PARTIAL DYNAMICAL SYMMETRY AND THE PHONON STRUCTURE OF CADMIUM ISOTOPES*

A. LEVIATAN, N. GAVRIELOV

Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel

(Received November 16, 2018)

The phonon structure and spectral properties of states in ¹¹⁰Cd are addressed by including proton excitations in the phonon basis and exploiting a partial dynamical symmetry that mixes only certain classes of states and maintains the vibrational character in the majority of normal states.

DOI:10.5506/APhysPolB.50.561

The cadmium isotopes since long have been considered as archetypal examples of spherical vibrators, manifesting the U(5) dynamical symmetry (DS) [1]. Recent studies, however, have cast doubt on the validity of this description [2, 3]. In the present contribution, we address this question from a symmetry-oriented perspective, focusing on ¹¹⁰Cd [4].

The U(5)-DS limit of the interacting boson model (IBM) [1], corresponds to the chain of nested algebras: U(6) \supset U(5) \supset SO(5) \supset SO(3). The basis states $|[N], n_d, \tau, n_\Delta, L\rangle$ have quantum numbers which are the labels of irreducible representations of the algebras in the chain. Here, N is the total number of monopole (s) and quadrupole (d) bosons, n_d and τ are the d-boson number and seniority, respectively, and L is the angular momentum. The multiplicity label n_Δ counts the maximum number of d-boson triplets coupled to L = 0. The U(5)-DS Hamiltonian has the form of [1]

$$\hat{H}_{\rm DS} = t_1 \,\hat{n}_d + t_2 \,\hat{n}_d^2 + t_3 \,\hat{C}_{\rm SO(5)} + t_4 \,\hat{C}_{\rm SO(3)} \,, \tag{1}$$

where $\hat{C}_{\rm G}$ is a Casimir operator of G, and $\hat{n}_d = \sum_m d_m^{\dagger} d_m = \hat{C}_{{\rm U}(5)}$. $\hat{H}_{\rm DS}$ is completely solvable for any choice of parameters t_i , with eigenstates $|[N], n_d, \tau, n_\Delta, L\rangle$ and energies $E_{\rm DS} = t_1 n_d + t_2 n_d^2 + t_3 \tau(\tau+3) + t_4 L(L+1)$. A typical U(5)-DS spectrum exhibits n_d -multiplets of a spherical vibrator, with enhanced connecting $(n_d + 1 \rightarrow n_d)$ E2 transitions.

^{*} Presented at the Zakopane Conference on Nuclear Physics "Extremes of the Nuclear Landscape", Zakopane, Poland, August 26–September 2, 2018.

The empirical spectrum of ¹¹⁰Cd, shown in Fig. 1 (a), consists of both normal and intruder levels, the latter based on 2p-4h proton excitations across the Z = 50 closed shell. Experimentally known E2 rates are listed in Tables I, II. A comparison of the calculated spectrum [Fig. 1 (b)] and B(E2) values [Table I], obtained from \hat{H}_{DS} (1), demonstrates that most normal states have good spherical-vibrator properties, and conform well with the properties of U(5)-DS. However, the measured rates for E2 decays from the non-yrast states, 0_3^+ ($n_d = 2$) and $[0_4^+, 2_5^+$ ($n_d = 3$)], reveal marked deviations from this behavior. In particular, $B(E2; 0_3^+ \rightarrow 2_1^+) < 7.9$, $B(E2; 2_5^+ \rightarrow 4_1^+) < 5$, $B(E2; 2_5^+ \rightarrow 2_2^+) = 0.7^{+0.5}_{-0.6}$ W.u. are extremely small compared to the U(5)-DS values: 46.29, 19.84, 11.02 W.u., respectively. Absolute B(E2) values for transitions from the 0_4^+ state are not known, but its branching ratio to 2_2^+ is small.

Fig. 1. (a) Experimental spectrum and representative E2 rates [3, 5] (in W.u.) of normal and intruder levels $(0_2^+, 2_3^+, 4_3^+, 2_4^+)$ in ¹¹⁰Cd. (b) Calculated U(5)-DS spectrum obtained from $\hat{H}_{\rm DS}$ (1) with parameters $t_1 = 715.75$, $t_2 = -t_3 = 42.10$, $t_4 =$ 11.38 keV and N = 7. (c) Calculated U(5)-PDS-CM spectrum, obtained from \hat{H} (3) with parameters $t_1 = 767.83$, $t_2 = -t_3 = 73.62$, $t_4 = 18.47$, $r_0 = 2.15$, $e_0 = -6.92$, $\kappa =$ -72.73, $\Delta = 9978.86$, $\alpha = -42.78$ keV and N = 7 (9) in the normal (intruder) sector. (d) Classes of low-lying U(5)-DS states.

