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On August 17, 2017 the LIGO–Virgo Collaboration detected, for the
first time, gravitational waves from the binary merger of two neutron stars
(GW170817). Unlike the merger of two black holes, the associated elec-
tromagnetic radiation was also detected by a host of telescopes operating
over a wide range of frequencies — opening a brand new era of multimes-
senger astronomy. This historical detection is providing fundamental new
insights into the astrophysical site for the r-process and on the nature of
dense matter. In this contribution, we examine the impact of GW170817
on the equation of state of neutron rich matter, particularly on the density
dependence of the symmetry energy. Limits on the tidal polarizability ex-
tracted from GW170817 seem to suggest that the symmetry energy is soft,
thereby excluding models that predict overly large stellar radii.
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1. Introduction

Almost a century ago in 1915, Albert Einstein published his landmark
paper on “The Field Equations of Gravitation” [1]. Shortly after, Einstein
predicted the existence of gravitational waves — ripples in space-time that
travel at the speed of light [2, 3]. The stretching and squeezing of spacetime
induces a periodic increase and decrease of the distance between objects
that could, in principle, be detected by sophisticated laser interferometers.
In analogy to electromagnetic waves that are created by accelerating charges,
gravitational waves are created by time variations of massive objects with
a non-uniform mass distribution, such as an intrinsic mass quadrupole mo-
ment.
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It would take nearly six decades to confirm, albeit indirectly, the exis-
tence of gravitational radiation. Back in 1974, using the Arecibo telescope
in Puerto Rico, Hulse and Taylor discovered the first binary pulsar (PSR
B1913+16) [4], a remarkable achievement for which they were awarded the
Nobel Prize in Physics in 1993. Since initially discovered, the orbit of the
binary neutron star system has been slowly and steadily shrinking for over
30 years in a manner precisely predicted by the general theory of relativ-
ity. At the observed rate of energy loss due to the emission of gravitational
radiation, the Hulse–Taylor binary pulsar will merge in about 300 million
years.

Fittingly, it was near the centennial celebration of the birth of general
relativity that the LIGO–Virgo scientific collaboration reported the first di-
rect detection of gravitational waves from a binary black hole merger [5]. On
September 14, 2015, shortly after the advanced interferometers were turned
on, a gravitational-wave signal corresponding to a binary black hole merger
was detected at both detectors; Hanford in Washington State and Livingston
in the state of Louisiana. Using theoretical waveforms predicted by general
relativity, individual black holes with masses of about 36 and 29 solar masses
merged to produce a final black hole with a mass of 62M�. This implies
that about 3 solar masses were radiated in the form of gravitational waves,
or about ten billion times the amount of energy radiate by our own sun in
one year. As impressive, a peak gravitational strain of 10−21 was measured,
suggesting that the 4 km arms of both interferometers were stretched and
squeezed by a few femtometers. This dramatic discovery opened the new
and exciting era of gravitational-wave astronomy.

Soon after, the first detection of gravitational waves from a binary neu-
tron star merger (GW170817) at a distance of about 40 Mpc opened the
brand new era of multimessenger astronomy [6]. About two seconds after the
arrival of the gravitational-wave signal, the Fermi Gamma-ray Space Tele-
scope identified a short duration γ-ray burst in association with the neutron
star merger [7]. Within eleven hours of the initial detection, ground- and
spaced-based telescopes operating at a variety of wavelengths identified the
associated kilonova — the electromagnetic transient powered by the radioac-
tive decay of the heavy elements synthesized in the rapid neutron-capture
process (r-process). Distinct features of the kilonova light curve — such as
its fast rise, decay, and rapid color evolution from blue to red — are con-
sistent with the large opacity typical of the lanthanides, spanning atomic
number from 57 to 71. Such characteristic features of the optical spectrum
have revealed that about 0.05 solar masses (or nearly 10,000 earth masses!)
of r-process elements were synthesized in this single event [8–11]. The grav-
itational wave detection confirmed the long-held belief of the association
of short gamma-ray bursts to neutron star mergers. Further, GW170817
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established that binary neutron star mergers play a critical site in the pro-
duction of heavy elements in the cosmos. Finally, constrains on the tidal
polarizability (or deformability) of the binary system are starting to pro-
vide fundamental new insights into the nature of dense matter. Thus, in
one clean sweep, GW170817 is providing compelling answers to two of the
“Eleven science questions for the next century” [12] identified by the National
Academies Committee on the Physics of the Universe: “What are the new
states of matter at exceedingly high density and temperature?” and “How
were the elements from iron to uranium made?” Colloquially, one can say
that GW170817 created gravitational waves, light, and gold.

