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Most of the real-world networks are complex as well as evolving. There-
fore, it is important to study the effect of network topology on the dynamics
of traffic and congestion in the network. To account this problem, we have
designed a time-varying network model where a new node will join a node
in the existing network with probability proportional to its degree and dis-
assortativity with its neighbors. Disassortativity quantifies the tendency
of the node to connect with dissimilar node (in terms of degree) in the
complex network. Betweenness centrality (BC) plays an important role in
finding the influential node and user’s shortest route in the network. As the
shortest route comprises of hub nodes and a chance of congestion is bigger
on these nodes. Hence, BC–BC correlation is used to find user’s route. A
connection between two hub nodes reduces the data forwarding capacity
of connecting link with higher probability. If a node shows disassortativity
with its neighbors, then it may forward more packets and may be chosen
for routing. Furthermore, user’s optimal data sending rate as well as crit-
ical packet generation rate of the proposed model is calculated and shown
improved results in comparison to the classical scale-free network model.
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1. Introduction

The structure of the complex systems can be analyzed by using the
graph-based methodologies, where nodes represent elements of the system
and links denote the interactions among the nodes. A model to fulfill the
same is developed by Barabási–Albert [1]. Study of the dynamics of such
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networks has received a great wave of interest of the researchers in past
few years. It is a challenging task to design a congestion free time-varying
communication networks (TVCN) to handle dynamic traffic. Therefore, the
main aim of this paper is to design a well-structured (with minimized con-
gestion) TVCN model and provide an efficient route to each user in the
network. Various network properties such as degree distribution, cluster-
ing coefficient, diameter are used to represent the physical structure of the
network. In order to analyze the designed network model, these properties
should be measured and compared with the existing real-world systems. Like
all the other discussed properties, degree–degree correlation (DDC) is one
of the important statistical properties which describes the topology of scale
free (SF) networks. This quantity measures the tendencies of nodes to con-
nect with other nodes that have similar (or opposite) degrees as themselves.
TVCN is designed with the consideration of both DDC and preferential
attachment. Betweenness centrality (BC) plays a very important role in
finding user’s shortest route hence, like DDC, BC–BC correlation may be
used to assign a shortest as well as efficient route to each user.

Today, the Internet has changed the way of communication, business,
studies and many other activities. At the early stage, the Internet was quite
small and its structure was simple but it has evolved with time and it is
very difficult to communicate data efficiently in this way. The Erdős–Rényi
model is the first graph-based model where a node will become the highest
degree node in the network entirely by chance [2]. Barabási and Albert of-
fer a more realistic model of the network. They have given the concept of
evolving network with preferential attachment and follow power law degree
distribution, called scale-free (SF) networks. Evolving nature of the graph
can be shown by attaching time parameter with the network representation,
G(N,E, t). Many time-varying graphs (TVG) are generated by using the
model proposed in [3, 4]. Wehmuth et al. [3] proposed a unifying model
for representing finite discrete TVGs. Kohar et al. [5] studied the stability
of the synchronized state in time-varying complex networks and found that
the time taken to reach synchronization is lowered and the stability range
of the synchronized state increases. A framework is designed to obtain de-
gree distribution of evolving network with the consideration of deletion of
nodes [6]. In [7], a new node has access to a fraction of nodes and a new
connection is formed with a probability proportional to the degree of the
nodes. A framework to represent mobile networks dynamically in a spatio-
temporal fashion is designed and algebraic structural representation is also
provided [8]. A TVCN is designed where nodes and links are getting added
into the networks, while restructuring is performed in the existing networks
through rewiring and removal of the links [9].
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The SF model is the accepted theory of the evolution of networks but in
real-world systems, the theory does not match the data. The SF model has
been used to analyze a wide variety of graphs but on close examination, a
number of theoretical drawbacks are found. The SF model implies that the
degree distribution follows the power law with exponent γ = 3 but in many
real-world networks, the exponent γ has values between 1.2 and 2.9 [10].
The BA model shows that older node always has the most links and a later
node can never become the hub node in the network. However, in a real
scenario, the growth rate of a node does not depend only on its incoming
time but also on some other parameters such as its own intrinsic properties
that affect the rate at which a node attain links. A model is developed by
Barabási in collaboration with Bianconi where evolving network is mapped
onto an equilibrium Bose gas. In this model [11], each new node is assigned a
random fitness parameter, ηi and it connects to a node i based on the product
value of node is degree, ki and its fitness, ηi. The dependency on ηi implies
that between two nodes with the same degree the one with higher fitness
is selected with a higher probability and a younger node can also acquire
links rapidly if its fitness value is higher than others. The nodes with the
highest fitness turn into the largest hubs in the network with time. The
node’s ability to acquire links affects the topology of the network [12]. The
BA model assumes that a graph will evolve indefinitely without considering
any constraint or limit on it.