TABLE I

Absolute (relative in square brackets) B(E2) values in W.u. for E2 transitions from normal levels in ¹¹⁰Cd. The experimental (EXP) values are taken from [3, 5]. The U(5)-DS [U(5)-PDS-CM] values are obtained for an E2 operator $e_B \hat{Q} [e_B^{(N)} \hat{Q}^{(N)} + e_B^{(N+2)} \hat{Q}^{(N+2)}]$ with $e_B = 1.964 [e_B^{(N)} = 1.956$ and $e_B^{(N+2)} = 1.195$] (W.u.)^{1/2}, where $\hat{Q} = d^{\dagger}s + s^{\dagger}\tilde{d}$ and $\hat{Q}^{(N)}$ denotes its projection onto the [N] boson space. In both calculations, the boson effective charges were fixed by the empirical $2_1^+ \rightarrow 0_1^+$ rate. Intruder states $0_{2;i}^+ 2_{3;i}^+, 4_{3;i}^+, 2_{4;i}^+$, are marked by a subscript 'i'. ^aFrom Ref. [3].

$L_{\rm i}$	$L_{\rm f}$	EXP	U(5)-DS	U(5)-PDS-CM
2_1^+	0_{1}^{+}	27.0 (8)	27.00	27.00
4^{+}_{1}	2^{+}_{1}	42(9)	46.29	45.93
2^{+}_{2}	2_{1}^{+}	$30(5); 19(4)^{a}$	46.29	46.32
	0_{1}^{+}	$1.35 (20); 0.68 (14)^{a}$	0.00	0.00
0^{+}_{3}	2^{+}_{2}	$< 1680^{a}$	0.00	55.95
	2^{+}_{1}	$< 7.9^{\rm a}$	46.29	0.25
6_{1}^{+}	4_1^+	$40 (30); 62 (18)^{a}$	57.86	55.30
	4_{2}^{+}	$< 5^{a}$	0.00	0.00
	$4^+_{3:i}$	14 (10); 36 (11) ^a		2.39
4^{+}_{2}	4_1^+	12_{-6}^{+4} ; $^{a}10.7_{-4.8}^{+4.9}$	27.55	27.45
	2^{+}_{2}	32^{+10}_{-14} ; 22 (10) ^a	30.31	30.03
	2^{+}_{1}	$0.20^{+0.06}_{-0.09}; 0.14 \ (6)^{a}$	0.00	0.00
	$2^{+}_{3 \cdot i}$	$< 0.5^{a}$		0.005
3_{1}^{+}	4_1^+	$5.9^{+1.8}_{-4.6}$; ^a 2.4 ^{+0.9} _{-0.8}	16.53	16.48
	2^{+}_{2}	32^{+8}_{-24} ; 22.7 (69) ^a	41.33	41.12
	2_{1}^{+}	$1.1^{+0.3}_{-0.8}; 0.85 \ (25)^{\mathrm{a}}$	0.00	0.00
	$2^{+}_{3 \cdot i}$	$< 5^{\mathrm{a}}$		0.012
0_{4}^{+}	2^{+}_{2}	$[< 0.65^{\rm a}]$	57.86	1.24
-	2^{+}_{1}	$[0.010^{\rm a}]$	0.00	31.76
	$2^{+}_{3 \cdot i}$	$[100^{a}]$		16.32
2^{+}_{5}	0^{+}_{3}	24.2 (22) ^a	27.00	22.28
Ť	4_{1}^{+}	$<5^{a}$	19.84	0.19
	2^{+}_{2}	$^{\mathrm{a}}0.7^{+0.5}_{-0.6}$	11.02	0.12
	2_{1}^{+}	$2.8^{+0.6}_{-1.0}$	0.00	0.00
	$2^{+}_{3:i}$	$< 5^{\mathrm{a}}$		0.002
	$0^+_{2:i}$	$< 1.9^{a}$		0.20

Attempts to explain the above deviations in terms of mixing between the normal spherical [U(5)-like] states and intruder deformed [SO(6)-like] states have been shown to be unsatisfactory [2, 3]. This has led to the conclusion that the normal-intruder strong-mixing scenario needs to be rejected, and

TABLE II

L_i	L_f	EXP	U(5)-PDS-CM
$0^+_{2:i}$	2_{1}^{+}	$< 40^{a}$	14.18
$2^{+}_{3:i}$	$0^+_{2:i}$	$29 \ (5)^{\rm a}$	29.00
-) -	0_{1}^{+}	$0.31^{+0.08}_{-0.12}; 0.28 \ (4)^{\mathrm{a}}$	0.08
	2^{+}_{1}	$0.7^{+0.3}_{-0.4}$; a $0.32^{+0.10}_{-0.14}$	0.00
	2^{+}_{2}	$< 8^{\rm a}$	0.96
$2^+_{4;i}$	2^{+}_{1}	$0.019^{+0.020}_{-0.019}$	0.10
$4^{+}_{3;i}$	2^{+}_{1}	$0.22^{+0.09}_{-0.19}; 0.14 \ (4)^{\mathrm{a}}$	0.49
,	2^{+}_{2}	$2.2^{+1.4}_{-2.2}$; $1.2(4)^{a}$	0.00
	$2^+_{3:i}$	120^{+50}_{-110} ; 115 (35) ^a	42.62
	4_{1}^{+}	$2.6^{+1.6}_{-2.6}$; ^a $1.8^{+1.0}_{-1.5}$	0.00

B(E2) values (in W.u.) for E2 transitions from intruder levels in ¹¹⁰Cd. Notation and relevant information on the observables shown are as in Table I.

have raised serious questions on the appropriateness of the multi-phonon interpretation [2, 3]. In what follows, we consider a possible explanation for the "Cd problem", based on U(5) partial dynamical symmetry (PDS). The latter corresponds to a situation in which the U(5)-DS is obeyed by only a subset of states and is broken in other states [6]. Similar PDS-based approaches have been implemented in nuclear spectroscopy, in conjunction with the SU(3)-DS [7–9] and SO(6)-DS [10, 11] chains of the IBM.

