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A number of properties of dense matter can be understood semiquan-
titatively in terms of simple physical arguments. We begin with the outer
parts of neutron stars, and consider the density at which pressure ionization
occurs, the density at which electrons become relativistic, the density at
which neutrons drip out of nuclei, and the size of the equilibrium nucleus in
dense matter. Subsequently, we treat the so-called “pasta” phases expected
to occur at densities just below the density at which the transition from the
crust to the liquid core of a neutron star occurs. We then consider aspects
of superfluidity in dense matter. Estimates of pairing gaps in homogeneous
nuclear matter are given, and the effect of the dense medium on the inter-
action between nucleons is described. Finally, we turn to superfluidity in
the crust of neutron stars and especially the neutron superfluid density, an
important quantity in the theory of sudden speedups of the rotation rate
of some pulsars.
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1. Introduction

The purpose of this paper is to describe in simple terms a number of
properties of dense matter of importance for neutron stars. In the main,
the emphasis is on physical principles and obtaining a good semiquanti-
tative understanding without going into fine details. We shall adopt the
format of a series of “Frequently Asked Questions” and we begin in Section
2 with an overview of matter at subnuclear densities. Section 3 is devoted to
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phases in which nuclei can adopt rod-like and plate-like forms, as opposed to
the roughly spherical shapes familiar terrestrially, and Section 4 considers
aspects of neutron superfluidity and proton superconductivity in neutron
stars. We shall restrict ourselves to matter at subnuclear densities because,
while such matter makes up only a small fraction of the total mass of a neu-
tron star, many observational effects depend crucially on the properties of
the outer layers of the star. Matter at higher densities is reviewed in Ref. [1].

In most of the discussion, we shall consider the ground state of matter
as a function of the density of baryons. Effects of nonzero temperature on
the equation of state of matter are generally small, since in neutron stars
the thermal energy kBT is small compared with characteristic microscopic
energies (typically on the scale of MeV, or 1010K) except close to the surface
of the star. Of course, the temperature is important for thermal effects
such as the heat capacity and nonequilibrium phenomena such as transport
coefficients and neutrino emission rates.

2. Matter at subnuclear densities

Determining the properties of matter at terrestrial densities is a com-
plicated problem because it demands a detailed understanding of electron
correlations. At higher densities, interactions between electrons become less
important and the problem becomes simpler [2].

2.1. How important are electron–electron interactions?

A dimensionless measure of the importance of electron–electron interactions
is e2/~ve, where ve is the electron Fermi velocity.

. . .
The density of a uniform electron gas is given in terms of the electron

Fermi momentum pe by

ne =
p3
e

3π2~3
. (1)

If one imagines the volume per electron to be a sphere, its radius is given by

ne
4πr3

e

3
= 1 or re =

(
9π

4

)1/3 ~
pe
. (2)

The Coulomb interaction energy of two electrons separated by a distance
re is e2/re, while the kinetic energy of an electron is of the order of the
Fermi energy, which is p2

e/(2me) for nonrelativistic electrons, where me is
the electron mass. So as not to obscure the basic physics, we shall frequently
omit numerical factors. For an ultrarelativistic electron, the Fermi energy
is pec, where c is the velocity of light and, therefore, quite generally, the



Dense Matter and Neutron Stars: Some Basic Notions 2147

typical kinetic energy of an electron is of the order of peve. Thus, the ratio
of a typical interaction energy compared with the kinetic energy is of the
order of

e2

repeve
' e2

~ve
, (3)

from which one concludes that electron–electron interactions become less
important as the density increases, in contrast to what is the case for other
sorts of interactions, such as those between atoms and molecules or between
nucleons in nuclei and nuclear matter. For nonrelativistic electrons, this
ratio may be rewritten as re/a0, where a0 = ~2/mee

2 is the Bohr radius.
The ratio re/a0 ≡ rs is the standard measure of the interaction strength
used in the theory of metals at terrestrial densities, for which rs is of the
order of unity [3].

2.2. How important are electron–nucleus interactions?

A dimensionless measure of the importance of electron–nucleus interactions
on the properties of the electrons is Z2/3e2/~ve, where Z is the atomic
number of the nucleus.

. . .
The magnitude of a typical energy of interaction between a nucleus and

an electron is EeN ' Ze2/rc, where rc is a typical distance of an electron
from a nucleus, which, by analogy with the definition of re, Eq. (2), we define
by the equation

nN
4πr3

c

3
= 1 , (4)

where nN is the density of nuclei. Since bulk matter is electrically neutral,
the densities of electrons and protons are the same and, therefore, ne = ZnN ,
or rc = Z1/3re. Thus we see that the ratio of the Coulomb energy to the
kinetic energy is of the order of Z2/3e2/~ve. Thus, electrons are little affected
by interactions with nuclei if Z2/3e2/~ve � 1: matter is said to be “pressure
ionized”.