Apart from the degree distribution, degree–degree correlation (DDC) is
a network property in which nodes with similar attributes, such as degree,
tend to be connected. The DDC has an important influence on the struc-
tural properties of the network and hence, used to measure stability, robust-
ness [13], controllability of the network [14, 15], spreading of diseases [16],
the traffic dynamics on networks and other time-varying processes. DDC is
used to divide SF networks into three types: assortative, disassortative and
neutral networks [17]. For assortative networks, hubs (small degree nodes)
tend to link to other hubs (small degree nodes) and avoid small degree nodes
(hubs). In a disassortative network, hubs (small degree nodes) avoid each
other, linking instead to small-degree nodes (hubs), while in the neutral net-
work, number of links between nodes is random. Social networks such as
actor, e-mail, mobile phone, science collaboration network etc., and citation
network are examples of an assortative network. The communication net-
work such as the Internet and World Wide Web, biological network such as
protein interaction, metabolic network etc. are considered as a disassortative
network. Power grid network is considered as a neutral network.

Networks such as social, biological systems consist of multiple layers of
networks interacting with each other and are known as multiplex networks
where a node belongs to multiple layers with different types of links. Network
layers are correlated with each other and a positive correlation indicates
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that a hub in one layer has also many neighbors in the other layers. The
role of correlations to understand various robustness properties of multilayer
network is studied in [13]. Positively correlated multiplex networks are more
robust than negatively correlated with random failure, whereas negativity
correlated network is more robust for the targeted attack. There is a set
of influential nodes that control the whole network called a dominating set.
To control the whole network, the size of the dominating sets should be
minimum. DDC is used to calculate the size of a minimum dominating set
(MDS) to measure network controllability [14]. Negative correlation reduces
the size of an MDS and enhances network controllability, whereas positive
correlations hardly affect the size of an MDS. Furthermore, apart from the
controllability issue, the developed techniques provide new ways of analyzing
complex networks with DDC. In [15], researchers explored that the multiplex
networks with positive correlation are easier to control for the small density
of interaction while dense interactions cannot control the multiplex networks.
Each node has different information processing capability and the node with
the highest processing capability is known as the most influential node in
the network. The identification of such a set of nodes is an important task to
control the spreading processing on the network. Rewiring is done randomly
in SF networks to analyze its topological properties as well as on the DDC
of the network [18]. Random rewiring reduces average degree of nearest
neighbors of high degree nodes and results in increasing disassortativity of
the network.

Multiple users want to access resources in communication networks,
hence, fair sharing of resources is very important. Kelly [19] and other
researchers [20, 21] provided rate allocation schemes to assign resources in a
fair manner. In this scheme, a utility function is associated with each user
and is considered as being fair if it maximizes the sum of utilities of all the
users in the network. Evolving network model considers only the addition
of nodes [1], although some works consider deletion of nodes during/beyond
the evolution of the networks [6, 22], and [9, 23, 24] considers an addition,
rewiring, and removal of the links. All these approaches are an extension of
the BA model where addition and rewiring are done on the basis of prefer-
ential attachment while deletion considers anti-preferential attachment. In
the real-life networks such as the Internet, communication networks, WWW,
transportation networks, new links appear due to the addition of a new node,
and few links are removed due to breakdown and to reducing maintenance
cost while few links are rewired to handle dynamic traffic. In this context,
the proposed work considers designing of the DTVCN model to minimize
network congestion with maximization of network utility. As betweenness
centrality (BC) is one of important parameters to find out congestion at
a node in the network, hence, we have considered BC–BC correlation for
routing. User’s data rate is maximized by selecting the shortest path whose
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nodes are the least BC–BC correlated with its neighbors. Least correlation
with neighbors reduces overall congestion at the node and the path will give
maximum optimal rate to that user.

Section 2 describes the methods used for measuring correlation, provides
a traffic model and a classical mathematical model used in the analysis of
rate control behavior of the user’s route. Section 3 introduces a model for
growth dynamics of DTVCN, formulation of scaling exponent and the pro-
posed routing strategies for the communication network. Section 4 presents
theoretical and simulation results, and in Section 5, conclusions and future
research plan are discussed.

2. Background and related work

In this paper, the communication network is assumed as time varying .
Hence, in this section, a brief description about mathematical representation
of the TVCN is presented. Static network G(N,E) can be represented by
using only two parameters, nodes (N) and links (E), while in the case of
time-varying network G(N,E, T ), we need to add one more parameter i.e.,
time. The set of nodes is represented by N , E represents the total number
of links, and lifespan of the network is T . A set of R users is willing to
access and send data at this time-varying communication network (TVCN).
Each user wants to send some data from the source node s to the destination
node d. In TVCN, a route is assigned to each user r ∈ R for a time instant
ti ∈ T . At the end of tthi time, a zero–one matrix A of the size (N × N)ti
is defined, where Ai,j(ti) = 1 if nodes i and j are connected at time ti
otherwise it is zero. A link emn between nodes m and n that appears in the
user’s route can send maximum Cemn units of data through it, where Cemn
is the capacity of link emn. The congestion and user’s path are selected
based on the correlation parameter between nodes in the network. Here,
the correlation between the nodes is considered a degree–degree correlation
(DDC).

