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In this work, the aim is to study the spread of a contagious disease
and information on a multilayer social system. The main idea is to find
a criterion under which the adoption of the spreading information blocks
or suppresses the epidemic spread. A two-layer network is the base of the
model. The first layer describes the direct contact interactions, while the
second layer is the information propagation layer. Both layers consist of the
same nodes. The society consists of five different categories of individuals:
susceptibles, infective, recovered, vaccinated and precautioned. Initially,
only one infected individual starts transmitting the infection. Direct con-
tact interactions spread the infection to the susceptibles. The information
spreads through the second layer. The SIR model is employed for the infec-
tion spread, while the Bass equation models the adoption of information.
The control parameters of the competition between the spread of informa-
tion and spread of disease are the topology and the density of connectivity.
The topology of the information layer is a scale-free network with increasing
density of edges. In the contact layer, regular and scale-free networks with
the same average degree per node are used interchangeably. The observa-
tion is that increasing complexity of the contact network reduces the role
of individual awareness. If the contact layer consists of networks with lim-
ited range connections, or the edges sparser than the information network,
spread of information plays a significant role in controlling the epidemics.
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1. Introduction

In modern societies, epidemics are a growing thread despite all advanced
technological tools and practices. Social interaction patterns play the cru-
cial role for the majority of the contagious diseases spreading mechanism as
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well as the precaution practices. Therefore, the in-depth understanding of
the role of inter-woven social networks during an epidemic spread is a very
active area of research and attracts considerable interest. The real social
impact of the realistic predictive model studies can be understood when the
severeness of both human and economy wise results of an epidemic are con-
sidered. Nevertheless, the social interactions are complicated relations of
competing interests, hence, the modeling of the social phenomena requires a
good understanding of the real interaction patterns and the dynamics among
the members of the society. In the last 20 years, the interest in the social
networks has intensified. Recent realistic models of real-world complex sys-
tems [1–3] have improved the understanding of a large variety of complex
social interactions. As the societies become more technology-oriented, new
channels of communication and interaction rapidly changed the structure
and the topology of the interaction networks. Previously designed single-
layer real-world networks left their place to multilayer networks: a devel-
oping social phenomenon finds its reflections on the other layers of social
networks as different types of interactions. The spread of contagious disease
is an excellent example of this situation. In the contact layer, the interac-
tions of the individuals result in the spread of infection, while in the second
layer, the information on the contagiousness of the disease motivates the
individuals to take preventive measures. The preventive measures can be in
two categories: vaccination and social distancing [4].

The most commonly encountered contagious diseases are suitably mod-
eled by the susceptible-infected-recovered (SIR), susceptible-infected-sus-
ceptible (SIS) and susceptible-infected (SI) epidemiology models [5]. Dif-
ferent spreading mechanisms and epidemic control strategies are introduced
for all three types of epidemiology models on complex networks [6–9]. The
contagious disease has always been very destructive for the societies [10].
Hence, the mathematical models of the diffusion of contagious diseases have
a long history, starting as early as the beginning of the 20th century. The
early models [11, 12] are aggregate models which rapidly evolved into agent-
based models. Initial agent-based models employed fully connected or reg-
ular networks for the connectivity of the society. Recently, more realistic
network structures are also incorporated along with the underlying dynam-
ics of the spread [6, 9]. The epidemic studies on networks [13–16] are not
only useful and limited to the spread of contagious diseases within human
societies. A large variety of complex systems, such as physical, engineering,
technological, and information networks exhibit similar diffusion of malicious
agents [17–22].