Another way of deriving this condition is by considering when electrons
can move relatively easily from one atom to another. In the Thomas–Fermi
theory, the size of an atom is of the order of a0/Z

1/3. Atomic electron clouds
will overlap when the spacing between nuclei is less than this, or

rc .
a0

Z1/3
. (5)
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With numerical factors inserted, interactions between electrons and nuclei
will be small if the mass density, ρ & 10 AZ gm/cm3, where A is the mass
number of the nucleus, the total number of nucleons per nucleus.

Under terrestrial conditions, atoms behave as though their size is ∼
a0 rather than the Thomas–Fermi length a0/Z

1/3. This is because at low
pressure, properties such as the equilibrium density of matter are determined
by the outermost electrons, which have a scale ∼ a0, and the majority of
electrons in the core of the atom play little role.

2.3. When do electrons become relativistic?

At a density of the order of 106 gm/cm3.
. . .

For electrons to be relativistic, the Fermi momentum must be comparable
tomec. In matter at ordinary densities, ∼ 1 gm/cm3, the separation between
electrons is ∼ a0. A typical electron momentum is ∼ ~/a0 and a typical
velocity ~/(mea0) = αc, where c is the speed of light and α = e2/(~c) is the
fine structure constant. The number 106 can be understood simply since
if one decreases the separation between electrons by a factor α, thereby
increasing the density by a factor 1/α3 ∼ 106, the electron momentum is of
the order of mec.

2.4. Why do nuclei become more neutron rich with increasing density?

The increase of the electron Fermi energy with density makes it energetically
favorable to decrease the number of electrons relative to nucleons.

. . .
Consider the energy per unit volume of matter as a function of the density

of neutrons, nn, the density of protons, np, and the density of electrons.
For electrically neutral matter, the density of electrons is equal to that of
protons. Weak interactions that can convert neutrons to protons or vice
versa by processes such as

n→ p+ e+ ν̄e and p+ e→ n+ νe . (6)

If one neglects neutrino rest masses and treats the energy as a continuous
function of the particle densities, the condition for neither process to occur
is that the energy to add a neutron to the system should be the same as
that to add a proton and an electron,

µn = µp + µe , (7)

where µi = ∂E/∂ni is the chemical potential of species i including contribu-
tions from rest masses. This is the condition for matter to be in equilibrium
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with respect to the weak interactions. The nuclei encountered in neutron
stars have a significant number of nucleons, larger than that of 56Fe, the
most stable nucleus at low electron densities, and it is, therefore, a good
approximation to use the liquid drop model to describe nuclear masses. In
addition, surface and Coulomb energies are small compared with bulk en-
ergies, so as a first approximation, it is sufficient to take into account only
bulk energies and write the contribution to the energy per unit volume from
nucleons as

EN = nnmnc
2 + npmpc

2 + n
(
−b+ Sδ2

)
(8)

and neglect surface and Coulomb energies. Here, n = nn + np is the total
nucleon density, b is the bulk binding energy per nucleon in nuclear matter
with equal numbers of neutrons and protons, empirically ≈ 16 MeV, S is
the so-called symmetry energy, empirically ≈ 32 MeV, and

δ =
nn − np
nn + np

= 1− 2x (9)

is the neutron excess. Here, x = np/n is the proton fraction. The neutron
excess is zero for symmetric nuclear matter and unity for pure neutrons.

From expression (8), one finds that

µn − µp = (mn −mp)c
2 + 4Sδ . (10)

When the electrons are relativistic, µe = pec, and the electron density is
given by

ne =
1

3π2

(µe
~c

)3
≈ 1

3π2

(
(mn −mp)c

2 + 4Sδ

~c

)3

, (11)

which shows that the neutron excess increases with electron density.

2.5. Why do neutrons drip out of nuclei at a density
much below nuclear density?

Because the electron velocity is considerably higher than the velocity of
nucleons in nuclei, and because the binding energy of symmetric nuclear
matter is considerably less than the Fermi energy of a nucleon.

