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Applying the microscopic nuclear physics ideas to macroscopic stellar
systems, we study the evolution of the compact di-stars in mass asymmetry
(transfer) coordinate. Depending on the internal structure of constituent
stars, the initial mass asymmetry, total mass, and orbital angular momen-
tum, the close di-star system can either exist in symmetric configuration or
fuse into mono-star. The limitations for the formation of stable symmetric
binary stars are analyzed. The role of symmetrization of asymmetric bi-
nary star in the transformation of potential energy into internal energy of
binary star and the release of a large amount of energy is revealed.
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1. Introduction

Of great interest for stellar evolution are compact or close binaries, form-
ing di-star compounds with the average distances between the stars of the
same order as the sum of their radii [1, 2]. Measuring the period of revolution
and the distance between the stars, the masses of the constituents of the di-
star system are determined. This method does not require additional model
assumptions and, therefore, it is one of the main methods for determining
star masses in astrophysics. The observations of the stages of evolution in
close binary stars can provide a verification of our understanding of the inner
structure and evolution of stars.

Because mass transfer is an important observable for close binaries, it is
meaningful and necessary to study the evolution of the system in the mass
asymmetry coordinate η = (M1−M2)/(M1 +M2), where Mk (k = 1, 2) are
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the stellar masses at fixed total mass M = M1 +M2 of the system [3]. The
mass asymmetry plays an important role as the collective coordinate in the
evolution of a dinuclear system consisting of two touching nuclei [4]. Nuclear
dynamics, of course, is quite different from the gravitational interactions in
di-stars. Nuclear reactions are dominated by short-ranged strong interac-
tions to which minor contributions of long-range (repulsive) Coulomb and
centrifugal forces are superimposed. The dinuclear approach is a key tool
for the description of fusion (merge) of two heavy nuclei and the decay of
dinuclear systems, respectively. In the approaching phase and also after fu-
sion, the interacting nuclei will loose mass by emission of protons, neutrons,
and light clusters like alpha-particles. Once a critical distance and mass
ratio has been reached, fusion occurs. A highly excited compound nucleus is
formed with temperature of the order of one to a few MeV, corresponding to
1010 K, cooling down rapidly by ejection of nucleons, nuclear clusters, and
electromagnetic radiation. Hence, dinuclear reactions are covering essen-
tially the same spectrum of phenomena as expected or observed for di-stars.
Thus, one can try to extend the method and results from the femtoscale of
microscopic nuclear physics to macroscopic binary stellar systems.

2. Di-star potential energy

The total potential energy of the di-star system

U = U1 + U2 + V (1)

is given by the sum of the potential energies Uk (k = 1, 2) of the two stars
and star–star interaction potential V . The radiation energy is neglected
because the absolute values of the gravitational energy and the intrinsic
kinetic energy are much larger than the radiation energy. The energy of the
star “k” is

Uk = −ωk
GM2

k

2Rk
, (2)

where G, Mk, and Rk are the gravitational constant, mass, and radius of
the star, respectively. The dimensionless structural factor ωk is determined
by the density profile of the star. Employing the values of the structural

factor ωk = 1.644
(
M�
Mk

)1/4
and radius Rk = R�

(
Mk
M�

)2/3
of the star from

the model of Ref. [2], we obtain

Uk = −ω0
GM

13/12
k

2
,

ω0 = 1.644
M

11/12
�
R�

, (3)
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where, M� and R� are mass and radius of the Sun, respectively. Note that
the model of Ref. [2] well describes the observable temperature–radius–
mass–luminosity relations, the spectra of seismic oscillations of the Sun,
distribution of stars on their masses, magnetic fields of stars, and etc. Since
the two stars rotate with respect to each other around the common center of
mass, the star–star interaction potential contains, together with the gravita-
tional energy Q of the interaction of two stars, the kinetic energy of orbital
rotation Vrot