The best prevention strategy in fighting the infectious diseases is the
immunization. The immunization of the whole population is not a possibly
realizable challenge [23]. Hence, various strategies of immunization which
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may be effective in the prevention of further spreading the infection are in-
troduced. The effectiveness of such immunization methods is studied by
using mathematical models of spreading phenomena. Random immuniza-
tion and targeted (selected) immunization are the methods which aim to
block the spreading paths of the contagion. The efficiency of the immu-
nization is greater if one can select highly connected nodes. Such a selec-
tion requires prior knowledge of the whole network. Another immunization
strategy is the acquaintance immunization in which the selection of highly
connected nodes is naturally realized [7, 8, 24–26]. Another approach to the
efficient immunization is awareness-motivated immunization: the informed
individuals decide to take precautions. The most effective element of the
decision-making process is the word-of-mouth. The word-of-mouth imme-
diately recalls one-to-one interaction. In the real-life, the contact networks
are only a small part of the interaction network. In modern societies, most
of the information comes from the virtual-communication networks. In this
sense, the word-of-mouth is all trustable one-to-one correspondences. The
human element of the immunization strategies constitutes the spread of in-
formation and decision-making processes. The multiple networks widen the
understanding of epidemic and epidemic control methods by introducing
multiple spread mechanisms. The best example is the disease spreading on
the contact network during the diffusion of information on another. The
information creates the awareness of what is essential to control the epi-
demic spread [27–29], hence, the competition between the awareness and
the disease spreading may rise to an epidemic threshold [30–32].

Complex networks are potent tools to describe spreading phenomena
in both human societies and the other real-life problems. Nevertheless, the
spreading phenomena among human societies have more elements than a sin-
gle complex network. As a simple example, the traveling individuals change
the dynamics of spreading infections. Similarly, information networks and
social networks affect the dynamics of spreading. Hence, recently the mod-
els of spreading the infections are extended from a single complex network
to multilayer networks [33, 34]. Multilayer networks [35–37] are composed
of several layers of complex structures in which the same node may have
multiple channels of interactions. The multilayer networks capture correct
interaction structures between the nodes since an individual in a society
may have different kinds of interactions such as business relations, social
environment, connections through social media. Hence, each is in direct
contact with some members of the society while communicating with some
others on a virtual network of friends. In online social networks, the infor-
mation propagates between the nodes through friendship connections which
may be entirely different from the contact network of the nodes.
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The most common examples of epidemics are respiratory infectious dis-
eases. They also remain the most severe health risks as well as economical
problem [38] facing the population. The importance of non-pharmaceutical
interventions in the prevention of infectious diseases is the subject of pro-
tection motivation theory (PMT) [39]. In social distancing which may be
merely hand-washing, wearing face masks, the increased tendency to reduce
social contacts, may have a significant impact on the spread of the infectious
disease. Some simple, low-cost, non-pharmaceutical prevention methods can
minimize the transmission and impact of acute respiratory infections. The
information coming from a trusted friend or colleague may break the social
barriers such as rejection of personal risk of infection. In the present work,
the focus is on the topic of spreading of contagious disease, while the intelli-
gent nodes communicate on the severeness of the epidemic. Two interacting
networks constitute the interaction base of the artificial society. The first
network is the contact network in which contact interactions result in the
spread of contagious disease. At this layer, SIR model governs the dynamics
of the diffusion of contagion. The second layer, information spread layer,
connects the same nodes with a different connectivity pattern. The indi-
vidual gain awareness by the information gathering from the information
network. It is a sociological fact that not all of the informed individuals act
upon the received knowledge [40, 41]. There is an adoption process after
which the individual reacts. The Bass model [42] governs the information
adoption process which is the first step for social distancing or pharmaceu-
tical interventions. Initially, the Bass model was introduced to describe the
adoption process of a new product or opinion. Despite its simplicity, the
model is still thriving to explain the diffusion of new ideas, information and
it is commonly used in marketing studies. The main success of the Bass
model is due to the well-represented social behavior of the individuals. The
parametrization of the social behavior of the individuals is based on Roger’s
seminal work [40, 41] on the diffusion of innovation. The Bass model assumes
two types of individuals. The first type, a minority group, accepts the new
idea as soon as it is introduced. This group is also called innovators. The
second group which is the majority of the population, likes to see the bene-
fit of adaption of the new information. This group is called imitators. The
originality of the proposed model is that no other model assumes a dynamics
for the information adoption or awareness. In this work, the Bass model [42]
sets the dynamics of information spread which results in the immunization
or social distancing [4].