2.1. Methods for measuring degree–degree correlation

Correlation is defined using covariance and both are used to show how
two random variables are related to each other. Covariance indicates whether
two variables are directly related or inversely related, while correlation re-
turns the degree to which variables tend to move together. Correlation be-
tween two random variables X and Y is expressed as Cor(X,Y ) =

Cov(X,Y )√
Cov(X,X)×Cov(Y,Y )

, where Cov(X,Y ) =
∑n
i=1(Xi−X̄)(Yi−Ȳ )

n−1 . In this paper,

these variables are considered degrees of nodes.
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1. One of the widely used measures for a degree–degree correlation is av-
erage neighbors degree of a node (ANDN) in the network. Let us define
a conditional probability Pc(k

′|k) such that a link having one end node
with degree k will point to a node with degree k′. A direct measure-
ment of Pc(k

′|k) is difficult due to large fluctuations in the value of the
degrees of nodes, hence, it is used to extract some other features i.e.,
average degree of neighbors of the nodes with degree k, represented
by 〈knn〉 =

∑
k′ k
′Pc(k

′|k). There is a power law dependence between
connectivity and degree 〈knn〉 ∼ k−ν with ν ' 0.5 [25]. DDC is mea-
sured in terms of mean degree of neighbors of degree k and written
as 〈knn〉(k). For assortative (or disassortative) network, 〈knn〉(k) in-
creases (or decreases) with increase in k, while in uncorrelated network
〈knn〉(k) is independent of k [25]. The conditional probability always
defines the dependency and not the correlation. It is known that the
correlation may disappear despite the fact that the dependence exists.
Hence, 〈knn〉(k) provides only a qualitative characterization for the
dependencies in networks. On the other hand, Pearson [17] provided
a quantitative value of correlation coefficient rdeg with the help of a
correlation function.

2. Let pk be the probability of a randomly chosen node having degree k. If
a random link is chosen, then the probability of this link to incident on
a node i is proportional to its degree k and also depends on degree dis-
tribution pk, and this probability is represented by kpk∑

k kpk
. Similarly,

average degree of a neighbor is written as
∑

k k
kpk∑
k kpk

. After reaching
the node i, degree distribution of the reached node is calculated and is
called excess degree distribution. If degree of a node i is k, then total
degree will be k + 1 and excess degree distribution is qk =

(k+1)pk+1

〈k〉 .
Excess degree distribution qk plays a very important role in finding
giant component of the network. Here, qk is used to calculate DDC of
a node and to find network’s correlation coefficient rdeg. Let us find
the joint degree distribution pejk of a randomly chosen link ejk of the
two nodes at either end of the link. For the uncorrelated network,
the value of pejk = qjqk but it will be different for assortative (or dis-
assortative) networks. The value of rdeg can be written in the form
of correlation function as rdeg = 〈jk〉 − 〈j〉〈k〉 =

∑
jk jk(pejk − qjqk).

There exist various kinds of networks, hence, the normalized value of
correlation coefficient rdeg is defined as [17]

rdeg =
1

σ(q)2

∑
j,k

jk{pej,k − qjqk} . (1)
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Here, σ(q)2 =
∑

k k
2qk − [

∑
k kqk]

2 and − 1 ≤ rdeg ≤ 1. The value
of rdeg is positive (or negative) for assortative (or disassortative) net-
works, while zero for uncorrelated networks.

2.2. Network traffic model

A node i may generate packets with rate λi and forward packets accord-
ing to its capacity Ci =

∑
j∈Ne(i)Cij , where Ne(i) is the neighbors for node i.

The capacity of the network C is calculated by summing up the capacity of
each node. The sum of packet generation rate λi of each node i is termed
as the load of the network λ [26]. There are three possible relationships
between λ and C: (i) λ < C implies that the system is in free flow state,
(ii) λ = C shows the boundary case for congestion, and (iii) λ > C allows
a system in congestion. If a node generates more packets than its capacity,
then that node will be congested and these nodes increase overall network
congestion. Zhao et al. [26] proposed a model in which packet forwarding
rate Ci of a node i is calculated by introducing two models. The first model
considers degree of the node i and Ci is formulated as Ci = 1 + bβkic, while
the second model calculates Ci based on betweenness centrality and is given
as Ci = 1 + bβg(i)|N | c. Here, ki = degree of node i, g(i) = betweenness cen-
trality of node i, |N | size of the network and β is, 0 < β < 1. By theoretical
estimation, the value of critical rate is given by λc = CLmax(|N |−1)

g(Lmax) . The nodes
with maximum packet forwarding capacity and betweenness centrality are
denoted by CLmax and g(Lmax), respectively.