. . .
The condition for neutrons to drip out of nuclei is that the neutron

chemical potential exceed the neutron rest mass, in which case neutrons
can propagate in the space between nuclei. From Eq. (8), one finds for the
neutron chemical potential the expression

µn −mnc
2 ≈ −b+ Sδ(2− δ) . (12)
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If one takes only the linear term in δ in this equation, one finds

δdrip ≈
b

2S
≈ 1

4
, (13)

and the electron density is

ne ≈
1

3π2

(
2b

~c

)3

. (14)

The nucleon density at neutron drip is thus

ndrip ≈
1

3π2xdrip

(
2b

~c

)3

. (15)

As one can see, the c occurs here because it is the electron velocity. It is help-
ful to introduce the Fermi momentum ps, the Fermi velocity vs and the Fermi
energy of a nucleon, Es = p2

s/(2mn) at the zero-pressure (saturation) den-
sity of matter with equal numbers of neutrons and protons, ns ≈ 0.16 fm−3.
The latter is given by

ns =
2

3π2

(ps

~

)3
. (16)

Equation (15) may then be written in the form

ndrip ≈
1

2xdrip

(
b

Es

vs

c

)3

ns . (17)

This shows that, since the binding energy of nuclear matter is less than one
half of the Fermi energy (≈ 37 MeV) and the nucleon velocity vs is about
one third of the electron velocity, the density at neutron drip is more than
two orders of magnitude less than that of saturated nuclear matter.

If the quadratic term in δ in Eq. (12) is included, one finds xdrip ≈ 0.29
with the values for the bulk and surface energies we have used. This is close
to what one finds from more detailed calculations [4]. That the agreement is
so good is fortuitous because of a cancellation between surface and Coulomb
energies and the effect of nucleon shell structure, which is not included in
the liquid drop model.
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2.6. At what density do nuclei disappear?

At a density roughly the density of matter in nuclei.
. . .

When the total density of matter is above the density of matter in nuclei,
nuclear matter will occupy the whole of space and, therefore, there will no
longer be isolated nuclei. In Section 2, we shall consider the exotic shapes
of nuclear matter at densities just below the saturation density.

2.7. What are the atomic numbers of nuclei
in the outer parts of neutron stars?

They range from 26 (iron) at the surface of the star to around 40 in the
inner crust where nuclei coexist with neutrons.

. . .
If only bulk contributions are included in the nuclear energy, the energy

per unit volume depends only on the total nucleon density and the proton
fraction and is independent of the nuclear size. The equilibrium size of
nuclei depends on contributions to the energy per nucleon beyond the bulk
ones, the most important of which are the surface and Coulomb energies.
The former is proportional to the nuclear surface area, which scales as the
square of the nuclear radius rN ∝ A1/3 since the density of nucleons in nuclei
is close to the saturation density, and one may write the surface energy of a
single nucleus as

Esurf = CsurfA
2/3 , (18)

where, empirically, the coefficient Csurf is ≈ 18 MeV. We use the symbol E to
denote the energy per nucleus. The Coulomb energy of a uniformly charged
sphere of radius rN and total charge Ze is (3/5)Z2e2/rN . For a nucleus,
rN ∝ A1/3 and, therefore,

ECoul = CCoul
Z2

A1/3
, (19)

where, empirically, CCoul ≈ 0.7 MeV. To determine the optimal nuclear size,
let us imagine that the proton fraction of matter, x = Z/A, is held fixed and
ask for what A the energy per nucleon is a minimum. Since Esurf/A ∝ A−1/3

and ECoul/A ∝ Z2/A4/3 = x2A2/3, it follows that the minimum energy is
achieved for

Esurf = 2ECoul , (20)

or
A ≈ 13

x2
. (21)
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This is consistent with the fact that the nuclei having the largest binding
energy per nucleon with roughly equal numbers of neutrons and protons
have A ∼ 50. At low densities, the favored nucleus is in fact 56Fe if one uses
experimentally determined nuclear masses, but with increasing density, the
proton fraction falls, which leads to an increase in A.

Two other effects have to be taken into account. One is that, with
decreasing proton fraction, the surface tension, the energy per unit area of
the surface, is reduced, which tends to decrease A. A second effect is that,
when the nuclear radius is no longer small compared with the separation
between nuclei, the total Coulomb energy is reduced due to contributions
from nucleus–nucleus, nucleus–electron, and electron–electron interactions.
The total Coulomb energy of a nucleus and the neutralizing cloud of Z
electrons, which are taken to lie within a sphere of radius rc, is

ECoul =
3

5

Z2e2

rN

(
1− 3

2

rN
rc

+
1

2

(
rN
rc

)3
)
. (22)

Thus, the total Coulomb energy is reduced as the density increases. For
example, at a density three orders of magnitude below nuclear matter den-
sity, which is roughly the case for neutron drip to set in, rN/rc = 1/10,
and the Coulomb energy is reduced by 15%. When nuclei fill all of space,
the Coulomb energy vanishes because the proton and densities are equal
everywhere, not just on average.

