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FINE STRUCTURE OF GIANT RESONANCES:
WHAT CAN BE LEARNED∗
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Fine structure of giant resonances (GRs) has been established in recent
years as a global phenomenon across the nuclear chart and for different
types of resonances. A quantitative description of the fine structure in
terms of characteristic scales derived by wavelet techniques is discussed.
By comparison with microscpic calculations of GR strength distributions,
one can extract information on the role of different decay mechanisms con-
tributing to the width of GRs. The observed cross-section fluctuations
contain information on the level density (LD) of states with a given spin
and parity defined by the multipolarity of the GR.
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1. Introduction

Giant resonances are elementary excitations of the nucleus and their
understanding forms a cornerstone of microscopic nuclear theory. They are
classified according to their quantum numbers (angular momentum, parity,
isospin). Gross properties such as energy centroid and strength in terms of
exhaustion of sum rules are fairly well-described by microscopic models [1].
However, a systematic understanding of the decay widths is still lacking.

The giant resonance width Γ is determined by the interplay of differ-
ent mechanisms illustrated in Fig. 1: fragmentation of the elementary one
particle–one hole (1p–1h) excitations (Landau damping ∆E), direct particle
decay out of the continuum (escape width Γ ↑), and statistical particle decay
due to coupling to two (2p–2h) and many particle–many hole (np–nh) states
(spreading width Γ ↓)

Γ = ∆E + Γ ↑ +Γ ↓ . (1)
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Fig. 1. Schematic illustration of different decay mechanisms contributing to the
width of giant resonances.

A powerful approach to investigate the role of the different components
are coincidence experiments, where direct decay can be identified by the pop-
ulation of one-hole states in the daughter nucleus and the spreading width
contribution can be estimated by comparison with statistical model calcu-
lations (see, e.g., Refs. [2–5]). Recently, an alternative method has been
developed based on a quantitative analysis of the fine structure of giant res-
onances observed in high-resolution inelastic scattering and charge-exchange
reactions. As demonstrated below, fine structure appears as a global feature
of giant resonances across the nuclear chart. For comparable energy resolu-
tion, the fine structure properties are independent of the exciting probe [6],
cf. left part of Fig. 2. Different approaches for an extraction of energy scales
characterizing the phenomenon have been discussed in Ref. [7]. Wavelet
analysis has been identified as a particularly promising type of analysis.

In many cases, the cross-section fluctuations are particularly pronounced
on the low-energy side of the GRs and damped on the high-energy side. The
magnitude of the fluctuations for a given experimental energy resolution is
determined by the density of states, whose spin and parity is determined
by the multipolarity of the GR. If a single excitation mode dominates the
cross sections and there is a way to estimate the background in the spectra,
one can deduce the level density in the energy region of the GR with a
fluctuation analysis.
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2. Quantitative analysis of the fine structure

2.1. Experimental evidence for fine structure

In recent years, systematic high-resolution (p, p′) experiments have been
performed at iThemba LABS and RCNP to study the properties of the
ISGQR [8–11] and the IVGDR [12–16], respectively. Fine structure was
observed across the nuclear chart. It has also been demonstrated for M1 [17],
M2 [18] and GT [19] resonances. Some examples of such data are presented
in Fig. 2.

Fig. 2. Examples of the fine structure phenomenon of different GRs in high-
resolution experiments. Left: ISGQR in 208Pb studied in (e, e′) and (p, p′) re-
actions [6]. Upper right: GTR in 90Nb studied with the 90Zr(3He, t) reaction at 0◦

[19]. Lower middle: M2 resonance in 90Zr studied in 180◦ electron scattering [18].
Lower right: IVGDR in 208Pb studied in the (p, p′) reaction at 0◦ [12].

