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KINEMATICS OF t-CHANNEL AND PHOTON
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The automatic generation of multichannel Monte Carlo phase-space
integration routines of carlomat, which up to now took into account only
mappings of ∼ 1/s or Breit–Wigner behaviour of the s-channel diagrams,
is being supplemented with the parameterizations which map away the
t-channel, soft and collinear photon or gluon emission. In order to improve
numerical stability, the quadruple precision versions of the routines for
computation of the helicity amplitudes and phase-space parameterizations
have been written and calls to them are being implemented in the code
generation part of the program.
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1. Motivation

Higher energies and higher luminosity of the current and future colliders,
such as HL-LHC [1], HE-LHC [2], ILC [3], CLIC [4], CEPC [5] or FCC [6],
pose a challenge not only for experimenters but for theoreticians, too. Higher
luminosity calls for higher precision of the Standard Model (SM), or beyond
SM, predictions, including radiative corrections, while the increasing energy
of initial beams allows to observe reactions with a few heavy particles at
a time. These heavy particles almost immediately decay leading to the
hard scattering reactions with several, e.g. 6, 7, 8, or even more particles
in the final state. Therefore, theoretical predictions for such multi-particle
reactions, which receive contributions typically from dozens of thousands of
the Feynman diagrams already at the leading order (LO), are needed. This
obviously calls for a full automation of the cross-section calculation.
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The automation can also be useful in the low-energy regime, for example,
if one wants to determine hadronic contributions to the vacuum polarization,
which are necessary in order to obtain precise SM predictions for the muon
anomaly or for the electromagnetic coupling at the Z peak, α(MZ). The lat-
ter is needed to predict, e.g. the W boson mass and the electroweak mixing
parameter sin2 θW . Below the J/ψ production threshold, the hadronic con-
tributions to the vacuum polarization cannot be calculated perturbatively,
but they can be derived, with the help of dispersion relations, from the
energy dependence of the cross section of e+e− annihilation into hadrons,
which must be measured either by the initial beam energy scan or with the
use of a radiative return method, and compared with predictions of a Monte
Carlo program, as e.g. PHOKHARA [7]. In the region from 1.2 to 2.0 GeV,
more than 30 exclusive channels must be measured. If this is done with
the radiative return method, as in KLOE, BaBar and BES, the predictions
must also include radiation of photons, both from the initial (ISR) and final
(FSR) state. Production of hadrons at low energies, as well as the photon
radiation off them, is usually described in the framework of some effective
model, as e.g. Hidden Local Symmetry (HLS) model, which includes quite
a number of interaction vertices and mixing terms. Because of that, the
number of Feynman diagrams for such radiative hadroproduction reactions
may become quite big, see e.g. [8].

Multi-particle reactions can be handled with several publicly available
multipurpose Monte Carlo (MC) generators, as e.g. HELAC/PHEGAS [9],
AMAGIC++/Sherpa [10], O’Mega/Whizard [11], MadGraph/MadEvent [12],
ALPGEN [13], CompHEP/CalcHEP [14], Comix [15], or carlomat [16].

2. Phase-space integration in carlomat

Consider a multi particle reaction of the form of

1 + 2→ 3 + 4 + . . .+ n (1)

with the maximum of n = 12, as implemented in carlomat [16]. The true
challenge in calculation of the cross section of (1) is not the matrix element,
but generation of the efficient multichannel MC routine for the phase-space
integration. The standard phase-space integration element of reaction (1)

d3nf−4Lips = (2π)4δ(4)

(
p1 + p2 −

n∑
i=3

pi

)
n∏
i=3

dp3i
(2π)32Ei

(2)

with nf = n−2, is reparameterized in the following way. The set of final-state
particles {3, 4, . . . , n} is divided into two subsets, dependent on a topology
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of the diagram. Denote the four momenta of each subset by qi1 and qi2 ,
respectively, and make use of the identity∫

dsi

∫
d3qi
2Ei

δ(4) (qi − qi1 − qi2) = 1 , E2
i = si + ~q 2i . (3)

By doing so consecutively, Eq. (2) is brought into the following form:

d3nf−4Lips = (2π)4−3nfdl0dl1 . . . dln−4ds1ds2 . . . dsn−4 , (4)

where invariants si, i = 0, 1, . . . , n − 4, are defined as si = (qi1 + qi2)
2 and

s0 = (q01 + q02)
2 = (p1 + p2)

2 = s, and 2-particle phase-space elements dli
are given by

dli =
|~qi1 |
4
√
si
dΩi , (5)

with Ωi being the solid angle of momentum ~qi1 in the relative centre-of-mass
system (c.m.s.), ~qi1 + ~qi2 = ~0.