The condition for the equilibrium nucleus, Eq. (20), still holds when the
additional contributions to the Coulomb energy are included, the surface en-
ergy coefficient depends on proton fraction, and there are neutrons between
nuclei, as is the case at densities above that for neutron drip. The surface
energy of nuclear matter is reduced dramatically for small proton concen-
trations, and for x = 0.1, it is more than an order of magnitude less than for
symmetric nuclear matter. When these effects are taken into account, the
atomic number remains around 40 throughout the crust at densities higher
than that for neutron drip.

3. Pasta phases

At densities approaching that of nuclear saturation density, nuclei can
adopt forms very different from the roughly spherical nuclei familiar on
Earth. Because of the rod-like and plate-like forms of nuclear matter that
result, these states have been dubbed “pasta phases” because of their re-
semblance to spaghetti and lasagna. When the volume fraction occupied by
pure neutron matter becomes less than one half, it is energetically favorable
for nuclei to turn inside–out, but we shall not dwell on these phases because
detailed calculations indicate that they are less prevalent.
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3.1. Why do the pasta phases arise?

Because of the competition between Coulomb and surface energies.
. . .

We have seen in Section 2.7 that the equilibrium size of nuclei at low
densities is determined by competition between surface and Coulomb ener-
gies. Similar arguments apply for rod-like and plate-like nuclei. We shall
characterize the nuclear shapes by their dimensionality d = 3, 2, and 1, cor-
responding to spherical nuclei, spaghetti and lasagna, respectively. We shall
denote the volume fraction occupied by nuclear matter by u, and the radius
of a spherical nucleus, the radius of a spaghetti strand, or half the thickness
of a sheet of lasagna by rN . The surface energy per unit volume is given by
[4, Sec. 5.1] and [5]

Esurf =
duσ

rN
, (23)

and the Coulomb energy by

ECoul = 2π(nixie)
2ufd(u)r2

N , (24)

where

fd(u) =
1

d+ 2

[
2

d− 2

(
1− du1−2/d

2

)
+ u

]
. (25)

For small filling factors u, f3 tends to a constant, while f2 diverges as lnu
and f1 diverges as 1/u. The large Coulomb energies at small u disfavor
nonspherical nuclei at low density, but other shapes become favorable at
higher values of u.

From the fact that the surface and Coulomb energies scale with rN in
the same way for the various shapes of nuclei, it follows that the equilibrium
condition is

Esurf = 2ECoul . (26)

3.2. Is there a simple physical picture that can help
explain the formation of pasta phases?

Yes, the fission instability for a charged liquid drop. However, there are
complications.

. . .
As shown by Bohr and Wheeler in their famous paper on nuclear fission

[6], an isolated charged, initially spherical liquid drop is unstable to a small
quadrupolar distortion of its surface if

E0
Coul > 2Esurf , (27)
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where the superscript “0” denotes the fact that the Coulomb energy is to be
evaluated for low matter densities, (see Eq. (19)). Thus, we see that for the
equilibrium isolated nucleus at low density, Eq. (20), the Coulomb energy is
by a factor 4 too small to cause fission, which is consistent with iron with
A = 56 being the most stable nucleus, while fission sets in only for A & 240,
e.g., uranium.

In dense matter, the result (22) indicates that the Coulomb energy is
reduced by a factor ' 1 − 3rN/rc for small rN/rc. However, corrections to
the fission condition due to surrounding matter may be shown to be of higher
order [7]. Thus, one concludes that fission of spherical nuclei would set in
when 1 − 3rN/rc ≈ 1/4, or rN ≈ rc/2, which corresponds to nuclei filling
one eighth of space. One can imagine round nuclei becoming elongated and
joining to make elongated structures like spaghetti. While this picture is
suggestive, it needs refinement. Within the liquid drop picture, distorting
a collection of spheres to make a collection of rods involves a change in the
topology of the nuclear surface. Thus, on general grounds, one would expect
the transition to be of first order.