The first direct detection of the binary neutron star merger GW170817
is already providing valuable clues into the enigmatic nature of dense mat-
ter [6]. In particular, fundamental properties of the equation of state are
encoded on the tidal polarizability, an intrinsic neutron-star property that
describes its tendency to develop a mass quadrupole as a response to the
tidal field induced by its companion [13, 14]. When the separation between
the two neutron stars is large relative to their intrinsic size, the gravita-
tional wave profile is practically indistinguishable from that of a binary
black hole. Yet, as the neutron stars approach each other, tidal distor-
tions become progressively more important. Tidal distortions modify the
phase of the gravitational wave from its point-mass nature and increases the
efficiency of gravitational wave emission, thereby precipitating the merger.
How early during the inspiral phase do tidal effects become important is
highly sensitive to the stellar compactness. That is, for a neutron star of a
given mass, a star with a large radius — and thus a lower average density —
is easier to tidally distort than a star with a smaller radius and, therefore,
more compact. Essentially, the tidal polarizability probes the “fluffiness” of
the neutron star. Among the many critical results inferred from GW170817
were relatively small tidal polarizabilities that “disfavor equations of state
that predict less compact stars” [6]. For example, for a 1.4M� neutron star,
limits on the tidal polarizability translate into an associated stellar radius
of R1.4

? .13.76 km [15, 16].
The main goal of this contribution is to examine how the first detec-

tion of gravitational waves from GW170817 improves our knowledge of the
equation of state (EOS) of dense matter. Measurements of the tidal po-
larizability of the two stars have resulted in valuable limits on the stellar
radius of neutron stars, a quantity that has been traditionally difficult to
determine. Indeed, the determination of stellar radii by photometric means
has been plagued by large systematic uncertainties, often revealing discrep-
ancies as large as 5–6 km [17–19]. It appears, however, that the situation
has improved considerably through a better understanding of systematic
uncertainties, important theoretical developments, and the implementation



242 J. Piekarewicz

of robust statistical methods [20–27]. Nevertheless, that the detection of
gravitational waves from a binary neutron star merger offers a compelling
complement to photometric techniques is a welcome alternative.

We have organized the paper as follows. In Sec. 2, we sketch some of
the important details that are needed to compute the tidal polarizability of
a neutron star. We then proceed to Sec. 3 to display results that highlight
the impact of GW170817 on the underlying equation of state. Finally, we
conclude in Sec. 4.

2. Sensitivity of the tidal polarizability to the equation of state

2.1. Tolman–Oppenheimer–Volkoff equations

The structure of neutron stars is encapsulated in the TOV equations,
named after Tolman, Oppenheimer, and Volkoff [28, 29]. The TOV equa-
tions represent the generalization of Newtonian gravity to the domain of
general relativity. Remarkably, the only input required for their solution
is the equation of state of cold (zero temperature) matter in chemical (or
“beta”) equilibrium. Indeed, for static, spherically symmetric stars in hy-
drostatic equilibrium, the TOV equations may be written as a pair of first
order differential equations. That is,

dP (r)

dr
= −G

c2

(E(r) + P (r))
(
M(r) + 4πr3 P (r)

c2

)
r2

(
1− 2GM(r)

c2r

) , (1a)

dM(r)

dr
= 4πr2

E(r)
c2

, (1b)

where M(r), E(r), and P (r) are the mass, energy density, and pressure pro-
files, respectively. Given boundary conditions in terms of a central pressure
P (0)=Pc and enclosed mass at the originM(0)=0, the TOV equations may
be solved using any suitable numerical solver. Note that the stellar radius
R and mass M are determined from the following two conditions: P (R)=0
and M=M(R). Also note that the solution of the problem requires a rela-
tion connecting the pressure to the energy density, namely, an equation of
state.

