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Accurate theoretical predictions in the Standard Model (SM) are vital
to disentangle possible new physics effects. The loop–tree duality (LTD)
formalism transforms the integration domain of loop scattering amplitudes
to a Euclidean space where asymptotic expansions of the integrand are well
defined. The effectiveness of LTD for making asymptotic expansions has
been shown in the large-mass and small-mass limits for Higgs production
through gluon fusion. In this paper, we present a preliminary study aimed
at generalising the method of asymptotic expansions in the LTD formalism.
We use a toy amplitude and derive general guidelines.
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1. Introduction

After the successful discovery of the Higgs boson at CERN’s Large
Hadron Collider (LHC) almost a decade ago, the goal of describing the
fundamental laws of nature with unprecedented accuracy remains a priority
in high-energy physics. In the pursuit of this objective comparing measure-
ments with theoretical predictions at increasing precision is at the forefront
of current research. Consequently, it is necessary to include higher order
contributions in perturbative Quantum Field Theory (pQFT) which quickly
reaches its limits in the classical approach of Dimensional Regularization
(DREG): divergent expressions appearing in the loop calculations of Feyn-
man diagrams therein are regularized by working in d = 4 − 2ε space-time
dimensions — only to take the limit of ε → 0 after both infrared (IR)
and ultraviolet (UV) singularities have been cancelled and/or renormalized.
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Generally, the difficulty posed by the integral in a Feynman amplitude scales
with the number of loops, external legs and mass scales. For two mass scales,
the state of art is surpassed already at the two-loop level for four-point func-
tions.

In recent years, an alternative regularization method based on the loop–
tree duality (LTD) has been developed and applied both at one loop and
beyond [1–17]. Other alternative methods to DREG are summarized in
Ref. [18]. LTD is based on applying the Cauchy residue theorem in order
to solve one component of the loop momentum. As a consequence, loop
amplitudes can be expressed as a sum of residues which can be reformulated
as so-called dual amplitudes. These consist of tree-level-like objects to be
integrated in what essentially is a phase-space integral.

A general one-loop amplitude with N external legs is given by

A(1)
N =

∫
`

(
N∏
i=1

GF(qi)

)
N (`, {pk}) , (1)

where the integral measure in d = 4 − 2ε is
∫
` = −i

∫
dd`/(2π)d and the

Feynman propagator GF(qi) = (q2i − m2
i + i0)−1. Applying the loop–tree

duality theorem, this amplitude is written as

A(1)
N = −

∫
`

N∑
i=1

δ̃ (qi)

∏
j 6=i

GD (qi; qj)

N (`, {pk}) , (2)

where GD(qi; qj) = (q2j −m2
j − i0 η · kji)−1, with kji = qj − qi, is called the

dual propagator and η is an arbitrary timelike vector. The dual propagator
differs from the Feynman propagator only in its imaginary part, whose sign
depends on the external momenta to take into account the imaginary part
introduced when taking the residue and evaluating the non-singular part
of the amplitude on the complex pole. Another consequence of the residue
theorem is the on-shell delta functional δ̃ (qi) = 2πi θ(qi,0)δ(q

2
i −m2

i ). Since
in each term in the sum of Eq. (2) a different internal line is set on-shell,
these cuts only depend on the spatial part of the loop momentum (for the
customary choice η = (1,0)) and the remaining part of the loop integral has
the structure of a phase-space integral.

This three-dimensional structure of the dual integrand leads to the ar-
guably most striking achievement of the LTD since it allows the local can-
cellation of IR singularities as done in the Four-dimensional Unsubtraction
method (FDU) [7–9]. At the same time, it allows us to explore the topic
of asymptotic expansions since the presence of only Euclidean momenta al-
lows the direct comparison between the size of scalar products and external
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scales. LTD has already been used successfully to derive integrand-level ex-
pansions in H → γγ at one loop [10] allowing for optimism concerning the
development of a general method.

Asymptotic expansions in pQFT are of interest since they would facilitate
analytic results in specific kinematic situations even for amplitudes where the
full analytic calculation in DREG is not (yet) possible due to the absence
of solutions for certain master integrals. There is a variety of situations
where an analytic result is not necessary for every set of kinematics and
where specific limits are the window to test potential discrepancies between
experiments and SM calculation caused by new physics.