The work is organized as follows: The following section is devoted to
the details of the multilayer network and the models of the disease and
information spread dynamics. The third section presents the results of the
proposed model and the effects of the proposed awareness dynamics on the
epidemics. Finally, the conclusions are the subject of the last section.
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2. The model

The proposed model is based on two well-known aggregate models, namely
SIR and Bass models. The SIR model [5] was proposed to explain the dy-
namics of the infection spread for the illnesses spread by direct contact,
while the Bass model is a well-established model of diffusion of informa-
tion or innovations. In the proposed model, SIR and Bass models will be
used interactively as the underlying dynamics of an agent-based simulation
model. Before entering the details of the agent-based simulation model,
some basic notation on the aggregate SIR and Bass models will be reviewed
for completeness.

The SIR model dynamics [5] explains the infection spread among the
members of a society which are susceptible to the infection. The susceptible
individuals S meet a minimal number of infected individuals I and become
infected. Infected individuals recover after a certain period or with a given
probability. The recovered individuals R gain immunity until the end of
the spread of infection. Infection spread stops when there exist no infected
individuals

dS(t)

dt
= −β I(t)S(t) , (1)

dI(t)

dt
= β I(t)S(t)− γ I(t) , (2)

dR(t)

dt
= γ I(t) , (3)

where S(t), I(t), and R(t) are the number of susceptible, infected and re-
moved individuals at time t. The total population is the sum of all indi-
viduals regardless of their health state, N = S + I + R. The SIR model
has two free parameters, β and γ. The parameter β represents an average
rate of encounters between the infected and susceptible individuals, while
the second parameter, γ, is the rate of recovery per unit time.

In the original form of the SIR model, every individual interacts with
every other (fully connected system). There exists no underlying social net-
work structure for the interacting neighbors. Moreover, individuals, as well
as the interactions, are uniform. In order to accommodate individual be-
havior in the model, a new dynamics which controls the spread of awareness
must be incorporated.

The Bass model well represents the dynamics of the information spread.
The original form of the Bass model assumes two different types of individ-
uals. The first group is the innovators who adopt a new idea immediately
after having been informed. The second group is the imitators who want to
see the results of the adoption of the new idea by observing the adopters.
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A new idea starts to diffuse through innovators. After a certain number
of initial adopters, imitators are the main driving force of the spread of
information. The Bass equation is as follows:

dAW(t)

dt
=

(
p+

q

N
AW(t)

)
(N −AW(t)) , (4)

where p and q are innovation and imitation parameters, N and AW are the
total number and the number of aware individuals. Here, the innovation
parameter, p, is the best understood as the probability of adoption of new
information immediately after having been informed. The innovators are
open to new information; they adopt the information as soon as a piece of
new information arrives and respond accordingly. The imitation parameter q
is related with the probability of adoption after observing the experiences of
the neighbors (word-of-mouth). Imitators are the majority in any society.

The proposed model is an agent-based model inspired by the above-
mentioned two very successful aggregate models. The main goal of the
proposed model is to incorporate the infection and information spreading
processes on a multiplex real-world network connectivity structure. The
model consists of N nodes which accommodate N interacting individuals.
A two-layer multiplex network has common nodes but different connectivity
patterns. The first layer is the contact layer where the infection spreads,
while the information spreads on the second layer. The state of each in-
dividual is given by two parameters, Slayer1 , and Slayer2 . Hence, Xi[Slayer1 ,
Slayer2 ], represents the state of the ith node. layer1 and layer2 are the repre-
sentative labels of contact and information layers of the network respectively.
The contact layer state parameter, Slayer1 has five separate values: suscep-
tible S, infected I, recovered R, vaccinated V and, finally, P which identify
the state of the individual who has taken precautionary measures. In ad-
dition to the three states of the aggregate SIR model, two new states V
and P are introduced which is a result of the awareness spread. The in-
troduced five states connect the SIR and the Bass dynamics. Susceptible
individuals obtain information through their virtual connections and take
precautionary measures. The precautionary measures reduce the probabil-
ity of interactions with their neighbors and hence the spread of illness. The
awareness parameter, Slayer2 takes only two values aware (informed) AW
and non-aware (uninformed) NA = N − AW. Initially, all individuals are
uninformed, Slayer2 = NA. The first infected individual is set as infected and
informed. Both infection and the information spread start from the first
infected node. Since direct contact and information spread are on different
layers with different connectivities, the speeds of infection and information
spreads are different.
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2.1. Interactions