The problem of determining the equilibrium structure of a charged fluid
of constant density with a uniform charged background to ensure electrical
neutrality of bulk matter is a typical example of frustration: the surface en-
ergy is minimized by making the surface area as small as possible, thereby
favoring structures with long length scales, while the Coulomb energy is
minimized by breaking up the charged fluid into small drops. Recently, Ku-
bis and Wójcik [8] have investigated the stability of the phase with uniform
lasagna sheets to arbitrary small distortions of the surface. They find that
the phase is always stable to second order in the displacements from the
uniform state. Further inspiration can be derived from quantum molecular
dynamics simulations of collections of neutrons and protons [9]. In these
simulations, the particles are treated as classical, and effects of the Pauli
exclusion principle are mocked up by introduction of an additional repulsive
two-body interaction. The simulations were designed to investigate whether
or not pasta structures could form in the collapse of a massive star, and
it was found that, on compressing a lattice of 208Pb nuclei, neighboring
pairs of nuclei approached each other, and joined to form a zig-zag structure
which subsequently became an array of rod-like nuclei. It is important to
bear in mind that these simulations were performed with a proton fraction,
x = 0.39, higher than that expected in neutron stars. There are clearly
many unanswered questions related to the pasta phases.

So far, we have focused on the problem of determining the optimal shape
of nuclear matter when there is a separation into one phase with nuclear
matter containing protons and one with pure neutrons. It is also important
to investigate whether the energy of the pasta phase is less than that of
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a uniform liquid of neutrons and protons. For the FPS nucleon–nucleon
interaction, which had been carefully fitted to calculated properties of pure
neutron matter, this was indeed the case [10]. Bao and Shen have carried
out a parameter study of a set of relativistic mean field theory interactions
that were fitted to the properties of symmetric nuclear matter [11]. They
find that the existence of the pasta phases appears to be correlated with
the parameter L, the derivative of the symmetry energy with respect to the
logarithm of the total nucleon density, and that the pasta phases are never
the most stable state for L & 80 MeV. In the light of this result, it would
be interesting to explore the reason for the interaction used in Ref. [12] not
giving pasta phases as the most stable ones. Currently, experiment and
theory favor values of L lying between approximately 35 and 65 MeV [13],
and the most recent chiral effective field theory calculations give values lying
in the upper part of this range, 58.3–68.5 MeV [14]. The quest to understand
the pasta phases thus provides an incentive for studying in greater detail
the microscopic nucleon–nucleon interactions used in nuclear physics, a task
which is also important for improving interactions to be applied to neutron-
rich nuclei in the laboratory.

The properties of the inner part of the crust of neutron stars have impli-
cations for observation. Quantities of interest include the elastic properties
and breaking strain, which are important for predicting continuous gravita-
tional waves from rotating neutron stars and for stellar oscillations.

3.3. What are the elastic properties of the pasta phases?

They are similar to those of liquid crystals, since some distortions, like sliding
lasagna plates over each other, give no restoring forces.

. . .
As an example, let us consider the lasagna phase, with the plates lying

in the x–y plane. A distorted configuration may be described by the dis-
placement of a plate in the z-direction, uz, and the only contribution to the
elastic energy per unit volume to lowest order in spatial gradients is

Eelast =
1

2
c33

(
∂uz
∂z

)2

, (28)

where c33 is the corresponding elastic constant1. We shall here consider
distortions that are not accompanied by changes in the mean densities of
protons and neutrons. The bulk energy densities and the fraction of space
filled by nuclear matter remain unchanged and only the thickness of the

1 In order to make the treatment accessible to a broader readership, we use here the
Voigt notation standard in elastic theory rather than the notation used in the litera-
ture on liquid crystals [15] and the pasta phases [16].
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lasagna sheets and the spacing between them change. When rN is increased
by an amount of δrN , the strain ∂uz/∂z is δrN/rN . Since the surface energy
per unit volume (23) scales as r−1

N and the Coulomb energy (24) as r2
N ,

the second derivatives of these energies with respect to rN are given by
2(Esurf + ECoul)/r

2
N , from which it follows that [16]

c33 = 2(Esurf + ECoul) = 3Esurf =
3σ

rc
, (29)

where rc for lasagna is one half the layer spacing, and we have used the
equilibrium condition, Eq. (26). The spaghetti phase can be treated in a
similar fashion but it is more complicated, since it has two second-order
elastic constants, corresponding to homologous compression and shearing
of the triangular lattice on which the centers of the spaghetti strands are
located.

3.4. Are pasta elements uniform?

Probably not. Thomas–Fermi, Hartree–Fock and molecular dynamics calcu-
lations indicate that the thickness of lasagna plates has periodic modulations
in the plane of the plates, and that the thickness of spaghetti strands is mod-
ulated along the length of a strand.

