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We discuss several recent developments connecting the fundamental
theory of the strong interactions and bare nuclear forces to nuclear structure
and reactions. In particular, we review recent results in the area of nuclear
lattice simulations based on chiral effective field theory by the Nuclear
Lattice EFT Collaboration. The topics we cover are lattice interactions
with improved rotational properties, nuclear physics near a quantum phase
transition, seeing nuclear structure through pinholes, and a computational
method called eigenvector continuation.

DOI:10.5506/APhysPolB.50.253

1. Introduction

There have been many recent developments connecting the fundamental
theory of the strong interactions and bare nuclear forces to the structure
and dynamics of atomic nuclei. There are several collaborations that use
lattice quantum chromodynamics (QCD) to probe nucleon–nucleon interac-
tions from first principles [1–3]. There has also been progress in computing
reactions such as proton fusion and triton decay [4]. Meanwhile, there have
been numerous recent developments on nuclear structure and reactions start-
ing from the bare nuclear forces and the framework of chiral effective field
theory [5–7].

Chiral effective field theory (EFT) describes the low-energy interactions
of nucleons. It consists of an expansion in powers of momenta and factors of
the pion mass near the chiral limit, where the light quarks are massless. See
Ref. [8] for a review of chiral EFT. Terms with a total of n powers of nucleon
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momenta or factors of the pion masses are labelled as order Qn. The leading
order (LO) interactions are at order Q0, the next-to-leading order (NLO)
interactions correspond to order Q2, next-to-next-to-leading order (N2LO)
terms are Q3, and next-to-next-to-next-to-leading order (N3LO) are Q4. In
this proceedings article, we review several recent results using chiral EFT
by the Nuclear Lattice EFT Collaboration.

2. Improved lattice interactions

Nuclear lattice simulations using chiral EFT have been used to describe
the structure and scattering of atomic nuclei [9–11]. However, the treatment
of nuclear forces at higher orders in the chiral expansion are difficult on the
lattice due to the breaking of rotational invariance produced by the nonzero
lattice spacing [12, 13].

In Ref. [14], we solve these problems with a new set of short-range chiral
EFT interactions on the lattice that decomposes more easily into spin chan-
nels. The key idea is to define smeared annihilation and creation operators.
This procedure gives us simpler rotational symmetry properties when taking
spatial derivatives as finite differences. We start with ai,j(n), the nucleonic
annihilation operator on lattice site n with spin i and isospin j. To this,
we add neighboring lattice operators with relative weight, sNL, to define the
smeared annihilation operator

asNL
i,j (n) = ai,j(n) + sNL

∑
|n′|=1

ai,j
(
n+ n′

)
. (1)

Next, we form bilinear functions of the annihilation operators with various
spin and isospin quantum numbers, S, Sz, I, Iz,[

a(n)a
(
n′
)]sNL

S,Sz ,I,Iz
=
∑
i,j,i′,j′

asNL
i,j (n)Mii′(S, Sz)Mjj′(I, Iz)a

sNL
i′,j′
(
n′
)
. (2)

We introduce orbital angular momentum using solid spherical harmonics

RL,Lz(r) =

√
4π

2L+ 1
rLYL,Lz(θ, φ) , (3)

that are written as functions of the lattice derivatives acting on one of the
annihilation operators

P 2M,sNL
S,Sz ,L,Lz ,I,Iz

(n) =
[
a(n)∇2M

1/2R
∗
L,Lz

(∇)a(n)
]sNL

S,Sz ,I,Iz
. (4)
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We then project onto the selected spin and orbital angular momentum using
Clebsch–Gordan coefficients

O2M,sNL
S,L,J,Jz ,I,Iz

(n) =
∑
Sz ,Lz

〈SSzLLz|JJz〉P 2M,sNL
S,Sz ,L,Lz ,I,Iz

(n) . (5)

In Ref. [14], we present results for the neutron–proton system up to N3LO
for lattice spacings of 1.97, 1.64, 1.32, and 0.99 fm. In Fig. 1, we show results
for the neutron–proton scattering phase shifts and mixing angles versus the
relative momenta for lattice spacing a = 0.99 fm. The blue, green and
red bands signify the estimated uncertainties at NLO, N2LO and N3LO,
respectively. The black solid lines denote phase shifts or mixing angles from
the Nijmegen partial wave analysis and the diamonds indicate lattice results
at N3LO.
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Fig. 1. (Color online) Results for the neutron–proton scattering phase shifts and
mixing angles versus the relative momenta for lattice spacing a = 0.99 fm.
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3. Nuclear physics near a quantum phase transition