2.2. Wavelet analysis

Wavelet analysis has been established as a tool to quantitatively analyze
the fine structure of nuclear giant resonances. It can be regarded as an
extension of the Fourier analysis which allows to conserve the correlation
between the observable and its transform. In the present application to
nuclear spectra, the coefficients of the wavelet transform are defined as

C (δE,Ex) =

∞∫
−∞

σ (E)Ψ (δE,Ex, E) dE . (2)
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They depend on two parameters, a scale δE stretching and compressing the
wavelet Ψ(E), and a position Ex shifting the wavelet in the spectrum σ(E).
The variation of the variables can be carried out with continuous or discrete
steps. The analysis of the fine structure of giant resonances is performed
using the continuous wavelet transform (CWT), where the fitting procedure
can be adjusted to the required precision.

In order to achieve an optimal representation of the signal using wavelet
transformation, one has to select a wavelet function Ψ which resembles the
properties of the studied signal σ. A maximum of the wavelet coefficients
at certain value δE indicates a correlation in the signal at the given scale,
also called characteristic scale. The best resolution for nuclear spectra is
obtained with the so-called Complex Morlet wavelet (cf. Fig. 9 in Ref. [7]),
because the detector response closely resembles a Gaussian line shape. The
Complex Morlet wavelet is a product of Gaussian and cosine functions

Ψ(x) =
1√
πfb

exp (2πifc) exp

(
−x

2

fb

)
, (3)

where fc is the wavelength centre frequency and fb is the bandwidth param-
eter.

Alternatively, a spectrum decomposition based on the discrete wavelet
transform (DWT) can be used, where scales and positions in the wavelet
analysis are varied by powers of two. It allows an iterative decomposition
of the spectrum by filtering it into two signals, approximations (A) and de-
tails (D), representing the large-scale (low-frequency) and small-scale (high-
frequency) part for a given scale region analog to the effect of high- and
low-pass filters in an electric circuit. In each step i of the decomposition,
the initial signal σ(E) can be reconstructed as

σ(E) = Ai +
∑

Di . (4)

This operation can be repeated until the individual detail consists of a single
bin.

A DWT can only be performed with wavelets which possess a so-called
scaling function [7]. This is not the case for the Complex Morlet wavelet,
thus the Bior wavelet family [20] is used as an alternative. It provides another
useful property for a determination of background in the data, which is a
prerequisite for the level density extraction described below. Each wavelet
function can be characterized by its number of vanishing moments

∞∫
−∞

EnΨ (E) dE = 0 , n = 0, 1 . . .m . (5)
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Thus, any smooth background in the spectrum that can be approximated
by a polynomial function up to the order of m−1 does not contribute to the
wavelet coefficients. Examples are discussed in Refs. [7, 10, 13, 19]. One can
identify in all cases the decomposition order i containing the largest scale,
i.e. the resonance width. The next-higher order provides the form of the
background.

2.3. Example: Characteristic scales of the ISGQR in 208Pb

The extraction of characteristic scales and their interpretation is dis-
cussed by means of example for a study of the ISGQR in 208Pb with the
(e, e′) reaction [21] (see l.h.s. of Fig. 3). The 2D distribution of the squared
wavelet coefficients of the experimental spectrum shows pronounced max-
ima at certain scale values across the energy region of the ISGQR. Their
values can be determined from the projection on the scale axis (the power
spectrum). The middle part of Fig. 3 displays the same type of analysis
for an RPA calculation [9] of the ISGQR in 208Pb. The strength is concen-
trated in a single peak and, correspondingly, the wavelet power spectrum
does not show any scales (the maximum at small-scale values results from
folding of the strength distribution with the experimental resolution). If
one includes 2p–2h states in a SRPA calculation [9], fine structure in the
strength distribution and corresponding maxima in the power spectrum are
observed demonstrating that these characteristic scales arise from the damp-
ing width. More specifically, the scales result from coupling to low-lying
vibrations [8, 9], a damping mechanism discussed in Ref. [22].

2.4. Example: K splitting of the ISGQR in deformed nuclei

The IVGDR in heavy deformed nuclei exhibits a characteristic double-
hump structure identified as splitting due to the conservation of the K quan-
tum number [1]. A similar splitting is predicted for the ISGQR as illustrated
in the l.h.s. of Fig. 4 showing QRPA calculations of the ISGQR in the nuclei
146,148,150Nd with increasing deformation using the SVmas10 [23] Skyrme
interaction. The energy splitting is largest between the K = 0 and K = 1, 2
components and increases with mass number, but it is generally smaller than
their typical widths. Therefore, K splitting cannot be observed in a mea-
surement of the ISGQR strength function. However, it was recently shown
that the fine structure may carry a signature [24].