. . .
The numerical evidence for spatial modulation of the spaghetti and

lasagna phases is suggestive but, so far, there is little analytical work on
the subject. The Thomas–Fermi [17] and Hartree–Fock [18] calculations
consider relatively small cubic cells of matter, and it is unclear to what
extent the results are influenced by the boundary conditions. The molec-
ular dynamics calculations [19, 20] use much larger cells, but the question
here is whether the method, which is essentially classical, is able to capture
the properties of cold, dense systems of nucleons. Spatial modulation of
the pasta structures has important consequences for the properties of these
phases. The low-frequency collective modes of the structure would resemble
those of an anisotropic three-dimensional solid, rather than a liquid crystal
[21]. The work of Peierls and Landau [22, 23] shows that one-dimensional
ordering of the density will be destroyed by thermal fluctuations. This result
is no longer applicable if there are modulations in three dimensions.
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4. Superfluidity

4.1. Why are neutron superfluid gaps in neutron matter so small?

While the interaction between two neutrons in different spin states is at-
tractive at low densities, at even small neutron densities, the effect of the
repulsive part of the interaction becomes very significant.

. . .
In neutron matter, pairing gaps are estimated to have values of at most

∼ 1 MeV, while the Fermi energy at a density of half nuclear matter density
is ∼ 37 MeV. Properties of cold Fermi gases with strongly attractive interac-
tions have been studied intensively over the past two decades and superfluid
gaps can be a significant fraction of the Fermi energy. This is also the case
for neutrons, but only at very low densities. For pairing, the relative mo-
menta of importance for the superfluid gap are of the order of the Fermi
momentum, pn. While for neutrons the interaction is strongly attractive at
very low relative momenta, the effect of the repulsive short-range part of
the interaction becomes important for relative momenta much less than the
Fermi momentum at nuclear matter density, ps/~ ∼ 1 fm−1.

Consider pure neutron matter. The interaction between two neutrons
in opposite spin states is attractive at low relative momenta and is almost
strong enough to make a bound state of two neutrons, the dineutron. Quan-
titatively, the effective interaction between neutrons in vacuo at low relative
momenta is given in terms of the scattering length, a, by

U0 =
4π~2a

mn
. (30)

If the pairing interaction is given by this expression and the effect of the
neutron medium on the pairing interaction is neglected, one finds for the
neutron superfluid gap at low densities [24]

∆ =
8

e2
Ene−π/(2kn|a|) , (31)

for negative a (attractive interactions). Here, En is the neutron Fermi en-
ergy. For higher densities, kn|a| & 1, the gap is comparable to the Fermi
energy and the state resembles a Bose–Einstein condensate of diatomic
molecules. The experimental value of a is −18.5 fm, which is much greater
than the range of the neutron–neutron interaction, ∼ 1 fm. Formation of a
bound state is signaled by the condition a→∞. Thus for low densities, one
expects the gap to rise with density according to Eq. (34) until it reaches
a value comparable to the Fermi energy for kn|a| ∼ 1, or a density ∼ |a|−3

≈ 10−3 fm−3, which is much less than the density of matter in nuclei [25].
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In the remainder of this subsection, we shall consider the interaction
between neutrons to be given by its value in free space, which we shall refer
to as the BCS (Bardeen–Cooper–Schrieffer) approximation. The S-wave
interaction between two particles is characterized by the phase shift, δ0(k),
where ~k is the relative momentum. For short-range interactions and for
small k, the phase shift may be written in the form

1

k tan δ0
' −1

a
+

1

2
reffk

2 , (32)

where reff is the effective range. The magnitude of reff specifies how the im-
portance of the repulsive part of the interaction grows with k. For neutrons,
both the scattering length, ≈ −18.5 fm, and the effective range, ≈ 2.7 fm,
are large in magnitude compared with the range of the neutron–neutron in-
teraction, ∼ 1 fm. Thus, one sees that the effective range term is significant
for

kn & k× =
2

(|areff |)1/2
≈ 0.28 fm−1 . (33)

A neutron gas with a Fermi momentum equal to k× has a density roughly
1% of nuclear matter density.

The overall picture that emerges is that the superfluid gap rises with
the neutron Fermi wave number according to Eq. (31) and reaches a value
comparable to the Fermi energy for kn ∼ |a|−1. For larger wave numbers, it
remains comparable to the Fermi energy until kn ∼ (|a|reff)−3/2, after which
the repulsive part of the interaction plays an important role and suppresses
the gap. This is illustrated in Fig. 1, where ∆/EF is plotted against the
Fermi wave number for the contact interaction (30) appropriate for cold
atoms and for a model of the neutron–neutron interaction. To calculate the
gap at higher densities demands use of more realistic expressions for the
interaction. Calculations that assume the pairing interaction to be equal to
that between two neutrons in vacuo give S-wave gaps that have a maximum
of around 3 MeV at a density of about one eighth of nuclear density, and
vanish for densities greater than 0.6 ns.