An order parameter ζ(λ) [27] is used to describe the traffic and is given by

ζ(λ) = limt→∞
C

λ

〈∆Nump〉
∆t

,

where ∆Nump = Nump(t+ ∆t)−Nump(t), Nump(t) is a number of packets
at time t and 〈.〉 shows the average number of packets over a time window
∆t. 〈∆Nump〉 = 0 indicates that there is no packet in the network for ζ = 0.
Hence, the system will come into free flow state.

Kelly [19] formulated the rate allocation problem into optimization prob-
lem for a static network. We have updated the formulation of a classical
model for the case of dynamic communication networks for the proposed
DTVCN model.

2.3. Updated classical mathematical model for
rate allocation problems in TVCN

The utility function, Ur(xr(ti)) for user r is an increasing and strictly
concave function of xr(ti) over the range xr(ti) ≥ 0. Aggregate system
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utility is calculated by summing up all utilities of user r and is denoted as∑
r∈R Ur(xr(ti)). System utility can be optimized by using the following

rate allocation problem:

SYSTEM(U(ti), A(ti))

maximize
∑
r∈R,ti

Ur(xr(ti)) (2)

ATx(ti) ≤ C(ti) and x(ti) ≥ 0 .

A(ti) is a connection matrix at time ti. The given constraint states that a
link cannot send more data than its capacity [19]. It is difficult and unman-
ageable to allocate a suitable utility function and optimal rate to distinct
users in complex networks. Hence, Kelly has divided this problem into
two simpler problems named user’s optimal problem and network’s optimal
problem [19]. At each time instant, if user wants to access a link emn ∈ E,
the accessing cost will depend on the total usage of the link at that time
and the load at the link, emn is given by ψemn(ti) = ςemn(

∑
r:emn∈E xr(ti)),

where ςemn(•) is a costing function and is growing if it comes in large number
of user’s path. ςe(y) is given by ςemn(y) = cemn × (y/Cemn)ω, where cemn
is normalizing constant. Now, consider the following system of differential
equation for getting optimal data rate (x∗):

dxr(ti)

dti
= ϑr(Pr(ti)− xr(ti)

∑
emn∈r

ψemn(ti)) . (3)

Here, ϑr is proportionality constant. First, each user computes its willing-
ness to pay as Pr(ti), then it adjusts its rate based on the response provided
by the links in the network and trying to balance its willingness to pay and
the total price. Equation (3) consists of two components: a steady increase
in the rate proportional to Pr(ti) and steady decrease in the rate propor-
tional to the response ψemn(ti) provided by the network.

3. Time-varying disassortative communication network model

For the smaller value of the packet generation rate λ, the system re-
mains in free flow state as every packet is getting delivered. However, with
the increasing value of λ, a point is reached where the system converts into
congested phase and this point of phase transition is known as critical packet
generation rate λc. The value of λc is affected by the topology of the net-
work. Therefore, in this paper, the disassortative TVCN (DTVCN) model
is proposed to achieve maximum value of λc. As we know, the positive cor-
relation increases congestion in the communication network. Hence, in the
proposed model, if a new node will appear at any time instant ti+1, then it



Effect of Correlations on Routing and Modeling of Time-varying . . . 207

will be attached to the network which exists at ti. A new node may be at-
tached to the existing nodes by preferring higher degree and disassortativity
with the neighbors. As DDC is directly proportional to the congestion of a
node, some fractions of the congested links are rewired, while some fractions
of anti-preferential and correlated links are removed from the network. In
this way, congestion is minimized and we get the higher value of critical
packet generation rate λc.

The scale-free (BA) model assumes that the new node will prefer to at-
tach with the nodes in the existing network based on the value of the degree
of the existing node. However, in most of the networks, this assumption
may not be true as nodes cannot acquire links unconditionally. There is a
limit on packet forwarding rate i.e., the capacity of the node. If more links
are attached to a node, then it may happen that the node will be a part of a
large number of user’s shortest paths and leads to congestion in the network.
Therefore, we modified the probability to account for the congestion and in-
troduced correlation as a multiplicative factor to the preferential attachment
probability. Probability Π that a node i will be selected through a preferen-
tial attachment is proportional to its degree and is given by ki∑

j∈N kj
, whereas

the probability Π ′ of selecting node i with anti-preferential attachment is
given by 1

|N |−1

(
1− ki∑

j∈N kj

)
. Like the BB model [11] and the model [10],

the DTVCN model provides conditioning on the probability of preferential
attachment with the probability of node’s disassortativity with its neighbors
and is defined as

Πr
i =

ki∑
j kj

(1 + ζi) , (4)

where ζi =
rdeg(i)∑|Ne(i)|

n=1 rdeg(i,n)
, rdeg(i) = min rdeg(i, n), ∀n : n ∈ Ne(i), Ne(i) =

neighbors of node i and 0 ≤ rdeg(i, n) + 1 ≤ 2. The probability Πr′
i of

selecting a node i with anti-preferential attachment and high correlation
with its neighbors is given by

(
1− ki∑

j kj

)
(1− ζi).

Algorithmic steps are given for addition, rewire and removal of links in
the proposed DTVCN model (Algorithm 1).