Initially, all nodes are initialized as susceptible, Slayer1 = S, and non-
aware, Slayer2 = NA. The infection spread from only one randomly chosen
node, i, Slayer1 = I. The first infected individual automatically becomes
aware, Slayer2 = AW. Both contamination and information spread start
from this single node. The infection spreads in the first layer by the contact
interactions.

2.1.1. Spread of information

The information layer serves for two purposes: spread and adoption of
the information on the disease. For both of these processes, the Bass model is
suitable. The informed individuals transmit the information to their neigh-
bors through their connections on the second layer. When an individual
receives the information, they evaluate it. According to the dynamics de-
termined by the Bass equation, the information is adopted or not. In the
agent-based approach, the information adoption takes the following form:

if p > r Xi[S,NA]→ Xi[S,AW]

else if q × NNAW
NN > r Xi[S,NA]→ Xi[S,AW] ,

(5)

where Xi[S,AW] and Xi[S,NA] indicates the state of a susceptible, S, indi-
vidual at the site i, in informed and non-informed state, respectively. p in-
dicates the probability of the chosen individual being an innovator. The
probability of an individual being an imitator is given by q × NNAW

NN , here,
NN and NNAW are the number of nearest neighbors and number of aware
neighbors, respectively. The uniform random number r takes values between
0 ≤ r < 1.

If the information is adopted, the awareness state is set to aware, Slayer2 =
AW. Once an individual is informed and adopted the information, sends
messages to all neighbors to advise them about the severity of the infectious
disease. Each individual sends the message only once just after having been
informed. The individual remains informed, take precursory measures, until
the end of the epidemic. The individuals take precursory measures according
to their attitudes. Two precursory measures are vaccination and reducing the
probability of interactions. If the susceptible individual is vaccinated (V ),
they gain immunity. If an individual takes a precursory measure of reduc-
ing the number of interactions, they do not gain immunity. They remain
susceptible, but their interaction probability is reduced. The interaction at
the information layer leads to the adoption of information and decision of a
precursory action.
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If an individual is susceptible and informed, Xi[S,AW], may take pre-
caution (social distancing) or may prefer vaccination,

Xi[S,AW]→
{
Xi[P,AW] if Prb > r ,
Xi[V,AW] if (1− Prb) > r ,

(6)

where Xi[S,AW], Xi[P,AW], and Xi[V,AW] indicates the state of an in-
formed AW individual at the site i, as susceptible, precautioned, and vac-
cinated, respectively. Here, Prb and (1 − Prb) are the probabilities of an
individual to take precaution or get vaccinated; r is a uniform random num-
ber, 0 ≤ r < 1. In this work, it is assumed that only 20% of the popula-
tion prefers vaccination. The individuals who prefer social distancing are
assumed to avoid three out of four social contacts. When contact is estab-
lished between the susceptible who try to avoid contacts and infected the
infection spreads with the usual rules given by Eq. (7).

2.1.2. Spread of infection

For the agent-based simulation model, SIR model dynamics is imple-
mented as probabilistic interactions among the members of the society. At
each time step, randomly selected nodes interact with the neighbors at the
contact layer and spread information on the virtual network. The uninfected
and aware individuals may be in two states: vaccinated, V , or in the pre-
caution state, P in which the probability of interactions of the individual
changes. At each time step, a randomly chosen individual interacts with a
randomly chosen neighbor. The individual and its neighbor can be in any of
the five states. Unless the interaction is between a susceptible and contam-
inated one, interacting individuals do not change the state. There are two
types of susceptibles: S- and P -state individuals. For S state, each inter-
action with infective individual spreads contamination. For the individuals
who are in the P state, the individual does not interact at every time step
even if they are chosen. Their interactions are limited with a probability
pinteraction which represent the prevention effort of the P -state individuals.