V (R) = Q+ Vrot = −GM1M2

R
+
µv2

2
, (4)

where v = (GM [2/R − 1/Rm])1/2, µ = M1M2/M , and Rm are the speed,
the reduced mass, and the semimajor axis of the elliptical relative orbit,
respectively [1]. Finally, one can derive the simple expression for the star–
star interaction potential

V = −GM1M2

2Rm
= −ωV

G(M1M2)
3

2
, (5)

where ωV = (M2µ2iRm,i)
−1. Here, the Kepler’s laws Rm =

(
µi
µ

)2
Rm,i (L =

Li) is used. The index “i” denotes the value of reduced mass of the initial
binary star and distance between stars (orbital angular momentum) of the
initial binary at η = ηi. The final expression for the total potential energy
(1) of the di-star system is

U = −G
2

(
ω0

[
M

13/12
1 +M

13/12
2

]
+ ωV [M1M2]

3
)
. (6)

Using the mass asymmetry coordinate η instead of masses M1 = M
2 (1 + η)

and M2 = M
2 (1− η), we rewrite Eq. (6)

U = −
GM2

�
2R�

(
α
[
(1 + η)13/12 + (1− η)13/12

]
+ β

[
1− η2

]3)
, (7)

where

α = 1.644

(
M

2M�

)13/12

and

β =
GM5

�
2L2

i

(
M

2M�

)5

.

As can be seen from Eq. (7), the stability of the binary star system de-
pends on the orbital angular momentum Li = µi(GMRm,i)

1/2 and the total
mass M .
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Employing Eq. (7), we can study the evolution of the di-star system in
the mass asymmetry coordinate η. The extremal points of the potential
energy as a function of η are found by solving numerically the equation

∂U

∂η
= −

GM2
�

2R�

(
13

12
α
[
(1 + η)1/12 − (1− η)1/12

]
− 6βη

[
1− η2

]2)
. (8)

As seen, Eq. (8) is solved for η = ηm = 0. At this value the potential has
an extremum which is a minimum if

α <
432

13
β

or

Li <
[
10.1GR�M

3
�
]1/2( M

2M�

)47/24

and a maximum if
α >

432

13
β .

The transition point is

αcr = α =
432

13
β =

216

13

GM5
�

L2
i

(
M

2M�

)5

.

At α < αcr, a minimum at η = ηm = 0 is engulfed symmetrically by two
barriers at η = ±ηb. The fusion of two stars with |ηi| < ηb can occur only by
overcoming the barrier at η = +ηb or η = −ηb. With decreasing ratio α/β,
Bη = U(ηb)− U(ηi) increases (Fig. 1 (a)) and the symmetric di-star system
becomes more stable. The evolution of two stars with |ηi| 6= 0 and |ηi| < ηb
to the symmetric di-star configuration is energetically favorable. Hence,
an initially asymmetric binary system (|η| = |ηi| < ηb) is driven to mass
symmetry, implying a flow of mass towards equilibrium and increase of the
internal energy of stars by the amount ∆U = U(ηi)−U(η = 0) (Fig. 1 (a)).
At α ≥ αcr, ηm = ηb = 0 and we have the inverse U -type potential with
maximum at η = 0. In such a system, the fusion of stars (one star “swallows”
the other star) is the only mode of evolution in η transforming in the end the
di-star into a mono-star with the release of energy Ef = U(ηi) − U(η = 1)
(Fig. 1 (b)).
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Fig. 1. The schematical drawings of the driving potential energy of the star–star
system at α < αcr (a), and α > αcr (b). The arrows on x-axis show the corre-
sponding initial binary stars. The notations used in the text are indicated.