The r.h.s. of Fig. 4 illustrates an application of the CWT on both ex-
perimental and theoretical spectra of the ISGQR in 150Nd. The top and
middle row show the experimental and theoretical spectrum, respectively,
and the wavelet power spectra, derived as described above. Although no
scales are observed on the theoretical power spectrum for smaller scale val-



444 P. von Neumann-Cosel

ues, pronounced characteristic scales are visible around 1 MeV resembling
the experimental results. These are caused by the splitting between the
main fragments of K = 0, 1 and 2 strengths.

Fig. 3. Top: Spectrum of the 208Pb (e, e′) reaction [21], squares of the wavelet
coefficients as a function of excitation energy from a CWT, and projection of the
wavelet coefficients on the scale axis (power spectrum). Middle: The same for a
RPA calculation. Bottom: The same for a SRPA calculation.
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Fig. 4. (Color online) Left: RPA calculation of the splitting of the ISGQR in
146,148,150Nd into K = 0, 1, 2 components [24]. Right, top and middle row: Experi-
mental and RPA strength distributions of 150Nd and wavelet power spectra. Right,
bottom row: Semblance analysis, Eq. (6), and corresponding semblance power [24].

This interpretation can be further tested by a semblance analysis, which
provides a quantitative measure of the correspondence between two sets of
wavelet coefficients by studying the local phase relationships of the complex
wavelet coefficients as a function of scale [25]. The semblance S can be
expressed as

S = cosn(θ) , (6)

where n is an odd integer greater than zero (n = 1 in the present case), yield-
ing values ranging from −1 (anticorrelated) through 0 (uncorrelated) to +1
(correlated). Here, the local phase θ is given by θ = tan−1[=(C1,2)/<(C1,2)],
where the cross-coefficient C1,2 = C1C

∗
2 with C1 the wavelet transform of

data set 1 and C∗2 the complex conjugate of dataset 2.
The bottom row shows the result from the application of Eq. (6) to the

experimental spectrum and the RPA prediction. For smaller scale values, the
semblance shows large fluctuations from correlation (red) to anti-correlation
(blue) over the energy region of the resonance. A large positive correlation
is obtained over most of the resonance — in this case, between Ex = 11 to
13 MeV where the RPA E2 strength lies — for scale values corresponding
to two characteristic scales around 1 MeV supporting the relation of these
power maxima to the K splitting. Further details can be found in Ref. [24].
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3. Level densities

The magnitude of fluctuations of cross section observed in high-resolution
experiments in the energy region of the GRs is related to the LD. It can be
extracted with a fluctuation analysis described, e.g., in Refs. [13, 19, 26, 27].

The procedure of the fluctuation analysis is schematically demonstrated
in Fig. 5 for the example of the Gamow–Teller GR in 90Nb measured with
the 90Zr(3He, t) reaction [19]. It can be divided into four main steps. The
corresponding spectrum in the region of interest (cf. Fig. 2) is shown in the
top row of Fig. 5. For an extraction of the LD, one has to subtract any
background not arising from excitations of the nuclear mode under investi-
gation. In the present example, it was determined by a DWT analysis as
described in Ref. [19].

Fig. 5. (Color online) Top row: Spectrum of the 90Zr(3He, t) reaction at 0◦ [19] and
background obtained from a DWT (straight orange line). Second row: Background-
subtracted smoothed spectra g(Ex) and g>(Ex). Third row: Stationary spectrum
d(Ex). Bottom row: Experimental [Eq. (7)] and theoretical [Eq. (9)] autocorrela-
tion function.