Invariants si of Eq. (4) are randomly generated within their physical
limits, smin

i and smax
i , which are automatically deduced from a topology of

the Feynman diagram. They are generated either according to the uniform
distribution or, if wanted, mappings of the Breit–Wigner shape of the prop-
agators of unstable particles and ∼ 1/s behaviour of the propagators of
massless particles are performed. An option is included in the program that
allows to turn on the mapping if the particle decays into 2, 3, 4, . . . on-shell
particles. Different phase-space parameterizations obtained in this way can
be used for testing purposes.

Denote ith of N different phase-space parameterizations generated by
the program as

fi(x) = Lipsi (x) , i = 1, . . . , N , (6)

where x = (x1, . . . , x3nf−4) are random arguments, xi ∈ [0, 1]. It must satisfy
the normalization condition

1∫
0

dx3nf−4fi(x) = vol(Lips) . (7)

All the parameterizations fi(x) are then automatically combined into a single
multichannel probability distribution

f(x) =
N∑
i=1

aifi(x) , (8)



1974 K. Kołodziej

with non-negative weights ai, i = 1, . . . , N , satisfying the condition

N∑
i=1

ai = 1 ⇔
1∫

0

dx3nf−4f(x) = vol(Lips) . (9)

The actual MC integration is performed with the random numbers generated
according to the probability distribution f(x) of Eq. (8).

The MC integration in carlomat can be performed iteratively. First,
the integral is sampled N times with a rather small number of calls to the
integrand, each time with a different phase-space parameterization fi(x),
but equal weights ai = 1/N of Eq. (8), and the resulting cross section σi.
Then new weights calculated according to the following formula:

ai = σi/
N∑
j=1

σj (10)

are used in the first iteration of the integral. Weights ai are calculated anew
according to Eq. (10) after each consecutive iteration and substituted in
distribution f(x) of Eq. (8) with which the next iteration is calculated. This
means that channels with small weights ai are chosen with low probability
and will have either small or zero weights in all subsequent iterations.

As all the automatically generated kinematical channels were parame-
terized according to Eq. (4), the multichannel MC phase-space integration
routine of carlomat was up to now adequate basically only for reactions dom-
inated by the s-channel diagrams. What if the t-channel Feynman diagrams
become relevant, or if we have to do with a photon/gluon radiation with
a soft photon/gluon, or collinear singularity? The question is addressed in
Sections 3 and 4.

3. t-channel singularity

Consider the reaction of the following form:

e+(p1) + e−(p2)→ e+(p3) + e−(p4) + 5 + . . .+ n . (11)

It receives contributions, among others, from the Feynman diagrams of the
form depicted in Fig. 1. Using identity (3), we parameterize the phase-space
integration element in the following way:

d3nf−4Lips = (2π)4−3nfds′δ(4)
(
p1 + p2 − p3 − p4 − p′

) dp33
2E3

dp34
2E4

dp′3

2E′

×δ(4)
(
p′ −

n∑
i=5

pi

)
n∏
i=5

dp3i
2Ei

, (12)
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e−(p2) e−(p4)

5

n

e+(p1) e+(p3)

Fig. 1. Feynman diagram of reaction (11) containing double t-channel singularity.

withE′ =
√
s′ + ~p ′2. The right-hand side (r.h.s.) of Eq. (12) is a convolution

of the 3- and (nf − 2)-particle phase-space elements defined as follows:

dPS3
(
s,m2

3,m
2
4, s
′) = δ(4)

(
p1 + p2 − p3 − p4 − p′

) dp33
2E3

dp34
2E4

dp′3

2E′
,

(13)

dPSnf−2
(
s′,m2

if
, . . . ,m2

n

)
= δ(4)

(
p′ −

n∑
i=if

pi

) n∏
i=if

dp3i
2Ei

, with if = 5 .

(14)

In the c.m.s., Eq. (13) can be brought to the form of

dPS3
(
s,m2

3,m
2
4, s
′) = 1

8
δ(
√
s− E3 − E4 − E′)

|~p3||~p4|
E′

dE3dE4dΩ3dΩ4 ,(15)

with E′=
√
s′ + (~p3 + ~p4)2. Introducing dimensionless variables x=2E3/

√
s

and y = 2E4/
√
s, Eq. (15) can be written in the following way [17]:

dPS3
(
s,m2

3,m
2
4, s
′) =

1

8

|~p3||~p4|
2− x+ y |~p3||~p4| cos θ34

×dx [δ(y − y+) + δ(y − y−)] dydΩ3dΩ4 , (16)

where

cos θ34 = cos θ3 cos θ4 + sin θ3 sin θ4 cos(ϕ3 − ϕ4) (17)

and y± are the solutions, possibly 2, of the energy conservation equation, as
described by the Dirac delta of Eq. (15)

√
s− E3 − E4 − E′ =

√
s−
√
s

2
x−
√
s

2
y −

[
s′ +

s

4
x2 −m2

3 +
s

4
y2 −m2

4

+2

√
s

4
x2 −m2

3

√
s

4
y2 −m2

4 cos θ34

]1/2
= 0 . (18)
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The random variables of Eqs. (12) and (16) are generated in a similar way
as described in [18] with only minor modifications, i.e.