3. Calculated results

In the calculations, we assume the conservative evolution of the di-star
in mass asymmetry coordinate η. The orbital angular momentum Li is cal-
culated by using the experimental masses of stars and the period Porb,i of
orbital rotation of the di-star system at η = ηi. Various di-stars have dif-
ferent M and Li and, correspondingly, the potential energy shapes. The
potential energies (driving potentials) U(η) of the close di-star systems ver-
sus η are presented in Figs. 2, 3, and 4. For all systems considered, α < αcr,
respectively the potential energies have symmetric barriers at η = ±ηb and
the minimum at η = ηm = 0. As seen in Fig. 2, the barrier in η appears
as a result of the interplay between the total gravitational energy U1 + U2

of the stars and the star–star interaction potential V . Both energies have
different behavior as a function of mass asymmetry: U1 + U2 decreases and
V increases with changing η from η = 0 to η = ±1. One should stress
that the driving potentials U(η) for the di-star systems look like the driving
potentials for the microscopic dinuclear systems [4].

The evolution of the di-star system depends on the initial mass asym-
metry η = ηi at its formation. If the original di-star is asymmetric, but
|ηi| < ηb, then it is energetically favorable to evolve in η to a configura-
tion in the global minimum at η = 0, that is, to form a symmetric di-star
system. The matter of a heavy star can move to an adjacent light star en-
forcing the symmetrization of di-star without additional driving energy. The
symmetrization of asymmetric binary star leads to the decrease of potential
energy U or the transformation of the potential energy into internal energy
of stars. The resulting symmetric di-star is created at large excitation en-
ergy. For example, for the binary systems RR Cen (ηi = 0.65), V402 Aur
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Fig. 2. The calculated gravitational energy U1 + U2, star–star interaction energy,
and total potential energy U versus η for close binary star α Cr B. The arrows on
x-axis show the initial ηi.

(ηi = 0.66), and V921 Her (ηi = 0.61), the internal energies of stars increase
during symmetrization by amount ∆U = U(ηi)−U(η = 0) = 2×1041, 1041,
and 1041 J, respectively. As the most of close binary stars are asymmetric
ones, the symmetrization process leads to the release of a large amount of
energy in these systems and can be an important source of energy in the
universe (Table I). Note that accounting for the loss of angular momentum
will lead to an increase of the value ∆U .

If |ηi| > ηb or ηb = 0, the di-star system is unstable and evolves towards
the mono-star system, thus, enforcing the asymmetrization of the di-star.
The matter is transferred from the light star to the heavy star even without
additional external energy. We found only one close binary system α Cr B
(M1 = 2.58M�, M2 = 0.92M�, ω1 = 1.30, ω2 = 1.68, β/α = 0.039) for
which |ηi| = 0.47 > ηb = 0.33 (Fig. 2).

Since the fusion barriers Bη in η are quite large for the systems with
|ηi| < ηb in Table I, the formation of a mono-star from the di-star system by
the thermal diffusion in mass asymmetry coordinate is strongly suppressed.
Perhaps, the existence of barrier in η is the reason why very asymmetric
close double-stars systems with |ηi| > ηb are rarely observed. This imposes
restrictions on the asymmetric configurations with |η| > ηb of the di-star
systems.
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Fig. 3. The calculated total potential energies U versus η for the indicated close
binary stars. The arrows on x-axis show the corresponding initial ηi for binary
stars.

The value of α becomes larger than αcr and the minimum in U(η) dis-
appears, and di-star asymmetrization (fusion in η coordinate) occurs as the
result of a release of matter from one of the stars or an increase of orbital
momentum due to the strong external perturbation, i.e. by the third object,
or the spin–orbital coupling in the di-star.

A spectacular recent case is KIC 9832227 which was predicted [5] to be
merged in 2022, enlightening the sky as a red nova. For the fate of KIC
9832227 (ηi = 0.63, ηb = 0.84), we predict that a fast merger is excluded
(Fig. 3). This di-star is driven instead towards the mass symmetry. The
mass is transferring from heavy star to light one and the relative distance
between two stars and the period of the orbital rotation are decreasing.
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Fig. 4. The same as in Fig. 3, but for the indicated close binary stars. The observed
data are from Ref. [2].

A huge amount of energy ∆U ≈ 1041 J is released during the symmetrization.
As seen in Fig. 3, the di-stars KIC 9832227 and RR Cen (ηi = 0.65, ηb =
0.85) have almost the same ηi, ηb, and potential energy shapes. So, the
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observation of the RR Cen di-star is also desirable. It should be stressed
that the observational data of Ref. [7] negate the 2022 red nova merger
prediction [5].