4.2. How does the neutron medium affect neutron superfluid gaps?

Exchange of spin fluctuations in the neutron medium reduces the superfluid
gap to values having a maximum in the range of 1–1.5 MeV.

. . .
The interaction between two neutrons depends on the direct interaction

of the two particles themselves but also on effects induced by the presence of
other neutrons. Such induced interactions are familiar in metallic supercon-
ductors, where the exchange of density fluctuations (lattice phonons) is the
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Fig. 1. Ratio of the pairing gap in the BCS approximation to the Fermi energy
as a function of Fermi wavenumber for two different potentials, a short-range one,
Eq. (30) appropriate for cold atomic gases, and a model of the neutron–neutron
interaction. While ∆/EF continues to rise with increasing kF for cold atoms, for
neutrons it reaches a maximum and subsequently falls because of the increasing
importance of the repulsive part of the interaction. The upper scale gives the
neutron Fermi wave number when a is taken to be the experimentally determined
value −18.5 fm. For neutrons ~kF is equal to the neutron Fermi momentum, which
is denoted by pn in the text. (Figure courtesy of A. Gezerlis [26]. Reproduced from
Ref. [27] with permission from Oxford University Press.)

origin of the attraction between electrons. In neutron matter, there are both
density fluctuations and spin fluctuations. Exchange of density fluctuations
tends to increase the gap, while exchange of spin fluctuations reduces it. The
suppression of pairing gaps is well-known in metallic superconductors with a
large magnetic susceptibility, e.g., palladium, where there are low-lying elec-
tron spin excitations [28]. In neutron matter and in ultracold Fermi gases,
the effect of spin fluctuations dominates because there are three magnetic
substates, corresponding to magnetic quantum numbers mS = 0,±1, as op-
posed to the single state for the density fluctuation, which carries zero spin.
Surprisingly, these effects are important even for a dilute Fermi gas, and the
gap is given by [24]

∆ =

(
2

e

)7/3

Ene−π/(2kn|a|) , (34)
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which is a factor (4e)−1/3 ≈ 0.45 times the result (31) with medium effects
on the interaction omitted [29]. Detailed calculations for neutron matter of
the reduction of the gap due to the effects of the medium are of a comparable
magnitude.

The calculation of S-wave gaps in neutron matter is under good control at
low densities, but the uncertainties become greater with increasing density.
There are two basic reasons: the gap depends exponentially on the pairing
interaction, and the effect of the medium on the pairing interaction becomes
increasingly important. There is still significant uncertainty in the density
at which S-wave superfluidity of neutrons ceases, at around a half of nuclear
matter density.

At higher densities, the neutron–neutron interaction is most strongly at-
tractive in the 3P2 state, which is coupled by the tensor force to the 3F2

state. While S-wave gaps depend on the average of the pairing interaction
over directions on the Fermi surface, those for other states depend on the
average of the pairing interaction weighted by a function whose average van-
ishes. Thus gaps for states other than S-wave ones depend on deviations of
the pairing interaction from its average value. In addition, at the densities
where pairing in the 3P2 state could be relevant, medium effects are im-
portant. Calculations of the 3P2 gap including medium effects come to the
conclusion that gaps are very small [30], and they could even vanish.

4.3. Are there observable consequences of neutron superfluidity?

A leading model to account for sudden speed-ups (glitches) in the rotation
rate of pulsars is a neutron superfluid weakly coupled to the lattice of nuclei
in the crust. A sudden unpinning of neutron vortices from the nuclei results
in slowing down of the neutron superfluid and a sudden increase in the
angular velocity of the crust.