The equation gives the transition rules for the individual living at the
ith node which is in interaction with an infected neighbor, Xj [I,AW],

Xi[S,AW,NA] → Xi[I,AW] if β > r ,

Xi[P,AW] → Xi[I,AW] if pinteraction > r and β > r ,

Xi[V,AW] → Xi[V,AW] , (7)
Xi[I,AW] → Xi[R,AW] if γ > r ,

Xi[R,AW] → Xi[R,AW] ,

whereXi[S,AW],Xi[I,AW],Xi[V,AW],Xi[P,AW], andXi[R,AW] indicates
the state of an informed AW individual at the site i, as susceptible, infected,



The Effects of Diffusion of Information on Epidemic Spread . . . 187

vaccinated, precautioned, and recovered, respectively. β, γ and pinteraction
are infection recovery and interaction avoiding probabilities, respectively.
Probability of interaction correspond to the social distancing [4]. When the
information of severity of the results of infection reaches an individual, the
individual tries to avoid interaction with the neighbors.

The contact layer interaction rules are: if a susceptible individual in-
teracts with an infected neighbor, they become infected (S → I) with
probability β. An infected individual becomes recovered (I → R) with
probability γ. Recovered, R, and vaccinated, V , individuals are not affected
by an infected member of the society. The precautioned individuals, P avoid
interaction with individuals in any state with probability pinteraction. Inter-
action probability is kept constant as pinteraction = 0.25, only one-fourth of
the encounters ends with physical contact.

2.2. The multiplex network

Two interconnected networks, one for contact interactions and the sec-
ond one for the spread of information carry the social interactions. Both sys-
tems share the same nodes with different intra-layer connectivity structures.
The proliferation of contagious disease progresses on the contact network.
The contact network layer has two alternative network structures: regular
two-dimensional lattices with periodic boundary conditions and scale-free
networks. The underlying network structure is scale-free for the information
layer. This choice is due to the similarities between the scale-free and the
real-world social network structures.

Both regular and scale-free networks are used as the contact layer. In
the regular network case, periodic boundary condition with simple square
(k = 4) and triangular (k = 6) lattices are used to test the effects of connec-
tivity. Two different scale-free networks with the same average connectivity
(〈k〉 = 4 and 6) per node are tested on the contact interaction layer. The
Barabási–Albert network algorithm is used to generate the scale-free net-
works [43]. In this algorithm, the number of seed nodes, m, guarantees
the average number of undirected edges, 〈k〉 = 2 ×m [43]. Changing the
number of seed nodes controls the density of the number of connections, the
degree of the node. The degree distribution of the nodes affects the spread of
the information and the contagious disease. On the information layer, only
scale-free networks are used. The networks with a wide range of average
degree distributions are obtained by using the Barabási–Albert algorithm
for the information layer. The effects of information spread on the spread of
contagious disease are tested by using lattices in the range of 〈k〉 = 4 to 20.
The relation between the connectivity structure of two layers and the speed
of the disease spread is the subject of the next section.

In the next section, simulation results, obtained by applying the proposed
model, are presented with figures.
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3. Results and discussion

An artificial society of N = 10 000 inhabitants, each occupying a node
on a multiplex network, is the simulation system. The connectivity of the
nodes is two-fold. The first layer of the multiplex network is the contact
network where individuals interact with each other through direct contact
interactions. Hence, the contact layer provides a media for the transmission
of contagion disease. The second layer is the information layer, through
which the information spreads via virtual contacts. The conditions and the
speed of the spread of news and infection are a function of both topology
and the average degree of nodes. The contact layer consists of both regular
lattice and scale-free networks, while for the information spread layer, of
only scale-free networks with varying average degree per node.