TABLE I

The calculated ω1, ω2, β/α, ∆U = U(ηi) − U(η = 0), Bη = U(ηb) − U(ηi), and
observed data M1/M�, M2/M� [6] for the contact binary stars indicated.

Di-star M1

M�

M2

M�
ω1 ω2 β/α ∆U (J) Bη (J)

AB And 1.01 0.49 1.64 1.96 0.261 2× 1040 3× 1040

GZ And 1.12 0.59 1.60 1.88 0.283 2× 1040 4× 1040

OO Aql 1.05 0.88 1.62 1.70 0.180 1039 3× 1040

V417 Aql 1.40 0.50 1.51 1.96 0.359 5× 1040 3× 1040

SS Ari 1.31 0.40 1.54 2.07 0.372 6× 1040 2× 1040

V402 Aur 1.64 0.33 1.45 2.17 0.512 1041 1040

TY Boo 0.93 0.40 1.67 2.07 0.275 2× 1040 2× 1040

EF Boo 1.61 0.82 1.46 1.73 0.282 3× 1040 5× 1040

AO Cam 1.12 0.49 1.60 1.97 0.295 3× 1040 3× 1040

DN Cam 1.85 0.82 1.41 1.73 0.298 4× 1040 5× 1040

TX Cnc 0.91 0.50 1.68 1.96 0.212 9× 1039 2× 1040

RR Cen 2.09 0.45 1.37 2.01 0.542 2× 1041 2× 1040

V752 Cen 1.30 0.40 1.54 2.07 0.391 6× 1040 2× 1040

V757 Cen 0.88 0.59 1.70 1.88 0.212 5× 1039 3× 1040

VW Cep 0.93 0.40 1.67 2.07 0.300 2× 1040 2× 1040

TW Cet 1.06 0.61 1.62 1.86 0.258 1040 4× 1040

RW Com 0.56 0.20 1.90 2.46 0.283 1040 8× 1039

RZ Com 1.23 0.55 1.56 1.91 0.303 3× 1040 3× 1040

V921 Her 2.07 0.51 1.37 1.95 0.364 1041 2× 1040

4. Conclusions

The isolated close binary star systems evolve along well-defined trajec-
tories in classical phase space. We have shown that energy conservation is
enough to fix the trajectory of the system in the potential energy landscape
defined by the total mass and orbital angular momentum of system. Exploit-
ing the stationarity of the total energy, stability conditions were derived and
investigated as functions of the mass asymmetry parameter η. We have
shown that this collective degree of freedom plays a comparable important
role in macroscopic object as well as in microscopic dinuclear systems. In
close di-star systems, the mass asymmetry coordinate can govern the fusion
and symmetrization processes of two stars. An interesting aspect is that
once η has been determined e.g. by observation, it allows to conclude on the
stellar structure parameters.
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For all systems considered, α < αcr and the potential energies have
symmetric barriers at η = ±ηb and the minimum at η = ηm = 0. At
α < αcr, two distinct evolution scenario arise. Let the di-star system be
initially formed with η = ηi. The two stars start to exchange matter where
the fate of the binary depends critically on the mass ratio: If |ηi| < ηb, the
system is driven to the symmetric di-star configuration (towards a global
minimum of the potential landscape). However, if |ηi| > ηb, the system
evolves towards the mono-star system. All asymmetric close binary stars
considered, except α Cr B, satisfy the condition |ηi| < ηb and in these
systems the symmetrization process occurs. Note that for many systems
U(η = 0) < U(|η| = 1).

In the case of |ηi| < ηb (α < αcr), the symmetrization of stars leads to
the release of a large amount of energy (∼ 1040−41 J). Thus, the symmetriza-
tion of stars in close binary systems is one of the important sources of the
transformation of the gravitational energy to other types of energy in the
universe.
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