. . .
As a neutron star loses rotational energy, the crust and the charged

particles coupled to it slow down. On the other hand, because of the su-
perfluidity, the rotation rate of the neutron superfluid remains higher than
that of the crust. In a superfluid, rotational motion is achieved by having
an array of quantized vortex lines, each with circulation 2π~/(2mn). The
basic idea of the model is that, initially, vortex lines are pinned to nuclei,
but when the difference between the rotation rates of the charged particles
and the superfluid becomes sufficiently large, the vortex lines unpin from the
nuclei, thereby leading to a slowing down of the superfluid and a speed-up
of the crust, whose rotation rate determines the observed pulsar frequency
[31, 32]. For this model to be viable, the moment of inertia of the superfluid
must be large enough to be able to account for the observed magnitudes of
glitches, and how frequently they occur in a given pulsar.
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To determine the moment of inertia of the superfluid neutrons, it is
thus necessary to know the superfluid density of neutrons in the presence
of the lattice of nuclei, either in the form of a body centered cubic (b.c.c.)
lattice of spherical nuclei or the pasta phases. Chamel [33] calculated the
band structure for neutrons in a b.c.c. lattice in the absence of pairing, and
concluded that, for weak pairing, the superfluid density could be reduced by
more than one order of magnitude compared with the density of neutrons
between nuclei, which is what one might naively expect. These calculations
are very demanding because there are very many neutrons in a unit cell and,
therefore, many bands (up to ∼ 500). On the basis of these calculations,
Andersson et al. [34], Chamel [35] and Delsate et al. [36] concluded that the
neutron superfluid moment of inertia was too small for the glitch model to
be viable.

The question that then arises is whether the superfluid density is reduced
as drastically when pairing is taken into account. In an S-wave fermionic
superfluid, the elementary excitations for momenta close to the Fermi mo-
mentum have energies

εp = ±
(
ξ2
p +∆2

)1/2
, (35)

where ξp ' (p − pn)vn. In the presence of a scalar potential such as that
due to the periodic lattice of nuclei, the amplitude for scattering a positive
energy excitation with momentum p to another state of positive energy with
momentum p′ is proportional to

M = upup′ − vpvp′ , (36)

where the coherence factors are given by

u2
p =

1

2

(
1 +

ξp
εp

)
and v2

p =
1

2

(
1− ξp

εp

)
. (37)

Thus for p = p′ = pn, the positive energy excitations are superpositions of
particles and holes with amplitudes of the same magnitude and the scattering
amplitude vanishes. Expressed in physical terms, the potential acting on a
particle is equal in magnitude but of opposite sign to that acting on a hole,
so the net matrix element vanishes. Similar arguments apply for scattering
between two negative energy states. The amplitude for scattering from a
positive energy state to a negative energy one or vice versa is nonzero for
p = p′ = pn. Scattering between two positive energy states can occur via a
second-order process with an intermediate negative energy state. However,
the amplitude for this process is of the order of V 2/∆, where V is the strength
of the scattering potential and the energy denominator in the intermediate
state is ∼ ∆. Thus, one expects scattering by the lattice to be suppressed if
the pairing gap exceeds the strength of the lattice potential.
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In neutron star crusts, the pairing gap is greater than the strength of
the periodic potential for most reciprocal lattice vectors, so it is necessary
to include the effects of pairing in calculations of the superfluid density. In
Ref. [37], this was done within the Hartree–Fock–Bogoliubov model, a mean-
field approach that treats the effects of pairing and the periodic potential
on an equal footing. In the calculations, a single Fourier component of the
periodic potential was considered as had earlier been done for cold atoms
in a one-dimensional periodic potential [38]. With the assumption that
each Fourier component contributes independently to the reduction of the
superfluid density, it was concluded that the periodic lattice could reduce
the superfluid density by perhaps some tens of per cent, but not by an order
of magnitude. Consequently, the vortex unpinning model for explaining
glitches could not be ruled out on the basis of the neutron superfluid density
being too small.

4.4. Are the pasta phases good or bad electrical conductors?

They could be very good conductors because the protons are superconduct-
ing and can support persistent electrical currents.

. . .
Pons et al. [39] have proposed that the lack of isolated X-ray pulsars

with long periods could be explained if the pasta phases are poor electrical
conductors due to scattering of electrons by disorder in the pasta structures.
This could lead to decay of the magnetic field. However, one effect that works
in the opposite direction is that the protons in these phases are expected to
be superconducting and, consequently, magnetic fields can be anchored in
persistent proton currents in the pasta phases [40].

In the pasta phases, there are a number of other problems that ripe for
investigation. Among these there are the elastic and superfluid properties
of disordered phases.

5. Concluding remarks

The problems considered in this article illustrate how basic physical prin-
ciples can give an understanding of a number of the properties of matter in
the outer parts of neutron stars. One important lesson is that in dense mat-
ter, what we normally consider to be “solid-state”, energies can be significant
on the scale of nuclear energies.

There are many topics that have not been considered. Among them there
are the properties of matter that is not in its lowest energy state, such as is
the case for a neutron star that is accreting matter. In addition, we have not
investigated phenomena at non-zero temperature or transport properties.
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