There are already well-developed methods available for simplifying the
integrands of Feynman amplitudes through asymptotic expansions, notably
among them Expansion by Regions [19, 20]. This method has been shown
to produce correct results, though it still lacks a general proof [21]. Fur-
thermore, every term in the expansion has a higher degree of UV divergence
which can be considered problematic.

Here, we present the starting point for developing the general method
of asymptotic expansions in the context of LTD by considering the simplest
diagram. This easy toy amplitude allows to study the behaviour of the dual
propagator under different expansions and how these expansions must be
defined. We aim towards obtaining an expansion that is well-defined also at
integrand level and simplifies integrands sufficiently to obtain loop analytic
results at higher orders and multiple scales.

2. Generalized expansion of the dual propagator

The behaviour of Feynman amplitudes is mostly determined by its an-
alytic structure which follows from the appearing propagators. Therefore,
these are the starting point for developing a general method for expansions
at integrand level. The objectives are for the expansion to converge fast, i.e.
a small number of terms in the expansion should be sufficient to achieve ac-
ceptable accuracy, and the expanded amplitude should be easily integrable
analytically.

Necessary groundwork is understanding the position of physical and re-
movable non-causal singularities. The singular behaviour of a dual propa-
gator can be efficiently examined through a reparametrization [14]

δ̃ (qi)

πi
GD(qi; qj) =

δ
(
qi,0 − q(+)

i,0

)
q
(+)
i,0 λ

+−
ij λ++

ij

, λ±±ij = ±q(+)
i,0 ± q

(+)
j,0 + kji,0 , (3)

where a causal unitarity threshold appears for λ++
ij → 0 and an unphysical

threshold for λ+−ij → 0. The latter always appears in two paired dual ampli-
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tudes at once and cancels due to the prescription of the imaginary part. This
notation is convenient as it allows to easily derive the kinematic conditions
for these limits to occur.

Having understood its analytic structure, one may rewrite the dual prop-
agator in terms of properly chosen parameters Γji and ∆ji and it may be
expanded

GD(qi; qj) =
1

2qi · kji + Γji +∆ji − i0 η · kji

=

∞∑
n=0

(−∆ji)
n

(2qi · kji + Γji − i0 η · kji)n+1 , Γji +∆ji = m2
i −m2

j + k2ji . (4)

If the choice kji = 0 is possible, the denominator shall be rewritten as

2qi · kji + Γji =
Q2
i

xi
(rij + xi) (rijxi + 1) , xi =

|`|+
√

`2 +m2
i

mi
. (5)

In order to achieve the form above, it is necessary that the parameters Γji
and ∆ji appearing in the expansion fulfill the following conditions:

Γji= Q2
i

(
1 + r2ij

)
, ∆ji=m

2
i −m2

j + k2ji − Γji , rij=
mikji,0
Q2
i

. (6)

As it will be demonstrated in the following, integrals of dual propagators
reshaped in this form are easily solvable analytically, based on

∞∫
1

dx

(r + x)(rx+ 1)± i0
=

log(r ± i0)

r2 − 1
, |r| < 1 . (7)

For any limit, the expansion parameter rij , and thus Γji and ∆ji, must
be chosen such that the propagators may be simplified as in Eq. (5). The
analytic behaviour of the dual propagator may only be changed in a smooth
way through the expansion and the Q2

i must be chosen such that the expan-
sion converges both at integrand and at integral level. To achieve this, one
should demand that

|−∆ji| � |2qi · kji + Γji| (8)

for all of the integration space expect for possibly a small region around
physical divergences.

One might think that it should generally be possible to directly derive
the optimal expansion parameters from maximizing Eq. (8). Indeed, for the
types of limits where one large scale Q is available, this is true: choosing
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Q2
i = ±Q2 and determining the sign in order to respect the second condition

directly gives correct expansion parameters. Alternatively, the sign may
be deduced from the expected behaviour of the logarithm: if a physical
threshold appears in the cut, the respective r should be negative which
leads to an imaginary part coming from the logarithm.