In Ref. [15], we consider two LO interactions, A and B, at lattice spac-
ing a = 1.97 fm that have nearly the same nucleon–nucleon phase shifts
and nearly the same similar three- and four-nucleon bound state properties.
However, the binding energies for larger nuclei are found to be quite different.
In Table I, we show results for the ground state energies of 8Be, 12C, 16O,
and 20Ne using interactions A and B at LO with Coulomb interactions and
the comparison with experimental data. We see that while the ground state
energies for B track rather well with experimental data, the ground state
energies for A are significantly underbound. In order to identify the source
of the problem, we consider the ground state energies of 8Be, 12C, 16O, and
20Ne for interaction A without Coulomb interactions. When we compute
the ratio of the Coulomb-free ground state energies to the Coulomb-free 4He
ground state energy, we find the ratios
E8Be

E4He
= 1.997(6) ,

E12C

E4He
= 3.00(1) ,

E16O

E4He
= 4.00(2) ,

E20Ne

E4He
= 5.03(3) .

(6)
The simple integer values are consistent with the formation of a Bose conden-
sate of alpha particles filling the periodic box. In Ref. [15], we provide further
evidence that this interpretation is correct by showing that the alpha–alpha
interactions are almost negligible for interaction A.

TABLE I

Results for the ground energies of 8Be, 12C, 16O, and 20Ne using interactions A
and B at LO with Coulomb interactions and the comparison with experimental
data.

Nucleus A (LO + Coulomb) B (LO + Coulomb) Experiment
8Be −56.51(14) −57.29(7) −56.591
12C −84.0(3) −89.9(5) −92.162
16O −110.5(6) −126.0(7) −127.619
20Ne −137(1) −164(1) −160.645

Hence, we have numerical evidence that nature is near a quantum phase
transition. For even and equal numbers of protons and neutrons, there is
a first-order transition at zero temperature from a Bose-condensed gas of
alpha particles to a nuclear liquid. Whether one has a Bose gas of alpha
particles or a nuclear liquid is determined by the strength of the alpha–alpha
interactions. Meanwhile, the alpha–alpha interactions are sensitive to the
strength of the local part of the nucleon–nucleon interactions. The local
part of the interactions is much stronger for interaction B as compared with
interaction A. By local, we mean interactions that are velocity-independent.
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In Fig. 2, we show the zero-temperature phase diagram of nuclear matter.
λ indicates the strength of the local part of the interactions. For λ below
the critical value, nuclear matter is in a Bose gas phase of alpha particles.
For λ above the critical value, nuclear matter is in a nuclear liquid phase.
As λ increases further, finite A-body nuclei become stable relative to their
corresponding multi-alpha thresholds at energies EαA/4.

Fig. 2. Zero-temperature phase diagram of nuclear matter. λ indicates the strength
of the local part of the interactions.

4. Seeing nuclear structure with pinholes

The Nuclear Lattice EFT Collaboration uses auxiliary fields to perform
Monte Carlo simulations. In Ref. [16], we introduce a new approach called
the pinhole algorithm that overcomes computational problems in auxiliary-
field Monte Carlo simulations when computing density correlations relative
to the center of mass. For a nucleus with A nucleons, the pinhole algorithm
consists of computing expectation values of the normal-ordered A-body den-
sity operator

ρi1,j1,...,iA,jA(n1, . . . ,nA) = : ρi1,j1(n1) . . . ρiA,jA(nA) : . (7)

In addition to updating the auxiliary field configurations, we also perform
Monte Carlo updates of the pinhole positions n1, . . . ,nA and pinhole indices
i1, j1, . . . , iA, jA. We note the simple sum rule that summing over all pinhole
positions and indices yields A! times the identity operator.

