation (1) holds only for the photons emitted from
the initial state (ISR), so the contributions from the diagrams, where pho-
tons are emitted from the final state (FSR) have to be subtracted. The size
of the FSR can be suppressed by suitable experimental cuts. In general, ISR
is enhanced for the events, where photons are emitted at small angles and
FSR is suppressed for events, where photons are geometrically well-separated
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from the final-state particles. The more extensive discussions of the impact
of the FSR for the radiative return and method for testing its models can
be found in [7, 8]. The FSR contributions have to be well-controlled in
experiments. In practice, due to the complicated experimental setup, the
size of the FSR corrections is taken from the Monte Carlo event generators.
For the purpose of measurement of the hadronic cross section, the Phokhara
Monte Carlo event generator has been constructed [4, 5]. This generator
is based on reliable models of the FSR corrections for multihadronic final
states, which have been well-tested experimentally.

3. Radiative return at the the next-to-leading order and beyond

Assuming that the final state consists of a particle–antiparticle pair, in
fact, the production of µ+ µ− or π+ π− will be considered, the leading order
(LO) amplitude for the reaction e+(p1)e−(p2) → f(Q2) + γ(k1) is given by
the coherent sum of ISR and FSR amplitudes

MLO =MISR +MFSR , (2)

where f(Q2) represents the hadronic or leptonic final state with invariant
mass Q2 and (p1 + p2)

2 =
√
s. The classes of diagrams, which contribute to

the leading order cross section are presented in Fig. 1. Complete result for
the LO cross section, which takes into account the FSR and its interference
with the ISR can be found in [7, 9]. The finiteness of the leading order
cross section is ensured by requiring minimal energy of the emitted photon,
defined by the parameter gmin.

a) b)

Fig. 1. The classes of diagrams with the emission of one photon, which contribute
to the reaction e+e− → f(Q2)+γ at the LO. The π+π− final state is assumed and
blob represents modeling of the pion–antipion–photon interaction.

At the next-to-leading order (NLO), one has to include one-loop correc-
tions from Fig. 2 and diagrams with the emission of one additional hard
photon presented in Fig. 3. The complete set of one-loop corrections in-
cludes diagrams with vertex, self-energy corrections, and corrections, which
include the exchange of two virtual photons between initial and final states.
Additionally, one has also to take into account the contributions from dia-
grams with one soft (Eγ < Emin) and one hard photon (Eγ > Emin). Only
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the sum of virtual and soft corrections makes the total cross section infrared
finite. The independence of the total cross section on the separation param-
eter (w = Emin/

√
s), between soft and hard photon’s phase-space regions, is

obtained by including additional contributions from diagrams with two hard
photons, where energies of both photons fulfill the condition of Eγ > Emin.
The classes of diagrams for pions and muons are the same, the only difference
is that within a given class, additional topology, where two photons couple
to the final particle–antiparticle pair have to be taken into account, in the
pion case. A more detailed discussion of specific contributions is presented
in [10] for muons and in [11] for pions.

a) b) c)

d) e) f)

Fig. 2. The classes of virtual corrections, which contribute to the reaction e+e− →
f(Q2) + γ at the NLO. The π+π− final state is assumed and blob represents mod-
eling of the pion–antipion–photon interaction.

a) b) c)

Fig. 3. The classes of diagrams with the emission of two photons, which contribute
to the radiative return cross section at the NLO. The π+π− final state is assumed
and blob represents modeling of the pion–antipion–photon interaction.

The complete differential cross section at the NLO can be written in the
following form:

dσNLO = dσ1γ,LO + dσ1γ,NLO + dσ2γ , (3)

where the LO cross section is given by the following formula:

dσ1γ,LO =
1

2s
|MLO|2dφ2 (Q, q1, q2) dφ2 (p1, p2;Q, k1)

dQ2

2π
, (4)
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where dφ2(Q; q1, q2) denotes 2-body hadronic (muonic) phase-space element,
which has the following form:

dφ2 (Q; q1, q2) =
1

32π2

√
1−

4m2
f

Q2
dΩ , (5)

where dΩ is the solid angle of one of the final-state particles and mf is its
mass. The 2-body phase-space element dφ2(p1, p2;Q, k1), which depends on
photon momenta k1 has the following form:

dφ2 (p1, p2;Q, k1) =
1

32π2

(
1− Q2

s

)
dΩ1 , (6)

where dΩ1 is the solid angle of the photon. The one-photon cross section at
the NLO is given by the following formula:

dσ1γ,NLO =
1

2s

(
2Re

(
MLOM†NLO

)
+ |M1s,1h|2

)
×dφ2 (Q, q1, q2) dφ2 (p1, p2;Q, k1)

dQ2

2π
. (7)

The matrix element MNLO includes virtual corrections presented in Fig. 2
andM1s,1h represents contributions from the diagrams presented in Fig. 3,
where one photon is soft and one hard. The complete NLO corrections for
the muon case were calculated in [10], while dominant contributions have
been already presented in [4, 9, 12]. In the case of pions, the result of
complete NLO corrections can be found in [11], while the partial results
have been published in [4, 9, 13].