2.2. Composition and equation of state

Although it is fairly well-understood how the number of electrons de-
termines the chemistry of the atom and how chemistry is responsible for
binding atoms into molecules and molecules into both traditional and fasci-
nating new materials, one would like to understand how does matter organize
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itself at densities significantly higher than those found in everyday materi-
als; say, from 104–1015 g/cm3. In this units, the equilibrium (or saturation)
density of atomic nuclei equals 2.48× 1014g/cm3. This density, correspond-
ing to about 0.15 nucleons per cubic fermi, is found in the interior of nuclei.
At these enormous densities, it is the pressure rather than the temperature
that is responsible for squeezing electrons out of the atoms. As depicted
in Fig. 1, neutron stars contain a non-uniform crust above a uniform liquid
core that is comprised of a uniform assembly of neutrons, protons, electrons,
and muons in chemical equilibrium. Given that the densities in the stellar
core may exceed that of normal nuclei by up to an order of magnitude, both
electrons and muons contribute to neutralize the positive charge carried by
the protons. Although the highest densities attained in massive neutron
stars is presently unknown, for soft equations of state — namely, those with
a pressure that rises slowly with density — the highest density may be such
as to favor the formation of new and exotic states of matter [30–34]. How-
ever, at densities below saturation density, other novels phases of matter
emerge under these extreme conditions. As the density falls below about
1/2 to 1/3 of saturation density, the average separation between nucleons
increases to such an extent that it becomes energetically favorable for the
system to segregate into regions of normal density (nuclear clusters) and

Fig. 1. An accurate rendition of the structure and phases of a neutron star, courtesy
of Dany Page. Of great relevance to the neutron star is the composition of both
the stellar crust and core, as well as their contribution to the equation of state.
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regions of low density (a dilute, likely superfluid, neutron vapor). Such a
clustering instability signals the transition from the uniform liquid core to
the non-uniform crust. The crust itself is divided into an outer and an inner
region. Structurally, the outer crust is comprised of a Coulomb lattice of
neutron-rich nuclei embedded in a uniform electron gas [35–40]. Given that
the electronic density increases rapidly with density, it becomes energetically
favorable for electrons to capture into protons, resulting in nuclear clusters
that are progressively more neutron rich. Eventually, the neutron excess
becomes too large for the nuclear clusters to absorb any more neutrons,
marking the transition to the inner crust — a region of the star character-
ized by a Coulomb crystal of neutron rich nuclei embedded in a uniform
Fermi gas of electrons and a dilute vapor of likely superfluid neutrons. Even
deeper in the crust, distance scales that were well-separated in both the crys-
talline phase — where the long-range Coulomb interaction dominates — and
in the uniform phase — where the short-range strong interaction dominates
— become comparable, giving rise to a universal phenomenon known as
Coulomb frustration. Coulomb frustration is characterized by a myriad of
complex structures radically different in topology yet extremely close in en-
ergy — collectively referred to as nuclear pasta [41, 42]; see Fig. 1. The
fascinating and subtle pasta dynamics has been captured using either semi-
classical numerical simulations [43–51] or quantum-mechanical approaches
in a mean-field approximation [52–56]. Yet, despite the undeniable progress
in understanding the nuclear-pasta phase, no theoretical framework exists
at present that can simultaneously incorporate quantum-mechanical effects
and complex dynamical correlations. As a result, a reliable equation of state
for the inner crust is still missing. In the past, we have adopted a simple
polytropic interpolation formula [57] to estimate the equation of state in the
inner crust [58] and we will continue do so in this contribution.