The pinhole algorithm gives us the positions of the nucleon as a classical
distribution. Using the pinhole algorithm, we have computed the proton and
neutron densities for the ground states of 12C, 14C, and 16C. The results are
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shown in Fig. 3 along with the experimentally observed proton densities.
From Fig. 3, we see that the agreement between the calculated proton den-
sities and experimental data for 12C and 14C [17] is rather good. We show
data for Lt = 7, 9, 11, 13, 15 time steps. In these calculations, we have used
a spatial lattice spacing of 1.97 fm and lattice time spacing 1.97 fm/c. The
fact that the results have almost independent of Lt means that we are mea-
suring ground state properties. As the number of neutrons increases, going
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Fig. 3. Plots of the proton and neutron densities for the ground states of 12C, 14C,
and 16C versus radial distance. We show data for Lt = 7, 9, 11, 13, 15 time steps.
We show 12C in panel (a), 14C in panel (b), and 16C in panel (c). The errors
are one-standard deviation error bars associated with the stochastic errors. For
comparison, we show the experimentally observed proton densities for 12C and 14C
[17].
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from 12C to 16C, the shape of the proton density profile remains roughly
the same. We note that the excess neutrons in 14C and 16C are distributed
fairly evenly, appearing in both the central region as well as the tail.

5. Eigenvector continuation

In nuclear theory and other fields of quantum theory, we often would
like to find the extremal eigenvalues and eigenvectors of a Hamiltonian ma-
trix in a vector space that is extremely large, so large that linear algebra
operations on general vectors cannot be performed. Monte Carlo methods
are well-suited to overcome this problem, however, stochastic methods fail
when severe sign oscillations appear and there is strong cancellation between
positive and negative amplitudes.

In Ref. [18], we present a new technique called eigenvector continuation
(EC) that can improve the reach of Monte Carlo methods. The main idea is
that while an eigenvector inhabits a linear space with very many dimensions,
the eigenvector trajectory generated by smooth changes of the Hamiltonian
matrix can be well-approximated by a low-dimensional manifold. This state-
ment is proven using analytic continuation.

Suppose that the Hamiltonian H(c) depends smoothly on some control
parameter c. Let c� be the target value of the parameter for which we wish
to compute the ground state wave function |Ψ0(c�)〉. The EC method is a
variational calculation where the variational subspace consists of eigenvec-
tors |Ψ0(c)〉 for different values of c. In Ref. [18], we consider simulations
of the neutron matter at leading order using the lattice action described in
Ref. [19]. This particular lattice action is plagued by large sign oscillations
due to the one-pion exchange interaction, which is parameterized by the
coupling g2A. The systems we calculate are the ground state energies of 6
and 14 neutrons on a 4× 4× 4 lattice with spatial lattice spacing of 1.97 fm
and time lattice spacing of 1.32 fm. We first attempt to compute the ground
state energies by direct calculation. The errors are quite large due to sign
oscillations. For 6 neutrons, the ground state energy is E0 = 12(+3

−4) MeV,
and for 14 neutrons, E0 = 42(+7

−15) MeV.
Next, we use eigenvector continuation for values g2A = c1, c2, c3, where

c1 = 0.25, c2 = 0.60, and c3 = 0.95. We use Monte Carlo simulations to
calculate the ground state eigenvectors for c1, c2, c3. In Table II, we show
the EC results using just one of the three vectors, two of the vectors, or all
three vectors. The error bars are estimates of the stochastic error and ex-
trapolation error in projection time. For comparison, we also show the direct
calculation results. The EC results are consistent with the direct calculation
results, though with an error bar that is smaller by an order of magnitude.
Eigenvector continuation approach is now being developed for all interac-
tions that produce sign oscillations in the nuclear lattice simulations.
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TABLE II

Eigenvector continuation results for the ground state energy for six and fourteen
neutrons using sampling data g2A = c1, c2, c3, where c1 = 0.25, c2 = 0.60, and
c3 = 0.95. For comparison, we also show the direct calculation results.

g2A values E0, 6 neutrons [MeV] E0, 14 neutrons [MeV]

c1 14.0(4) 48.8(6)
c2 13.7(4) 48.5(7)
c3 13.8(6) 48.8(8)
c2, c3 13.7(4) 48.4(7)
c3, c1 13.8(4) 48.8(6)
c1, c2 13.7(4) 48.4(7)
c1, c2, c3 13.7(4) 48.4(7)

Direct calculation 12
(
+3
−4

)
42
(
+7
−15

)
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