The presented results are the averages of 100 simulations each starting
from a statistically-independent initial configuration. The creation of an
initial configuration consists of the creation of a multiplex network, initial-
izing both contact and information layer state parameters for each node.
An iteration is one discrete time step. One discrete time step consists of
N interactions in the average; one interaction takes time, ∆t = 1/N . In
one time step, in the average, each individual interacts at least with one
neighbor at each layer. Iterations are continued until the stationary config-
urations are reached. The stable configuration is reached when no longer
state change occurs in either of the layers. The required time duration for
the stable configuration varies according to the topology and the density of
the links of the contact layer. For regular lattices, approximately 250 time
steps are observed to be sufficient. The Barabási–Albert network provides
a faster-transmitting media. The system reaches the stable configurations
after only 50 time steps. During the simulation, all parameters, apart from
the lattice parameters, are kept fixed to compare the effects of the lattice
topology. For a fixed number of nodes, changing an average number of con-
nections changes the interaction pattern and hence the speed of the spread.
The contact layer parameters which control the spread of contagious dis-
ease, the infection transmission, β, and recovery, γ, parameters of the SIR
model are kept constant for all networks. The transmission and recovery
parameters are β = 1 and γ = 0.2, respectively. The information adoption
is controlled by the Bass equation parameters p and q. Individuals who
adopt information immediately after being informed are rare. The majority
adopts it after observing the results of first-hand experiences. The values of
innovation and imitation parameters are assumed to be similar to those of
the average values obtained from the marketing studies. From marketing,
the average ranges are 0.001 < p < 0.1 and 0.1 < q < 0.5 for innovation and
imitation parameters, respectively. In this work, the fixed values of p = 0.05
and q = 0.35 are employed for all lattices.
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In the societies, the direct contact networks usually have relatively small
average degree per node. Hence, in the contact layer, the average degree
per node is limited to 〈k〉 = 4 and 〈k〉 = 6. The regular networks are
2-dimensional simple square (k = 4) and triangular (k = 6) lattices with pe-
riodic boundary conditions, while the scale-free networks are generated by
using the Barabási–Albert algorithm with initial sites of 2 and 3 which corre-
spond to the average degree, 〈k〉 = 4 and 6. The information spread layer is
expected to have denser connections between the nodes. Hence, undirected
scale-free networks with increasing density of the edges are generated by
using the Barabási–Albert algorithm. The average degree, 〈k〉, per node is
the control parameter of the spreads on the different information networks.

Figure 1 shows the spread of contagious disease on regular and scale-free
networks without the contribution of the information layer. Two different
topologies, with the same average degree per node, are square and triangular
lattices and m = 2 and m = 3 Barabási–Albert networks, respectively. The
comparison between Figs. 1 (a) and 1 (b) shows that the spread of infection
on the contact layer is almost three times faster on the scale-free network
than the corresponding regular network for the same transmission and recov-
ery parameters. Since the transmission parameter is high, disease spreads
among the population, but the peak values of the number of infected individ-
uals are different depending on the topology. In the scale-free network case,
almost half of the population is contaminated at the peak of the infection
spread. In the regular lattice case, the peak value of the number of infected
individuals remains around 10% of the total population. The increasing
number of average connections per node pronounce the difference. Hence,
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Fig. 1. Spread of contagious disease in a society with regular and scale-free contact
layer network topologies. No information propagation is considered.
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reducing the peak value of the number of infected individuals through mass
media and social media plays a crucial role in the continuity of the social
systems.