The following prescription is adopted for the neutron-star matter equa-
tion of state. First, the EOS for the outer crust follows the seminal work
of Baym, Pethick, and Sutherland (BPS) [35], slightly modified to incorpo-
rate the accurate mass formula of Duflo and Zuker [60]. The boundary of
the outer crust is determined by demanding that the chemical potential be
equal to the bare neutron mass. Second, given the complexity of the inner
crust, we adopt a polytropic equation of state that interpolates between the
outer crust and the liquid core [58]. In particular, the crust–core boundary is
determined from an RPA analysis that signals the instability of the uniform
ground state to cluster formation. Finally, The EOS in the uniform liquid
core is derived from a relativistic model that is accurate in the description
of both the properties of finite nuclei and neutron stars [61]. As an example
of such an equation of state, we display in Fig. 2 the predictions from the
recently calibrated relativistic density functional “FSUGarnet” [59].
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Fig. 2. Neutron-star-matter equation of state as predicted by the relativistic density
functional “FSUGarnet” [59]. The composition and equation of state in the non-
uniform crust is described in the text. Note that the features that are mostly
sensitive to the choice of density functional are the crust–core transition pressure
and the EOS in the entire uniform liquid core.

2.3. Tidal polarizability

Finally, we focus on the tidal polarizability. In the linear regime, i.e., in
the limit of weak tidal fields, the ratio of the induced mass quadrupole to the
external tidal field defines the tidal polarizability. The tidal polarizability is
the gravitational analog to the electric polarizability of a drop of water. A
polar molecule such as water develops an electric dipole moment in response
to an external electric field. The magnitude of the response is encoded in
the dielectric constant — an intrinsic property of the material. In the same
manner, the response of a neutron star to an external tidal field is encoded
in the tidal polarizability. Moreover, a time-dependent mass quadrupole
emits gravitational radiation in analogy to the electromagnetic radiation
generated by a time-dependent electric dipole moment. Particularly useful
is the dimensionless tidal polarizability Λ that is defined as [6]

Λ =
2

3
k2

(
c2R

GM

)5

=
64

3
k2

(
R

Rs

)5

, (2)

where k2 is the second Love number [62, 63], M and R are the mass and
radius of the neutron star, and Rs≡ 2GM/c2 the associated Schwarzschild
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radius. Evidently, Λ is a very sensitive quantity of the compactness param-
eter ξ≡Rs/R [64–69]. In turn, the second Love number k2 depends on both
ξ and yR — a dimensionless parameter that is sensitive to the entire equation
of state [64, 65]. The parameter yR is associated to the non-spherical com-
ponent of the gravitational potential at the surface of the star. In the limit
of axial symmetry, the leading non-spherical component of the gravitational
potential is proportional to the product H(r)Y20(θ, ϕ), where Y20(θ, ϕ) is the
“quadrupole” spherical harmonic [64]. In turn, H(r) encodes the dynamical
changes to the gravitational potential and satisfies a linear, homogeneous,
second order differential equation that may be solved in conjunction with
the corresponding TOV equations [64, 65, 67, 68]. The value of yR is ob-
tained from the logarithmic derivative of H(r) evaluated at the surface of
the star and, hence, depends on the entire equation of state. Once yR is
known, the second Love number k2 can be computed and from it — and the
compactness ξ — the tidal polarizability Λ.

