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STRUCTURE OF CONTINUUM STATES
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The structures of continuum states for the s1/2, p3/2 and p1/2 waves of
5Li and 5He mirror nuclei are studied in the complex scaled α + N (N =
neutron or proton) two-body model. The resonant, continuum and total
terms of the continuum level density and the phase shifts are calculated.
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1. Introduction

We performed calculations using an α + α + n three-cluster model to-
gether with the complex scaling method (CSM) [1, 2], which well reproduces
the recently-observed photo-disintegration cross section [3]. The results in-
dicated that the virtual state character of the 1/2+ state plays an important
role in formation of the peak structure appearing in the cross section ob-
served above the 8Be +n threshold. However, the virtual state cannot be
directly obtained as an isolated pole solution in the CSM, because the scal-
ing angle in the CSM cannot be increased over the position of the virtual
state pole on the negative imaginary axis of the complex momentum plane.
A new approach for the CSM to describe the virtual state was proposed,
and we discussed the pole position of the virtual state using the continuum
level density, the scattering phase shift, and the scattering length calculated
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in the CSM [4]. The next problem is to calculate contribution of continuum
state for partial waves with a resonance state.

For this purpose, we calculate the decomposed continuum level density
and the decomposed scattering phase shifts of the low-lying states of 5Li and
5He mirror nuclei.

2. Theoretical framework

2.1. Complex scaling method

In the CSM, the relative coordinate ~r is rotated as ~r → ~reiθ in the
complex coordinate plane. The complex-scaled Hamiltonian Hθ and wave
function ΨνJπ(θ) are defined as U(θ)HU−1(θ) and U(θ)ΨνJπ , respectively (see
Ref. [2] for details). Therefore, the Schrödinger equation can be rewritten
as

HθΨνJπ(θ) = EθνΨ
ν
Jπ(θ) , (1)

where Jπ is the spin and parity, ν is the state index, and θ, being a real
number, is the scaling angle.

Applying the L2 basis function method, we expand the wave function as

ΨνJπ(θ) =
N∑
n=1

cJ
π ,ν
n (θ)φn(r) , (2)

where φn(r) and cJ
π ,ν
n are the appropriate set of basis functions and ex-

pansion coefficients, respectively. The complex energy eigenvalues Eθν are
obtained by solving the complex-eigenvalue problem given in Eq. (1). The
complex energies of resonant states are obtained as Er = Eres

r − iΓr/2, when
tan−1 (Γr/2E

res
r ) < 2θ.

2.2. Continuum level density

The continuum level density ρ(E) of the Hamiltonian H is defined as a
function of real energy E

ρ(E) =
∑
i

∫
δ(E − Ei) , (3)

where Ei are eigenvalues of H, and summation and integration are taken
for discrete and continuous eigenvalues, respectively. This definition of the
level density is also expressed using Green’s function

ρ(E) = − 1

π
Im

[
Tr

{
1

E + i0−H

}]
, (4)
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where +i 0 indicates the limit +iε → +i 0. When the Hamiltonian is de-
scribed by a sum of an asymptotic term H0 and the short-range interac-
tion V , the continuum level density ∆(E) for an energy E is expressed in
terms of balance between the density ρ(E) obtained from the Hamiltonian
H and the level density ρ0(E) of continuum states obtained from the asymp-
totic Hamiltonian H0 as

∆(E) = ρ(E)− ρ0(E) = − 1

π
Im

[
Tr

{
1

E + i 0−H
− 1

E + i 0−H0

}]
. (5)

The continuum level density is related to the scattering phase shift δ(E)
and it can be expressed by the following form in the single-channel case:

∆(E) =
1

π

dδ(E)

dE
. (6)

Using this relation, we can obtain the phase shift as a function of the eigen-
values in the complex scaled Hamiltonian by integrating the continuum level
density.

When we expand the wave functions in terms of the finite number N of
the basis states, the discretized eigenstates are obtained with number N and
the level density can be approximated

∆(E) =

NB∑
b

δ(E − Eb) +
1

π

Nθ
R∑
r

Γr/2

(E − Eres
r )2 + Γ 2

r /4

+
1

π

N−NB−Nθ
R∑

c

εIc
(E − εRc )2 + εI2c

− 1

π

N∑
c

ε0Ic
(E − ε0Rc )2 + ε0I

2

c

, (7)

where N = NB + N θ
R + N θ

c is the total number of NB (bound states), N θ
R

(resonance states) and N θ
c (continuum states) solutions.