After studying the scaling properties of the time-varying disassortative
network model, the SF behavior is found. A mean-field theoretical ap-
proach [1] is used to anticipate the growth dynamics of distinct nodes, which
is later applicable for analytical computation of connectivity distribution and
scaling exponents. The network is growing with time and a node will acquire
a link if its degree is high and disassortative with its neighbors. Degree ki
of the node i is changing continuously with time, so probability Π(ki) is
interpreted as a rate of change of ki. At each time step, fractions β and γ
determine the number of links chosen for expansion (addition), rearrange-
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Algorithm 1 Time-varying disassortative communication network model
1: Input: A number of nodes (n0) for creating seed network and T .
2: Output: Time-varying data communication networks.
3: while t ≤ T do
4: Expand the network with one node at each time instant t and select

M(≤ t), β and γ and calculate fadd(t), frewire(t) and fdelete(t).
5: for x : 1 to fadd(t) do
6: Choose a node in existing network with probability, Πr

i .
7: end for
8: for y : 1 to frewire(t) do
9: Remove a link of a node with probability Πr′

i and attach to the
node having higher probability value Πr

i .
10: end for
11: for z : 1 to fdelete(t) do
12: Remove the infrequently used and correlated link of a randomly

selected node with probability Πr′
i .

13: end for
14: end while

ment and removal, and parameters of degree for the node i. The analysis
may be given as:

1. A fraction β of the number Mt links are newly added links at time t(
dki
dt

)
add

= βMt
ki∑
j kj

(1 + ζi) . (5)

Here, ζi =
rdeg(i)∑|Ne(i)|

n=1 rdeg(i,n)
, rdeg(i) = min rdeg(i, n),∀n : n ∈ Ne(i),

Ne(i) = neighbors of node i and 0 ≤ rdeg(i, n) + 1 ≤ 2 .
The effect of addition of newly added link on the rate of change of
degree of a node i with time is written on the left-hand side of the
equation, and on the right-hand side, βMt links are formed by using
preferential attachment and the value of ζi. The rate of change of
degree of a node i is directly proportional to its own degree as well as
on the correlation with its neighbor.

2. A fraction γ(1− β)Mt links are re-arranged at time t(
dki
dt

)
R

= γ(1− β)Mt

[
1

n0 + t
+

(
1− 1

n0 + t

)
ki∑
j kj

(1 + ζi)

− 1

n0 + t

(
1− ki∑

j kj

)
(1− ζi)

]
. (6)
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In the time-varying networks, few links are getting rewired and the
degree of node i depends on three terms: the first term shows ran-
dom selection of nodes, the second term corresponds to linking with
other existing nodes having high preferential attachment probability
and higher anti-correlation with neighbor nodes and the third term
shows removal of link having low-preferential attachment value and
higher correlation with its neighbors.

3. A fraction of (1− γ)(1− β)Mt links are removed from the network at
time t(

dki
dt

)
delete

=−(1− γ)(1− β)Mt

[
1

n0 + t
+

(
1− 1

n0 + t

)(
1− ki∑

j kj

)

×(1− ζi)
1

n0 + t

]
. (7)

Removal of links affects the degree of node i and it is shown in the
above equation. The first term shows random selection of a node and
that this link will be removed which has low preferential attachment
value and is highly correlated with its neighbors.

At time t, the sum of degrees of nodes in the network will be∑
j

kj =2t [βMt+(1−β) (γMt−(1−γ)Mt)]=2Mtt [β+(1−β)(2γ−1)] .

Let c = β + (1− β)(2γ − 1).
Now, combining Eqs. (5) to (7), we get the change in degree of node i

with respect to time t
dki
dt

=
βki
2ct

(1 + ζi)

+γ(1− β)Mt

[
1

t
+
ki(1 + ζi)

2cMtt
− ki(1 + ζi)

2cMtt2
− (1− ζi)

t
+
ki(1− ζi)
2cMtt2

]
−(1− β)(1− γ)Mt

[
1

t
+

(1− ζi)
t

− (1− ζi)
t2

− ki(1− ζi)
2cMtt2

+
ki(1− ζi)
2cMtt3

]
=

[
(1 + ζi)

2c
(β + γ(1− β))

]
ki
t

+ [((2γ − 2 + ζi)(1− β)Mt)]
1

t

(for large t ) . (8)

Let K1 = (1+ζi)
2c (β + γ(1− β)) and K2 = (2γ − 2 + ζi)(1 − β)Mt. Hence,

Eq. (8) can be re-written as

dki
dt

= K1
ki
t

+K2
1

t
. (9)
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The solution of Eq. (9) is derived by considering the initial conditions that
node i appears at time ti with Mt connections ki(ti) = Mt, and is given as

ki(t) = −K2

K1
+

(
ki(ti) +

K2

K1

)(
t

ti

)K1

= −K2

K1
+

(
Mt +

K2

K1

)(
t

ti

)K1

.