— s′ is generated according to ∼ 1/s′ distribution.

— x is generated according to ∼ 1/(1− x) distribution.

— Azimuthal angles ϕ3 and ϕ4 are generated according to the uniform
distribution.

— cos θ3∈ [− cos θcut, cos θcut] is generated according to∼1/(1−β3 cos θ3),
with β3 = 2|~p1||~p3|/(2E1E3 −m2

3).

— cos θ4∈ [− cos θcut, cos θcut] is generated according to ∼1/(a4+cos θ4),
where

a4 =
2E2Ẽ4 −m2

4

2|~p2|
√
Ẽ2

4 −m2
4

(19)

and the meaning of Ẽ4 is explained below.

— The (nf − 2)-particle phase-space element of Eq. (14) is generated in
a way similar to the s-channel phase-space generation of carlomat.

Note that energy E4 of particle 4 is not known before cos θ4 has been gen-
erated, cos θ34 calculated according to Eq. (17) and Eq. (18) solved. There-
fore, instead of E4, we use in Eq. (19) Ẽ4 being the solution of Eq. (18) for
cos θ34 = −1, which corresponds to the collinear singularity being most pro-
nounced. Then cos θ34 is calculated according to Eq. (17) and substituted
to Eq. (18). If there is no solution for y, then d3nf−4Lips of Eq. (12) is set
to 0. If two solutions y± exist, then one of them is chosen randomly and the
phase-space element d3nf−4Lips is multiplied by a factor 2.

4. Photon or gluon emission

Consider the reaction of the photon or gluon radiation of the following
form:

1 + 2→ 3 + 4 + . . .+ n+ γ(pγ) . (20)

The phase-space element for the ISR is parameterized by

d3(nf+1)−4Lips =
1

2
(2π)4−3(nf+1)EγdEγdΩγdPSnf

(
s′,m2

3, . . . ,m
2
n

)
, (21)
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where Eγ and dΩγ = d cos θγdϕγ are the energy and solid angle element of
the photon in the c.m.s., respectively, s′ = (p1 + p2 − pγ)2 = s − 2

√
sEγ

is the reduced c.m.s. energy squared and dPSnf
(s′,m2

3, . . . ,m
2
n) is given by

Eq. (14) with if = 3.
The random variables of Eq. (21) are generated in the following way:

— Eγ is generated according to ∼ 1/Eγ distribution with the minimum
photon energy Ecut

γ .

— cos θγ∈ [− cos θcutγ , cos θcutγ ] is generated according to∼1/(1−β2 cos2 θγ),
with β =

√
1− 4m2

1/s and, for the sake of simplicity, we have assumed
equal masses of the initial-state particles.

— ϕγ is generated according to a uniform distribution.

— dPSnf
(s′,m2

3, . . . ,m
2
n) is again generated in a way that takes into ac-

count peaks due to the s-channel Feynman propagators.

The phase-space element for the FSR from either particle 3 or 4 of reaction
(20) is written in the following way:

d3nf−4Lips = (2π)4−3nfds′ds′′dPS2
(
s, s′, s′′

)
×dPS3

(
s′,m2

3,m
2
4, 0
)
dPSnf−3

(
s′′,m2

5, . . . ,m
2
n

)
, (22)

with nf = n − 1 and the 2-, 3- and (nf − 3)-particle phase-space elements
defined appropriately according to Eqs. (13) and (14). The 3-particle phase-
space element on the r.h.s. of Eq. (22), corresponding to the photon radiation
off particle 3, is parameterized by

dPS3
(
s′,m2

3,m
2
4, 0
)
= 1

8dEγdE3d cos θ3dϕ3dϕ37 , (23)

where the random variables are generated in the same way as in a program
ee4fγ [19], i.e.

— Eγ is generated according to∼ 1/Eγ , with the minimum photon energy
Ecut
γ boosted to the c.m.s. of particles 3, 4 and γ.

— E3 is generated according to ∼ 1/(c3 − E3) ∼ 1/(p4 · pγ).