Considering the scenario of approaching a physical threshold, this method
is not sufficient, though. It appears that when a propagator’s behaviour is
strongly influenced by the pole, which clearly is the case in the threshold
expansion, one must consider the trajectory of the pole more carefully. For
this goal, it is necessary to rewrite the dual propagator in terms of its sin-
gularities (again, if the choice kji = 0 is possible) as

GD (qi; qj) =
1

2qi · kji +m2
i −m2

j + k2ji − i0 η · kji

=
x

kji,0mi (x− x1)(x− x2)
, |qi| =

mi

2

(
x− 1

x

)
, (9)

where the poles are given in terms of the Källén function λ(x2, y2, z2) =
(x2 − (y + z)2)(x2 − (y − z)2) as

x1/2 = −
k2ji,0 +m2

i −m2
j ±

√
λ
(
k2ji,0,m

2
i ,m

2
j

)
2kji,0mi

. (10)

The full propagator can thus be brought into the form desired for the integra-
tion by identifying r = −x1 or r = −x−11 = −x2, even in its non-expanded
form. The ideal r to be used in the expansion can thus be obtained by
expanding the divergences of the propagator x1/2. Between x1 and x2, the
appropriate choice is the one whose absolute value is smaller than 1. In this
way, asymptotic limits such as approaching the threshold both from below
and from above can be obtained and also the parameters for the expansion
with a large scale can be reproduced.

3. Bubble diagram

The general rules above can be applied to the bubble diagram, given by
the amplitude

A(1) =

∫
`

GF(`;m)GF(q1;M) . (11)

Note that the choice of integration momenta with q1 = `− p instead of `+ p
avoids the appearance of artificial singularities at integrand level. While
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these, being unphysical, always cancel, they would make the calculation
unnecessarily complicated. With L = log(M2/m2), the full renormalized
result as obtained through FeynCalc is [22, 23]

A(1,R) = A(1) −
[
A(1)

]cnt

UV
=

1

16π2

[
2− log

(
M2

µ2UV

)
− M2− p2−m2

2p2
L

+
λ1/2

(
p2,m2,M2

)
p2

log
m2+M2− p2+λ1/2

(
p2,m2,M2

)
2mM

]
, (12)

where the appropriate counterterm in the Feynman and the LTD represen-
tation, respectively, is given by[

A(1)
]cnt

UV
=

∫
`

GF(`;µUV)
2 =

∫
`

δ̃ (`;µUV)

2
(
`
(+)
0

)2 . (13)

This is an MS counterterm when identifying µUV with the DREG renormal-
ization scale.

The dual representation for the amplitude in Eq. (11), when assuming
p = (p0,0) with p0 > 0, is given by

A(1) = −
∫
`

[
δ̃ (`;m) GD(`; q1) + δ̃ (q1;M) GD(q1; `)

]
, (14)

with the dual propagators

GD(`; q1) =
1

−2` · p+ p2 +m2 −M2 + i0
, (15)

GD(q1; `) =
1

2q1 · p+ p2 −m2 +M2 − i0
, (16)

and the on-shell energies and scalar products `(+)
0 =

√
`2 +m2, q(+)

1,0 =√
`2 +M2, ` · p = `

(+)
0 p0, and q1 · p = q

(+)
1,0 p0.

Applying the general propagator expansion of Eqs. (4) and (5), the am-
plitude of the bubble diagram takes the form of

A(1) = − 1

16π2

[
m2

Q2
1

∞∑
n=0

(−∆21)
n

Q2n
1

I
(
r12, Λ1, n,−Q2

1

)
+
M2

Q2
2

∞∑
n=0

(−∆12)
n

Q2n
2

I(r21, Λ2, n, 1)

]
, (17)



Asymptotic Expansions Through the Loop–Tree Duality 1989

where the functions I contain the remaining integration as

I(r, Λ, n, a) =

Λ∫
1

dx
(x2 − 1)2 xn−2

[(r + x) (rx+ 1)− a · i0]n+1 . (18)

Since the threshold divergence can only appear in the first cut, we already
know that Q2

2 > 0 and, in fact, the imaginary part of the propagator in the
second cut can be dropped. Since the integrals over the two cuts do not con-
verge separately, they have to either be integrated numerically together with
the counterterm or the separate analytic integrations must be performed up
to the cutoff Λi = (Λ + (Λ2 + m2

i )
1/2)/mi. The limit Λ → ∞ is only to

be taken after summing both cuts and cancelling the UV divergence with
the appropriate counterterm. The results of the integrals are functions of
logarithms of the cutoff and the parameters r