At each time stem, a new node is added into the existing network, hence,
network probability density for ti at previous time is

Pi(ti) =
1

n0 + t
.

The probability of a node that has total ki(t) connections and is smaller
than k, P (ki(t) < k), can be written as

P (ki(t) < k) = P

(
−K2

K1
+

(
Mt +

K2

K1

)(
t

ti

)K1

< k

)

= P

ti > (Mt + K2
K1

k + K2
K1

) 1
K1

t


= 1− P

ti ≤ (Mt + K2
K1

k + K2
K1

) 1
K1

t

 .

The probability density function of k is P (k) and can be written as

P (k) =
∂P (ki(t) < k)

∂k

=
t

K1(n0 + t)

(
Mt +

K2

K1

) 1
K1

(
k +
K2

K1

)−(1+ 1
K1

)
. (10)

Now, assume α = −(1 + 1
K1

).
The value of the scaling exponent of the real-world network lies between 2

and 3, hence, exponent α of the proposed dynamic communication network
model must lie within 2 < α ≤ 3. Constraint on α will be fulfilled if
0.5 < K1 < 1. The value of K1 is dependent on the parameters β, γ and ζi.
ζi is dependent on the value of rdeg(i) and is scaled from −1 < rdeg(i) ≤ 1
to 0 < rdeg(i) ≤ 2. The complete network is connected, therefore, node i
must be connected with at least one other node and, hence, maximum value
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of ζi = 1 and the range of ζ is 0 < ζi ≤ 1. From Table I, we can see that
for different values of parameters β, γ and ζ, the power law exponent α lies
between 2 and 3. As P (k) is always positive, so Mt + K2

K1
should also be

positive.

TABLE I

The value of power law exponent α obtained for different values of β, γ and ζ.

ζ β γ α

0.0100 0.5100 0.5100 2.3545
0.3333 0.6000 0.6000 2.2143
0.5000 0.7500 0.7500 2.2444
1.0000 0.9999 0.9999 3.0000

4. Time-varying routing strategy

The degree is a fundamental quantity to measure topology and influence
of the node in the SF network, while betweenness centrality (BC) is used
to measure the influence of a node in communication between each pair of
nodes in the network. BC is another important measure which is used to
find the extent to which a node lies on the shortest paths between another
pair of nodes. BC of a node i is gi =

∑
s 6=i 6=d

nis,d
ns,d

, where nis,d is the number
of the shortest paths from node s to d passing through node i and ns,d is the
total number of the shortest paths from node s to node d. A node with high
BC may have be considered more influential within the network. A large
number of users are sending data through the node, hence, removal of the
node will disrupt the communication in the network. The BC distribution
follows power law and BC is related to degree as g ∼ k(α−1

δ−1
), where δ is

BC exponent. This relation shows that node with a larger degree will also
be influential in communication. Hence, we may say that the behavior of
BC–BC correlation would be similar to DDC.

5. Simulation and results

The structure of the network affects the value of critical packet generation
rate λc. For a small value of λi of a node i, the number of packets in the
network is small, hence, all the data will be processed. If all the packets
are sent through the shortest paths in the network to their destinations,
then some nodes may appear frequently in the formation of the shortest
paths. The data forwarding capacities of these nodes got reduced and it
increases congestion locally in all the paths where it appeared and gradually
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increases overall congestion. Multiple users want to establish a connection
between a source node (s) and a destination node (d) in large communication
networks. Multiple shortest paths may exist, σz(s→ d) from s to d, where
z = (1, 2, . . . , χ) and χ is the total number of the shortest paths between
s and d. A node may highly correlate with its neighbors in the shortest
path. Data sending through the shortest paths may lead to the congestion
in the network. Therefore, it is important to investigate the shortest path
σ(s→ d) between the user pairs such that the overall BC–BC correlation of
the nodes that appear in the path should be minimum

Wg[σz(s→ d)] =
∑

v:v∈σz(s→d)

rg(v) ,

where rg(v) = min rg(v, n),∀n : n ∈ Ne(v), Ne(v) = neighbors of node v
and 0 ≤ rg(v, n) + 1 ≤ 2. Hence, we want to find a path whose nodes should
not be the part of hub nodes. Hence, it is defined by

min {∀z : Wg[σz(s→ d)]} .

Algorithm 2 Finding the shortest path having the lowest (and highest)Wg

and x∗ for each user
1: Input: All source destination (s, d) pairs Nsd in the network, designed

through Steps in Section 3, a and b such that a > 0 & 0 < b < 1.
2: for i := 1 to length(Nsd) do
3: Evaluate all shortest paths χi of user i.
4: if χi > 1 then
5: Select shortest paths χi(s → d) having maximum and minimum

values of Wg[σm(s→ d)].
6: else
7: Calculate Wg[σ(s→ d)].
8: end if
9: end for

10: for i := 1 to length(Nsd) do
11: for d := 1 to length(Nsd(i)) do
12: Update network feedback ψd for each element d.
13: end for
14: xr = min(xNsd(i));
15: A(r) = rand(1, 10);
16: Pr = xr ∗ ( a

xr+b
);