— cos θ3, ϕ3 and ϕ37 are generated according to the uniform distribution.
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5. Quadruple precision

The multichannel probability distribution of Eq. (8) is in the current
version of carlomat automatically supplemented with parameterizations (12),
(21) and (22), which map away peaks due to t-channel Feynman propagators,
or soft and collinear photon/gluon emission from the initial- or final-state
particles. If the set of final-state four momenta of reactions (1), (11) or
(20) is randomly generated according to the probability distribution fj(x),
then normalization factors of all other distributions fi(x), i = 1, . . . , N of
Eq. (8) must be calculated for that particular set of four momenta in order
to obtain proper phase-space normalization. This can be done also for the
distribution fj(x) itself. In this way, we obtain a test of numerical stability of
the kinematical part of the generated code. It is obvious that discrepancies
between the normalization factor of fj(x) calculated from the random vari-
ables x = (x1, . . . , x3nf−4) and the normalization factor of fj(x) recalculated
from the final-state four momenta indicate potential numerical instabilities
in the phase-space calculation. The information about kinematical channels
for which this test is not well-satisfied is recorded in the program output.

In the current version of carlomat, the problem is solved by the use of
quadruple precision for the four momenta in kinematical routines and de-
nominators of the Feynman propagators in the helicity amplitude calculation
routines. However, then the MC program becomes much slower (by more
than a factor 20).

6. Sample results

In Table I, we show the LO cross sections σ of the following reactions:

e+e− → µ+µ−τ+τ− , (24)
e+e− → e+e−µ+µ− , (25)

and the cross sections σγ of the corresponding radiative reactions with one
photon in the final state at

√
s = 200 GeV and

√
s = 500 GeV. The complete

results for reactions of the form of e+e− → 4f, 4fγ are listed in [20]. As in
[20], we impose the following cuts on angles and energies of the photon and
final-state lepton:

cos θ(l,beam) ≤ 0.985 , cos θ(γ,beam) ≤ 0.985 , θ(γ, l) > 5◦ ,

Eγ > 1 GeV , El > 5 GeV .

The first row, both for reaction (24) and (25), shows the results for σ
and σγ of [20], while in the second and third row shown are the results
obtained, respectively, with the double and quadruple precision MC code
generated automatically with the current version of carlomat. Note that the
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TABLE I

LO cross sections of e+e− → µ+µ−τ+τ− and e+e− → e+e−µ+µ−, σ, and of the
corresponding radiative reactions, σγ , at

√
s = 200 GeV and

√
s = 500 GeV with

cuts given by (26). The first row for each channel shows the result of [20], while the
second and third row are the results obtained, respectively, with the double and
quadruple precision MC code generated automatically with the current version of
carlomat.

Final
√
s = 200 GeV

√
s = 500 GeV

state σ [fb] σγ [fb] σ [fb] σγ [fb]

10.267(14) 2.1787(91) 2.5117(44) 0.6495(40)
µ+µ−τ+τ− 10.250(8) 2.1958(28) 2.4866(31) 0.6514(13)

10.250(8) 2.1979(31) 2.4866(31) 0.6543(16)
137.18(90) 12.93(31) 43.80(38) 4.58(12)

e+e−µ+µ− 137.52(75) 13.64(7) 42.14(32) 4.83(8)
137.38(75) 13.67(7) 42.39(38) 4.91(4)

cross sections σ of reaction (24), where there are neither poles related to
the t-channel Feynman propagator nor collinear photon emission, computed
with the double and quadruple precision code are identical. However, there
are some differences between the cross sections σγ of the radiative reaction
(24) and cross sections of both the LO (σ) and radiative (σγ) reaction (25),
where either the t-channel or collinear, or both kinds of poles are present at a
time, computed with double or quadruple precision. Differences between the
results of [20] and those of the present work can be traced back to the fact
that the cross sections of [20] were obtained with a program ee4fγ, where the
MC integration is performed in a single iteration, i.e. they are arithmetic
means of all the calls to the integrand, while the current version of carlomat
utilizes a multi-iteration approach with the results of iterations with smaller
variance contributing more to the final result of the integration than those
with the bigger variance.

7. Summary and outlook

The automatic generation of multichannel MC phase-space integration
routines of carlomat, which up to now took into account only mappings of
∼ 1/s or the Breit–Wigner behaviour of the s-channel diagrams, is being sup-
plemented with the parameterizations which map away the t-channel, soft
and collinear photon or gluon emission. The quadruple precision versions
of the routines for computation of the helicity amplitudes and phase-space
parameterizations have been written. An upgraded version of carlomat in-
cluding those improvements should be released soon, most probably in a few
months.
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