Constructing multiplex networks to study the effects of the information
spread requires comparing multiple information networks which have the
same contact layer network. As the first set of examples, a simple square
lattice and a set of scale-free networks with the progressively increasing
number of edges are taken as the topologies of contact and information
networks, respectively. Figure 2 shows the effects of an increasing number
of communication links. Usually, in the social systems, the contact networks
are local interactions. Hence, diffusion takes more time than in the real-
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Fig. 2. Contagious disease spread on simple square lattice, k = 4, while the infor-
mation spreads on scale-free network topology with increasing connectivity.
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world networks. In this first model, an increasing number of second layer
links speeds up the spread of information. If the individuals absorb and
use the information in the correct way by taking precautions or getting
vaccinated, the disappearance or at least control of the contamination is
possible. Figures 2 (a), 2 (b), 2 (c) and 2 (d) show the effects of the increasing
number of links on the spread of contamination. As explained in Section 2.1,
the contamination spread according to the dynamics of the SIR model with
an infection transmission rate, β = 1. If a susceptible contacts with an
infective, the susceptible gets contaminated. Each informs all neighbors
when they are infected. Adoption of the information is a process governed
by the dynamics provided by the Bass equation. A small percentage of
the individuals (innovators) immediately adopt the information and take a
precaution. Others, collect information from the neighboring nodes before
making a decision. Both, innovators and imitators have two choices as far
as the precautions are concerned: getting vaccinated and avoiding contacts
with the neighbors. In this work, the first assumption is that only 20% of
the informed individuals choose vaccination. The rest prefers to keep away
from any contact interaction. A second assumption is that on the 75% of the
occasions susceptibles can save themselves from contamination by avoiding
direct contact.

Figure 3 shows the changes in the number of susceptibles, infected, re-
covered, vaccinated and precautioned for a constant speed of contamination
spread, the peak of the number of infected individuals decreases with in-
creasing density of the information links. Figure 3 (a) shows the changes in
the number of susceptibles as a function of time and number of initial sitesm
(average degree, 〈k〉 = 2×m). For small m, all individuals get infected. As
the number of initial sites approaches m = 10, over 40% of all suscepti-
bles remain unaffected from the contamination which reduces the number
of recovered (Fig. 3 (c)). Similarly, the peak of the number of infected in-
dividuals decreases rapidly with the increasing number of information links
(Fig. 3 (b)). The number of vaccinated remains rather small compared with
the number of precaution. Figure 3 (d) shows the changes in the number of
vaccinated (below) and the number of precautioned (above) with respect to
the changes in the number of connections in the information layer.

This effect manifests itself more profoundly in scale-free networks in the
contact layer case. When the contact layer is in scale-free topology, the speed
of transmission of infection is high comparing with the regular networks.
Therefore, the peak of the number of infected is higher in the scale-free con-
tact network concerning regular networks. Figures 1 (a) and 1 (b) show the
differences in speed and the scale of the contamination between lattices and
scale-free networks with equal average degree per node. The topology of the
information layer plays a significant role in reducing both the total number
of infected individuals and the peak in the number of infected individuals.
Figure 4 shows the effect of the increasing density of information links while
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Fig. 3. The effect of increasing connectivity of the information network on the
infection spread. The number of initial sites of the information layer changes from
0 (network consists of only the contact layer) to 10.

the contact network is also scale-free with an average degree of 4 per node.
The real-world networks, due to the complex connectivity structure, speed
up the spreading phenomena. Figures 4 (a), 4 (b), 4 (c), 4 (d) show the effect
of the density of information layer connections for fixed average degree in
the contact layer. Increasing the number of average degrees decreases the
peak of the number of infected. Two effects contribute to the decrease in
the infections, vaccination, and awareness. Informed individuals either get
vaccinated and gain immunity or avoid direct contacts with neighbors. As
the number of communication links increases, the number of aware individ-
uals increase which results in reducing the number of infected. Comparison
of Figs. 4 (a), 4 (b), 4 (c), 4 (d) indicates that the main contribution in the
prevention of the epidemic spread comes from the group of individuals who
try to avoid direct contacts with the neighbors. This group of individuals
increases as the number of infected individuals increase. Their peak is just
before the peak of the number of infected individuals which prevent further
contamination. As the number of links to the information layer increase,
the peak of informed individuals increases with a further suppression on the
spread of infection. The contribution to the prevention of the vaccinated
does not grow at the same rate.
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(c) mcontact = 2, minformation = 6 (d) mcontact = 2, minformation = 10

Fig. 4. Spread of contagious disease in a society with scale-free multilayer network
topology. Contact layer has single initial sites configuration, m = 2, while the
number of initial sites of the information layer changes, m = 2, 4, 6 and 10.