17: ψr = ψd{∀d : d ∈ Nsd(i)};
18: end for
19: Use the value of xr, A(r), Pr and ψr to find the rate of convergence of

each user.
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Each user provides the information about the source node s and desti-
nation node d, and accordingly (s, d) pairs are generated. Increments in the
number of users lead to the network into a congested state. Therefore, our
aim is to find efficient routing paths such that the maximum number of users
are getting benefited with a unique stable value of the optimal data sending
rate x∗r and corresponding convergence vectors will be x∗ = x∗r , r ∈ R using
Eq. (3). The shortest path (s → d) with the lowest Wg is assumed as effi-
cient. After finding such paths of all the users, optimal data sending rate
x∗ of each user is calculated by using rate allocation Eq. (3). A detailed
description of selecting the shortest path with the lowest (highest) Wg along
with optimal rate is given in Algorithm 2.

For dynamics of the DTVCN model, the simulation starts by estab-
lishing the infrastructure of the network followed by algorithmic steps in
Algorithm 1. In this paper, the parameters are set with the value as seed
network with number of nodes n0 = 5, number M(≤ t) fraction of newly
added links β range in (0, 1), fraction of rewired links γ is in the range of
(0.5, 1), with network size ranging from |N | = 103 to |N | = 104. Any node
can be included in the user’s (s, d) sets or may participate in routing. For
simplicity, we have assumed the capacity of all nodes is equal. At each time
step, degree of the nodes will be different, hence, the flow of data through
the nodes as well as links change accordingly. The range of degree–degree
correlation coefficients rdeg and BC–BC coefficient rg are scaled from (−1, 1)
to (0, 2). Utility function Ur(xr) is a concave function Ur(xr) = a log(xi+b).

Degree distribution of all the three models i.e., BA model, TVCN model,
and the proposed DTVCN model is shown in Fig. 1. The network gener-
ated through all the models follows power law degree distribution and the
exponent α is in the range of (2, 3], hence, scale free in nature. The values
of a degree–degree correlation coefficient rdeg show that the generated com-
munication networks are disassortative. The network designed through the
BA model is more disassortative than the other two models.

In Table II, various network properties such as clustering coefficient, di-
ameter, average path length, critical packet generation rate, λc, power law
exponent, α, rich club coefficient (RC) are studied. The reason behind se-
lecting all these properties as opposed to other possible properties is because
they are properties of the network as a whole and not just of the individual
node. This allows for analysis of how the whole network changes and not
just the structure around some particular node. The size of the network |N |
is varying from 2× 103 to 1× 104. All these network properties are studied
for the network generated by different models, Barabási–Albert (BA) [1],
TVCN [9], and the proposed DTVCN model. The BA model considers the
only addition of links with preferential attachment, the TVCN model con-
siders the addition and rewiring of links with preferential attachment, while
removal of the link is based on anti-preferential attachment. The proposed
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(a) (b) (c)

Fig. 1. Degree distribution of the network when |N | = 5×103, correlation coefficient
rdeg and power law exponent α for all the models, BA model, TVCN model and
DTVCN model are (a) rdeg = −0.03708, α = 2.6812 , (b) rdeg = −0.02648, α =

2.2520 and (c) rdeg = −0.02239, α = 2.2432, respectively.

TABLE II

Network size |N |, clustering coefficient, diameter, average path length, power law
exponent α, critical packet generation rate λc, and rich club coefficient RC for all
the models; proposed DTVCN, TVCN and BA, when the network size |N | varying
from = 2× 103 to 1× 104.