Further, fluctuation contributions arising from finite statistics are re-
moved by folding with a Gaussian function of width σ chosen to be smaller
than the experimental energy resolution. The resulting spectrum is called
g(Ex) hereafter. Similarly, a second spectrum g>(Ex) is created by the con-
volution with a Gaussian function, whose width σ> is at least two times
larger than the energy resolution in the experiment in order to remove gross
structures from the spectrum. The spectra g(Ex) and g>(Ex) for the present
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data are shown in the second row of Fig. 5. The dimensionless stationary
spectrum d(Ex) = g>(Ex)/g(Ex) is shown in the third row. As a result of
the normalization on the local mean value, the energy dependence of the
cross sections vanishes. The value of d(Ex) is sensitive to the fine structure
of the spectrum and distributed around an average intensity 〈d(Ex)〉 = 1.
With increasing excitation energ, the mean level spacing is decreasing and,
in turn, the oscillations of d(Ex) are damped.

A quantitative description of the fluctuations is given by the autocorre-
lation function

C (ε) =
〈d (Ex) d (Ex + ε)〉
〈d (Ex)〉 〈d (Ex + ε)〉

. (7)

The value C(ε = 0)− 1 is nothing but the variance of d(Ex)

C (ε = 0)− 1 =

〈
d2 (Ex)

〉
− 〈d (Ex)〉2

〈d (Ex)〉2
. (8)

According to Ref. [28], this experimental autocorrelation function shown in
the bottom row of Fig. 5 can be approximated by the expression

C(ε)− 1 =
α 〈D〉

2∆E
√
π
× f(σ, σ>) , (9)

where the function f depends on the chosen parameters (resolution σ, folding
width σ>) only. The value α is the sum of the normalized variances of the
assumed spacing and transition width distributions. If only transitions with
the same quantum numbers (Jπ = 1+ in the present case) contribute to the
spectrum, then α can be directly determined as the sum of the variances
of the Wigner and Porter–Thomas distribution and the mean level spacing
〈D〉 can be extracted from the value of C(ε = 0)−1. The corresponding LD
is given by ρ(E) = 1/〈D〉.

Figure 6 depicts the results of the procedure for the 90Zr(3He, t) data
for excitation energies of about 5 to 9 MeV in comparison with a variety
of models. Empirical parameterizations [29, 30] with the backshifted Fermi
gas model (BSFG) describe the data well. Microscopic calculations in the
HF-BCS [31] and HFB [32] frameworks as well as a two-component Fermi
gas (MB-DOS) [33] underpredict the absolute density of 1+ states.



448 P. von Neumann-Cosel

Fig. 6. LD of 1+ states in 90Nb extracted with the fluctuation analysis from the
data of Fig. 5 and comparison with different models (see the text).

4. Concluding remarks

Systematic studies with light-ion induced reactions and electron scat-
tering utilizing high-resolution spectrometers have demonstrated that fine
structure of giant resonances is a global phenomenon. The present contribu-
tion discusses ways to quantitatively extract information from the observed
fine structure and wavelet analysis has been established as the most promis-
ing tool. It allows the extraction of scales in the power spectrum, which can
be related to different decay mechanisms contributing to the width of GRs.
While this can also be achieved with a Fourier transform (and even with
somewhat better resolution), the information from the wavelet transform,
Eq. (2), is essential to relate the origin of scales to the GRs.

In kinematics where a particular GR dominates the spectra, one can
extract LDs from the cross-section fluctuations by an autocorrelation anal-
ysis. These LD results are quite unique in several aspects: (i) One obtains
LD values for a specific spin and parity. (ii) The method provides absolute
values in contrast to LDs from the two major sources of LD data besides
neutron resonance spacings, viz. the Oslo method [34] and particle emission
spectra [35]. (iii) LD data above the particle thresholds are rare. (iv) They
contribute to the resolution of important open questions such as a possible
parity dependence in certain shell regions [36], collective enhancement fac-
tors describing the role of vibrations and rotations in deformed nuclei [37],
or the spin distribution of a given total LD. The latter can be addressed by
extracting LDs of J = 0, 1, 2 states from the corresponding GRs (ISGMR,
IVGDR, ISGQR, M1, M2) in the same nucleus.
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