3. Decomposition of scattering phase shifts
and continuum level density

The α–N system is described by using the Hamiltonians

H = − 5~2

8M
∇2 + Vα−N (r) + V̂F ,

H0 = − 5~2

8M
∇2 , (8)

where for the α–N potential, we use the so-called microscopic KKNN poten-
tial [5]. The pseudopotential V̂F = λ|ΦPF〉〈ΦPF| is the projection operator
to remove the Pauli forbidden states from the relative motions of α–N .
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We solve the complex scaled eigenvalue problems for the Hamiltoni-
ans of Eq. (8) with θ = 15◦ and N = 50 as well. The calculated energy
eigenvalues for the s1/2, p3/2 and p1/2 waves of α–n (5He) system are pre-
sented in the lowest panels of Fig. 1. It can be seen that the s1/2 wave
has one Pauli forbidden state but no resonance. However, one resonant
pole of α–n system is obtained: (Eres

r , Γr) = (0.74, 0.59) MeV for p3/2 and
(2.10, 5.82) MeV for p1/2, which are compared with the experimental data
(Eres

r , Γr) = (0.798, 0.648) MeV for p3/2 and (1.27, 5.57) MeV for p1/2 [7].
Using these results and Eq. (7), we calculate not only the total continuum
level density but also contributions of the resonance and continuum terms
which are shown in the middle panels of Fig. 1. The 3/2− and 1/2− states
have their respective peaks, although the peak of the 1/2− state is not sharp.
The 1/2+ state has no peak and negative values due to its repulsive nature.
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Fig. 1. Upper panel: the decomposition of scattering phase shifts of α–n (5He) sys-
tem for the Jπ = 1/2+, 3/2−, 1/2− states and middle panel: the decomposition
of continuum level densities. The dashed and dotted lines represent the contribu-
tions of resonance and continuum terms, respectively. The solid lines display total
scattering phase shifts or total continuum level densities. Lower panel: the distri-
butions of eigenvalues are displayed in the complex energy plane. The diamond
displays the resonance pole. The experimental data [6] are shown with open circles.
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The peaks in the continuum level density of 3/2− and 1/2− states appear
at the position with the width corresponding to the resonance energy and
decay width.

Using the obtained continuum level density, we calculate the phase shift.
In the top panels of Fig. 1, we show the decomposed phase shifts of the
3/2−, 1/2− and 1/2+ states together with experimental data. We can see
good agreement between theoretical and experimental results for each partial
waves. The resonance phase shift of 3/2− increases rapidly due to the small
decay width. Although 1/2− has a larger width, the phase shift of 1/2−
shows a clear resonance behavior beyond π/2. The continuum phase shifts
of both states are very similar. This trend seems due to the same p-wave
scattering and a small effect of the ` · s force to the background states. The
property of the scattering phase shifts is determined from a sum of resonance
and continuum terms. Therefore, the observed resonances depend on not
only resonant states as poles but also the contribution from the non-resonant
continuum states.

In a similar way as that in the α–n case, we calculate the decom-
posed continuum level density and the decomposed scattering phase shifts
of α–p (5Li) system, which includes the Coulomb interaction. Since the
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Fig. 2. The same as Fig. 1 but for α–p (5Li) system. The experimental data [8] are
shown with open circles.
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Coulomb interaction has a typically long-range character, the asymptotic
HamiltonianH0 involves the Coulomb interaction. Using the obtained eigen-
values of 3/2−, 1/2− and 1/2+ states, we calculate the decomposed con-
tinuum level density and the decomposed scattering phase shifts in the
same way as the calculations for 5He. The calculated results are shown
in Fig. 2. The resonance solutions for 3/2− and 1/2− are obtained as
(Eres

r , Γr) = (0.78, 0.55) and (2.08, 5.67) in MeV, compared with the exper-
imental data [8] (1.53, 1.42) and (2.77, 8.89) in MeV, respectively.

These results indicate that the present method to calculate continuum
level density is also powerful even for a long-range interaction such as the
Coulomb potential.

4. Summary

Applying Green’s function, we can precisely extract the contributions
of resonance and continuum terms from the total continuum level density.
This analysis clarifies the physical role of resonances and non-resonant con-
tinuum states in the observables. We have also shown the application of the
CSM to the calculation of the decomposed continuum level density and the
decomposed phase shifts. The role of resonance poles on the phase shifts
and continuum level densities are discussed.
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