|N | Network Clustering Diameter Average (α) λc RC
model coefficient path length

DTVCN 0.0324 6.0000 3.4220 2.2129 0.6454 0.0605
2000 TVCN 0.0456 6.0000 3.3055 2.2452 0.5014 0.0993

BA 0.02515 5.0000 3.3635 2.6778 0.3835 0.1397

DTVCN 0.0180 6.0000 3.6525 2.2432 0.4140 0.0383
5000 TVCN 0.0286 6.0000 3.5256 2.2520 0.2472 0.0696

BA 0.0123 6.0000 3.6685 2.6812 0.1950 0.0582

DTVCN 0.0141 6.0000 3.6525 2.2498 0.3930 0.0304
7000 TVCN 0.0226 6.0000 3.6068 2.2534 0.1880 0.0635

BA 0.0094 6.0000 3.7701 2.6843 0.1437 0.0522

DTVCN 0.0113 7.0000 3.8249 2.2533 0.3675 0.0274
10000 TVCN 0.0181 6.0000 3.6961 2.2544 0.1390 0.0548

BA 0.0056 7.0000 4.3006 2.5723 0.1046 0.0446

DTVCN model takes care of congestion in the network by introducing DDC
of a node along with the preferential attachment. We know that there is a
critical packet generation rate λc below which the network traffic is free but
above which traffic congestion occurs. By calculating the value of λc for all
the three models, the proposed DTVCN model is found to be more tolerant
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to congestion. In the proposed DTVCN model, the value of the highest
BC is lesser than the other models, hence, it gives approximately 18.6075%
and 25.6950% higher value of λc than the TVCN and BA models, respec-
tively. This shows that each node can generate and forward more packets
and makes the network more congestion-tolerant. The clustering coefficient
of the TVCN model is the highest, while the BA model has the least value.
Clustering coefficient decreases with increasing the value of network size |N |.
The length of average shortest path of the BA model is greater than others,
while the TVCN model gives the lowest value. The value of power law expo-
nent α is in the range of 2 < α ≤ 3. Rich club phenomenon is characterized
when the hubs are on average more intensely interconnected than the nodes
with smaller degrees. In a network, if a node has degree k then it will tend
to connect with the nodes having degree larger than k. Presence of rich club
indicates robustness against hub failure but increases load and congestion
on the connecting link between two hubs. Most of the users want to send
data through the shortest paths i.e., through hub nodes, and the congestion
at hub nodes will reduce the data forwarding capacity and efficiency of the
networks. The proposed DTVCN model takes care of congestion and gives
the lowest value of RC.

Each user may send their data through one of the shortest paths. In
this paper, two shortest paths are considered on the basis of the value of
Wg. As network resources are shared among a large number of users, hence,
each user r has to compromise on data rate xr. User’s rate depends on the
demand of resources appearing in the shortest route. If demand is high,
the data rate will be less. User r first computes its willingness for pay,
Pr(ti), then it adjusts its rate based on the congestion and the response
provided by the links appearing in the route. An optimal data sending rate
x∗r of each user r is obtained by using rate control theorem given in Eq. (3).
Figure 2 shows the convergence of the data rate of four users for the network
proposed through all the three models. Optimal data rate, x∗ is minimum
(or maximum) for maximum (or minimum) value of Wg.

The size of the network |N | is 2× 103 and total 100 users want to access
the networks. Optimal data sending rate of all the users with the highest
and lowest Wg are calculated for the BA model, TVCN model, and DTVCN
model. The result of optimal data rates (x∗) of 10 users is shown in Fig. 3 (a)
and Fig. 3 (b). The path of the user will depend on the available options and
may be different. Therefore, data forwarding rate may also vary accordingly.
The lowest value ofWg shows least correlation of the nodes appearing in the
user’s route with its neighbors. As congestion increases with correlation,
hence, the data rate of the user having the lowest or highest value for the
Wg is always maximum or minimum. User’s route depends on the structure
of the network. The size of the network, |N | and link density for all the
models: BA, TVCN, and DTVCN are the same but topologies are different.
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Fig. 2. Convergence of user’s data rate, x∗, when the size of the network |N | =

2×103 for all the models: (a) TVCN model, (b) BA model and (c) DTVCN model,
respectively.

Most of the users get a higher value of x∗ for both maximum (or minimum)
value of Wg in the network designed by the proposed modeling technique
i.e., DTVCN as shown in Fig. 3 (a) and Fig. 3 (b). Figure 3 (a) shows that
the average of the users’ data rate x∗ is 2.0981 and 0.7117 for the lowest
and highest value of Wg, respectively, in the TVCN model. By using the
DTVCN model, the value of average users’ data rate x∗ is 2.4258 and 1.0322
for the lowest and highest value of Wg, respectively. In Fig. 3 (b), the value
of average user’ data rate x∗ is 2.0024 and 0.5103 for the lowest and highest
value of Wg, respectively, for the network proposed the BA model.

6. Conclusions and future work

In the present work, the effect of DDC to the congestion against the
dynamic process on SF network is studied. As a result, it is found that con-
sideration of disassortativity in network modeling performs better for data
communication as compared to the other models i.e., BA model and TVCN
model. The value of critical packet generation rate λc could explain why the
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(a) (b)

Fig. 3. User’s optimal data rates x∗ at time t = 2× 103 by considering the shortest
path with maximum and minimum value of betweenness correlation (Wg[ns,d]) for
(a) TVCN vs. DTVCN and (b) BA vs. DTVCN.

network is being modeled by considering DDC along with the preferential
attachment. The value of λc is inversely proportional to the highest BC of
the network and BC of a node is proportional to its degree. We also showed
that the value of power law exponent α decreases as compared to other mod-
els. Hence, the maximum degree of the network generated by the DTVCN
model is lower than the maximum degree of the network generated by the
BA model and TVCN model. The value of rich club coefficient shows that
the hubs are on average less intensely interconnected than the hubs in other
two models. The shortest path with the lowest or highest Wg are chosen for
routing and it is observed that the value of x∗r will always be the maximum
or minimum. In comparison with the other two models, the DTVCN model
provides the higher value of average data rate x∗ of users.

In future work, we will provide some real environments by using a net-
work simulator. Network congestion can be studied for varying packet gen-
eration rate on different topologies of the networks.
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