The two-photon cross section is given by the following formula:

dσ2γ =
1

2s
|M2γ |2dφ2 (Q, q1, q2) dφ3 (p1, p2;Q, k1, k2)

dQ2

2π
. (8)

The matrix elementM2γ includes all possible contributions with the emis-
sion of two photons, where photons can be emitted either from the initial or
final state. The calculation of the matrix element with the emission of two
hard photons from the initial state has been already presented in [9]. The
dominant FSR contributions, where one of the photons is emitted from the
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initial and one from the final state is presented in [12]. The result of the
calculation of the double real emission from the final state can be found in
[10] for muons and in [11] for pions.

The element of the phase space, which depends on photons momenta k1
and k2, written in the center-of-mass system (CMS) of electron–positron is
given by the following formula [9]:

dφ3 (p1, p2;Q, k1, k2) =
1

2!

s

4(2π)5
w1w

2
2

1− q2 − 2w1
dw1 dΩ1 dΩ2 , (9)

with q2 = Q2/s, wi = Ei/
√
s, where Ei and dΩi are photons energies and

solid angles.
The squares of the matrix elements Miγ contain several peaks, which

could lead to inefficient Monte Carlo generation. These peaks are softened
by a suitable change of integration variables. The change of variables for
one and two photons has been described in [9].

The energies of all photons have to be bigger than minimal photon energy
defined by the soft-photon cutoff w = Emin/

√
s. The total cross section

should be independent of this parameter, yet this parameter is indispensable
for the Monte Carlo generation. The soft-photon approximation requires
w value to be small but too small value could lead to the negative weights.
In the numerical simulation the usual value of w is 10−4–10−5. Additionally,
experimental conditions for radiative return require that at least one emitted
photon need to have energy Ei > gmin, where gmin is determined by the
experiment event selections.

The first step to include radiative corrections to the reaction e+e− →
γ∗(Q2) + γ beyond the NLO is to include dominant contributions in the
framework of leading logarithmic approximation [14]. Considered corrections
affect only the initial state, so the virtual photon γ∗(Q2) can decay to an
arbitrary final state. The NNLO cross section of the reaction can be written
in the following form:

σNNLO = (∆soft,1ph +∆virt,1ph)σ1γISR
+(∆soft,2ph +∆virt,soft,1ph +∆virt,2ph)σ2γISR + σ3γISR , (10)

where σiγISR represents cross section with emission of i hard photons. For
σ1γISR and σ2γISR the appropriate contributions can be extracted from Eqs. (4)
and (8). The classes of the diagrams, which represent possible contributions
to the radiative return cross section at the NNLO are presented in Fig. 4.
The leading logarithmic terms of virtual and soft corrections according to
[15] are given by the following formulae:

∆soft,1ph =
α

π

(
log
(
s/m2

e

)
− 1
)
log(2w) , (11)
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Fig. 4. Possible contributions to the cross section for the reaction e+e−→γ∗(Q2)+γ

at the NNLO.

∆virt,1ph =
3α

2π
log
(
Q2/m2

e

)
, (12)

∆soft,2ph =
∆2

soft,1ph

2
, (13)

∆virt,soft,1ph = ∆soft,1ph∆virt,1ph , (14)

∆virt,2ph =
9α

8π
log2

(
Q2/m2

e

)
. (15)

The cross section for the emission of three hard photons (σ3γISR), where
γ∗(Q2) decays into j particles can be written in the following form:

σ3γISR =
1

2s
|M3γISR |

2 1

2π2
dQ2 dφ4 (p1, p2;Q, k1, k2, k3) dφj (Q; q1, . . . qj) ,

(16)
where dφj(Q; q1, . . . qj) depends on the number of final-state particles and
reduces to Eq. (5) in the case of j = 2. The matrix element M3γISR has
been calculated using helicity amplitude method [16, 17]. It includes the
set of 24 diagrams of the class presented in Fig. 4 (c). The element of the
phase space, which depends on the momenta of three photons, in the CMS
of electron–positron can be written in the following form:

dφ4 (p1, p2;Q, k1, k2, k3) =
s2

16(2π)8

× 2w1w2w
2
3 dw1 dw2 dΩ1 dΩ2 dΩ3

1− q2 − 2w1 − 2w2 + 2w1w2(1− cos θ12)
,

(17)

where Ei and dΩi are photons energies and solid angles, and as in the case of
two photons, we use scaled variables q2 and wi. The soft and collinear peaks,
which appear in the square of the matrix elementM3γISR were absorbed into
the change of variables similarly as it was done in the case of two photons [9].
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4. Complete NLO radiative corrections
to the reaction e+e− → π+π−γ

The current knowledge of the pionic contribution to the (g−2)µ is limited
by the discrepancy observed between KLOE and BaBar data for extraction
of the pion form factor [3]. Both of these experiments used Phokhara Monte
Carlo event generator for data analysis. This generator was based on approx-
imate NLO radiative corrections. Given this, the possible impact of miss-
ing complete NLO radiative corrections for the reaction e+e− → π+π−γ
has to be investigated. The missing contributions include diagrams from
Fig. 2 (d)–(f) with appropriate soft-photon emissions and double real emis-
sion from the final state presented in Fig. 3 (b). Since KLOE [3, 18–20]
and BaBar [21, 22] used different event selections, the different impact of
the radiative corrections can be expected. The possible reason for this dis-
crepancy caused by the missing radiative corrections in the case of µ+µ−γ
channel has been discussed in [10]. It has been shown that corrections, which
were not previously included are not the origin of the observed experimental
discrepancy.

The complete NLO radiative corrections to the e+e− → π+π−γ reaction
have been calculated [5, 11], where for virtual corrections, the method de-
scribed in [23–25] has been used. The soft-photon contributions have been
calculated according to [26] and two hard-photon amplitudes using helicity
amplitude method. More details about these calculations will be presented
in [11]. Obtained results for experimental event selections show that the
size of the corrections, which were not present in the previous version of the
Phokhara code [10] are below 0.5% in the relevant region for the experimental
analysis [5]. As a consequence, the discrepancy between KLOE and BaBar
measurements cannot be explained by the lack of complete NLO radiative
corrections in the event generator Phokhara, and thus this discrepancy can
be only of experimental origin.

5. ISR NNLO radiative corrections

The comparison between Phokhara and KKMC [27] Monte Carlo event
generators, which was presented in [28], allowed to establish declared preci-
sion of Phokhara for the ISR corrections at the level of 0.5%. The difference
between these generators is that KKMC uses exponentiation formula to sum
leading higher order effects, while Phokhara is based on fixed order calcu-
lations. The KKMC generator cannot be used in the experimental analysis
for radiative return, as the full information about the kinematics of emitted
photon(s) is required and it does not include hadronic channels. The missing
third order leading logarithmic corrections in Phokhara are mostly responsi-
ble for the observed deviation. One could expect that including ISR NNLO
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corrections will lead to improving the precision of Phokhara up to the level
of 0.1%–0.2%. This improvement is necessary as future experimental mea-
surements of the (g−2)µ will be performed by the FERMILAB and JPARC
with the uncertainty about 4 times smaller. Given this, the improvement
of the precision for theoretical calculations of the (g − 2)µ has to be done.
This can be achieved by a more precise measurement of the hadronic cross
section, especially the pionic one. One of the ways to improve the precision
of this measurement is to reduce the systematic error, which comes from the
Monte Carlo generators.

The third order leading logarithmic corrections have been implemented
in Phokhara Monte Carlo event generator in the form presented in Eqs. (11)–
(15). The contributions with the emission of three hard photons have been
calculated with full kinematic dependencies using the helicity amplitude
method. Obtained results confirmed predictions presented in [28]. The
further analysis of the size of these corrections for realistic experimental
event selections has to be done to investigate how experimental observables
could be affected by considered additional contributions.

6. Conclusions

The current status of the calculations of the radiative corrections to the
reactions e+e− → hadrons + γ and e+e− → µ+µ− + γ, with emphasis on
the most important pionic channel has been reviewed. The overview of the
current level of precision and the status of the implementation of the radia-
tive corrections into Phokhara Monte Carlo event generator has been given.
The most important results and their impact on the hadronic cross section,
especially the pionic one were summarized. Discussion of the recent results
and future developments in the context of the observed discrepancy between
Standard Model and experimental value of the (g − 2)µ was discussed.
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