When the contact layer becomes denser, the propagation of the infec-
tion is very fast. Hence, spread of information to prevent further spread of
the illness is less effective. Figure 5 shows the effect of information spread
while the contact layer has scale-free topology with average degree per node
equals 6.

Figure 6 summarizes the results of the model. The effect of the density
of links on the information layer is observed on two different contact network
topologies, regular and scale-free networks with equal average degrees per
node. Figures 6 (a) and 6 (b) show the percentages of recovered (dash-dotted
triangles), susceptible (solid dots), precautioned (solid triangles) and vacci-
nated (dashed triangles) individuals after the ending the spread of infection.
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(a) mcontact = 3, minformation = 2 (b) mcontact = 3, minformation = 4
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(c) mcontact = 3, minformation = 6 (d) mcontact = 3, minformation = 10

Fig. 5. Spread of contagious disease in multi-layer network with scale-free net-
work topology. The same as Fig. 4 only the contact layer has denser connectivity
structure, m = 3.

The bottom line shows no infected individuals. Figure 6 (a) indicates that
as the average number of links to the information layer increases the num-
ber of infected individuals (R) decreases to almost 40% of the population
which indicates that the total number of healthy (vaccinated or uninfected)
reaches up to 60%. The situation changes slightly in the case of scale-free
contact layer with 〈4〉 = 4. Figure 6 (b) show that with increasing informa-
tion spread, the percentage of the recovered individuals goes down to only
60% of the population. Total percentage of the non-affected individuals is
almost 40%. The difference in the spread speed of the infection and infor-
mation can explain this drastic difference between two layer topologies on
the scale-free networks.
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(a) Contact layer: Square lattice (k = 4) (b) Contact layer: Scale-free network (m = 2)

Fig. 6. Aftermath of the epidemic. The susceptible, infected, recovered, vaccinated
and precautioned population versus the number of initial sites of the information
layer. Constant contact layer parameter is fixed to k = 4 for regular network (a)
and m = 2 for scale-free network (b).

4. Discussion and conclusions

Recent analytical and simulation models indicate that the epidemic
spreading on physical contact networks ignites the spread of awareness. The
awareness of the individuals, in turn, suppresses the disease spreading. In
this work, the relation between the epidemic spread and the effect of in-
dividual awareness was discussed. In the proposed model of society, the
individual interacts through a two-layer multiplex network, physical contact
and information spreading layers. The common nodes are affected by both
the infection and information spreading in different layers. The dynamics
of infection and information spreads are controlled by the SIR and Bass
models, respectively. Adoption of information changes the attitude of the
individuals; awareness diffusion creates a group of self-protected individuals.
In this model, two types of self-protection are considered. Vaccination is the
ultimate immunization method for most of the viral infections. Neverthe-
less, vaccination requires some effort, time and expenditure. Hence, the first
assumption is that only 20% of the population considers vaccination. The
rest try to avoid contacts with neighbors by social distancing. The price of
not being vaccinated is that the precautions, apart from vaccination, pro-
vide only partial protection. As a second assumption, protection level of
75% is used to change the characteristics of the infection spread. Different
topologies of contact and information networks embed different diffusion dy-
namics. Even the same topology with an increasing number of an average
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degree changes the spread rates of information and contamination. The ef-
fect of awareness on suppressing the infection spread makes its impact if the
contact network diffusion speed is less than the spreading speed of informa-
tion. The individual responses to an epidemic situation exhibit similarities
but also vary from the adoption of an innovation. In the epidemic case, there
exists an immediate danger to the well being of the individual. Identification
of the individual response parameters may improve the epidemic prevention
efforts considerably.
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