3. Results

Having defined the entire formalism, we are now in a position to display
results for the tidal polarizabilities inferred from GW170817. In Fig. 3, we
show tidal polarizabilities Λ1 and Λ2 associated with the high-mass M1 and
low-mass M2 components of GW170817 using a collection of ten relativistic
models that provide an accurate description of the properties of finite nuclei
and neutron stars [15]. The various models differ in their choice of the
density dependence of the symmetry energy, particularly the slope of the
symmetry energy at saturation — a quantity commonly denoted by L that is
proportional to the pressure of pure neutron matter at saturation. Moreover,
the neutron skin thickness of 208Pb is a laboratory observable that has been
shown to be strongly correlated to L [70–73]. Thus, the various models in
the figure are labeled using the neutron skin thickness of 208Pb as a proxy
for L. The combination of neutron star masses displayed in the figure are
constrained by maintaining the very well measured “chirp” mass fixed at [6]

M=
(M1M2)

3/5

(M1+M2)1/5
=1.188M� . (3)

In turn, the solid circles are used to indicate predictions for a binary system
having masses of M1=1.4M� and M2=1.33M�, respectively, correspond-
ing to a chirp mass as in Eq. (3). Finally, we show the 90% probability
contour extracted from the low-spin scenario assumed in Fig. 5 of the dis-
covery paper [6]. Models to the right of the contour predict a symmetry
energy that is too stiff and, as a consequence, stellar radii that are too large,
to be consistent with the LIGO-Virgo analysis.
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Fig. 3. Tidal polarizabilities Λ1 and Λ2 associated with the high-mass M1 and low-
massM2 components of the binary neutron star system GW170817 as predicted by
a set of ten distinct relativistic mean-field models [15]. Models to the right side of
the 90% probability contour extracted from Ref. [6] are ruled out. The solid circles
represent model predictions for a binary system having masses of M1=1.4M� and
M2=1.33M�, respectively.

We conclude by displaying in Fig. 4 the mass vs. radius relation. For
the models of the kind described here, the maximum stellar mass is largely
controlled by the high-density component of the EOS of symmetric matter
with equal numbers of neutrons and protons. In contrast, stellar radii —
as well as tidal polarizabilities — are sensitive to the density dependence of
the symmetry energy. All ten models used in this contribution generate an
EOS that is sufficiently stiff to support an M?≈2M� neutron star [74, 75].
However, by incorporating the new constraints on the tidal polarizability of
an M?=1.4M� neutron star, we deduced an upper limit on the stellar radii
of 13.76 km [15]. Note that a revised analysis of the original GW170817
data that now assumes the same EOS for the two stars seems to suggest
even more restrictive bounds on the tidal polarizability [76]. Interestingly
enough, by combining electromagnetic and gravitational wave information
in this new era of multimessenger astronomy, additional constraints have
been obtained on both the maximum stellar mass (2.17M�) [77] and the
minimum radius of a 1.6 solar mass neutron star (10.7 km) [78].
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Fig. 4. Mass vs. radius relation predicted by the same ten models used in Fig. 3.
Mass constraints obtained from electromagnetic observations of two neutron stars
are indicated with a combined uncertainty bar [74, 75]. In contrast, the arrow
incorporate constraints on stellar radii obtained exclusively from GW170817 and
exclude many of the otherwise acceptable equations of state [15]. The excluded
causality region was adopted from Fig. 2 of Ref. [79].

4. Conclusions

Neutron stars provide a powerful intellectual bridge between Nuclear
Physics and Astrophysics. This synergy will strengthen even further with
the recent detection of gravitational waves from the merger of two neutron
stars. In this contribution,we explored the fascinating structure of neutron
stars, their connection to nuclear physics through the underlying equation
of state, and the new limits imposed on the EOS from tidal distortions. The
connection between the two fields is strong because of the sensitivity of the
tidal polarizability to the stellar radius, which, in turn, probes the symmetry
energy at about twice nuclear matter saturation density. In particular, limits
on the tidal polarizability of a 1.4M� neutron star translated into an upper
limit of R1.4

? .13.76 km for the associated stellar radius. The multimessenger
era is in its infancy, yet it is remarkable that the very first observation of
a neutron star merger is already providing a treasure trove of insights into
the nature of dense matter. The third observing run by the LIGO–Virgo
Collaboration is scheduled to start in 2019 and with it the expectation of
many more detections of neutron star mergers. The future of multimessenger
astronomy is very bright indeed!
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