I(|r| < 1, Λ, n, 0)
n=0
=

Λ

r
−
(
1 +

1

r2

)
log(Λ) +

(
1− 1

r2

)
log(r) +O

(
Λ−1

)
n=1
=

1

r2
log(Λ) +

1 + r2

r2 (1− r2)
log(r)− 1

r2
+O

(
Λ−1

)
n=2
=

2

(1− r2)3
log(r)− 1 + r2

2r2 (1− r2)2
+O

(
Λ−1

)
. (19)

It is apparent that the UV divergence lessens with every order in the ex-
pansion. Thus for renormalization, only the first two terms are necessary.
Therein, the linearly divergent terms cancel between the two cuts and the
logarithmic dependence on the UV cutoff Λ is canceled by the counterterm
of Eq. (13). Any further precision improvement by including more orders of
the expansion will not affect the UV behaviour.

Independently of the chosen limit, the renormalized amplitude including
the expansion terms up to n = 1 is thus given by

A(1,R)
n=1 =

1

16π2

[
2− log

(
M2

µ2UV

)
− M2 −m2 − p2

2p2
L

−m
2

Q2
1

((
c(0)r12+c

(1)
r12

)
log(r12)+c

(1)
1

)
− M2

Q2
2

((
c(0)r21+c

(1)
r21

)
log(r21) + c

(1)
2

)]
. (20)

Further terms in the expansion do not affect the first line of this result and
only increase the precision in the coefficients of the logarithms of the rij as
well as adding more terms without logarithms. The coefficients needed in
the result for the first few orders can be read off Eqs. (17) and (19).
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In the limit of one large mass, M � m, p2, following the rules described
above leads to Q2

1 = −M2, r12 = m
√
p2/M2, Q2

2 =M2 and r21 =
√
p2/M .

Using the values M/m = 10 and p2/m2 = 3, the relative error of the result
is 2.7% at first renormalized order in the expansion (n = 1) and decreases
to 0.03% for n = 2. At integrand level, the relative error lies around 10−4

(10−5) for n = 1 (n = 2) for all the range of the loop momentum. Similarly,
with the limit of large external momentum, a scenario above threshold has
been successful.

For the case of the threshold limit with β = 1 − p2/(m +M)2 → 0±,
the expansion parameters must be obtained by expanding the position of
the propagator’s singularity given in Eq. (10). This leads to r1 = −1 +√
M/m

√
−β and Q2

1 follows according to the conditions in Eq. (6). Since
no singularity determines the behaviour of the second cut there, the simple
choice Q2

2 = p2 may be used. The expression provided for r1 is to be used
both when approaching the threshold from above and from below — even
though in the second case no divergence appears in the propagator, the
complex singularity approaches the real axis and is thus the most important
feature of the propagator. The imaginary part arising from the complex
logarithm is canceled by the coefficients leading to an amplitude that is real,
except for a tiny imaginary part that goes to zero quickly when increasing
the precision of the expansion: the ratio of imaginary part over real part of
the result below threshold (β > 0) is 0.02% for n = 1 and 2×10−6 for n = 2.
The relative error of the result for β = −0.1 (β = 0.1) is 0.06% (0.2%) for
n = 1 and 4× 10−6 (2× 10−5) for n = 2.

4. Conclusions and outlook

Motivated by previously successful results in the LTD calculation of
Higgs production through gluon fusion at one loop, we started the devel-
opment of a general method for asymptotic expansions in the context of
LTD by exploiting the Euclidean structure of dual integrands. In this work,
we considered the bubble diagram with two massive particles in the loop as
a starting point. For this process, we developed a general formula for the
expanded amplitude as well as rules on how to apply it for different types of
limits. The result is fully renormalized when including only two terms of the
integrand-level expansion and the following terms are finite in the UV. We
tested the convergence for the limit of one large mass in the loop, for a large
external momentum and for the threshold limit. In all cases, the expansion
converged very fast such that the relative error is acceptable even at leading
order. The result obtained is simpler than the full version and thus allows
an intuitive understanding of the amplitude in the respective limits.
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We have developed successful expansions also for the scalar three-point
function. Embedding these in the general formalism is still in progress. In
addition, a systematic comparison with the results obtained for comparable
cases in Expansion by Regions is still outstanding. Finally, we are looking
forward to applying this expansion method to highly boosted Higgs produc-
tion and extending it to the two-loop case.
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