As depicted in Fig. 1 (d), the lowest spherical-vibrator levels comprise three classes of states. Specifically, Class A: $n_d = \tau = 0, 1, 2, 3$ $(n_\Delta = 0)$; Class B: $n_d = \tau + 2 = 2, 3$ $(n_\Delta = 0)$; Class C: $n_d = \tau = 3$ $(n_\Delta = 1)$. In the U(5)-DS calculation of Fig. 1 (b), applicable to normal states only, the "problematic" states $[0_3^+ (n_d = 2) \text{ and } 2_5^+ (n_d = 3)]$ belong to class B, and $0_4^+ (n_d = 3)$ belongs to class C. The remaining "good" spherical-vibrator states $[0_1^+ (n_d = 0); 2_1^+ (n_d = 1); 4_1^+, 2_2^+ (n_d = 2); 6_1^+, 4_2^+, 3_1^+ (n_d = 3)]$ belong to class A. As mentioned, the spherical-vibrator interpretation is valid for most normal states in Fig. 1 (a), but not all. We are thus confronted with a situation in which some states in the spectrum (assigned to class A) obey the predictions of U(5)-DS, while other states (assigned to classes B and C) do not. These empirical findings signal the presence of U(5)-PDS.

The construction of a Hamiltonian with U(5)-PDS follows the general algorithm [6] and leads to the form of

$$\hat{H}_{\rm PDS} = \hat{H}_{\rm DS} + r_0 G_0^{\dagger} G_0 + e_0 \left(G_0^{\dagger} K_0 + K_0^{\dagger} G_0 \right) , \qquad (2)$$

where $G_0^{\dagger} = [(d^{\dagger}d^{\dagger})^{(2)}d^{\dagger}]^{(0)}, K_0^{\dagger} = s^{\dagger}(d^{\dagger}d^{\dagger})^{(0)}$. The last two terms in Eq. (2) annihilate the states $|[N], n_d = \tau, \tau, n_\Delta = 0, L\rangle$ with $L = \tau, \tau + 1, \ldots, 2\tau - 2, 2\tau$.

These states, which include those of class A, form a subset of U(5) basis states, hence remain solvable eigenstates of $\hat{H}_{\rm PDS}$ (2) with good U(5) symmetry. It should be noted that while $\hat{H}_{\rm DS}$ (1) is diagonal in the U(5)-DS chain, the r_0 and e_0 terms can connect states with different n_d and/or τ . Accordingly, the remaining eigenstates of $\hat{H}_{\rm PDS}$ (2), in particular those of classes B and C, are mixed with respect to U(5) and SO(5). The U(5)-DS is thus preserved in a subset of eigenstates, for any choice of parameters in $\hat{H}_{\rm PDS}$, but is broken in others. By definition, $\hat{H}_{\rm PDS}$ exhibits U(5)-PDS.

The combined effect of normal and intruder states can be studied within the interacting boson model with configuration mixing (IBM-CM) [12]. The Hamiltonian for the two configurations has the form of [4]

$$\hat{H} = \hat{H}_{PDS}^{(N)} + \hat{H}_{intrud}^{(N+2)} + \hat{V}_{mix} \,.$$
(3)

For ¹¹⁰Cd, the Hamiltonian in the normal sector is taken to be \hat{H}_{PDS} of Eq. (2), projected onto a space of N = 7 bosons. The SO(6)-type of Hamiltonian in the intruder sector is $\hat{H}_{intrud} = \kappa \hat{Q} \cdot \hat{Q} + \Delta$, projected onto a space of N = 9 bosons. $\hat{V}_{mix} = \alpha [(s^{\dagger})^2 + (d^{\dagger}d^{\dagger})^{(0)}] + \text{H.c.}$ is a mixing term between the two spaces. In general, an eigenstate of \hat{H} , $|\Psi\rangle = a|\Psi_n^{(N)}\rangle + b|\Psi_i^{(N+2)}\rangle$, involves a mixture of normal (n) and intruder (i) components with N and N+2 bosons, respectively.

As seen in Fig. 1 (c) and Tables I, II, the IBM-PDS-CM calculation provides a good description of the empirical data in 110 Cd. The U(5) decomposition of the resulting eigenstates is shown in Fig. 2. The normal states of class A retain good U(5) symmetry to a good approximation. Their $| \varPsi_n^{(N)} \rangle$ part involves a single n_d -component. The mixing with the intruder states is weak (small b^2) of the order of a few percent. The high degree of purity is reflected in the calculated B(E2) values for transitions between class A states, which are very similar to those of U(5)-DS. In contrast, the structure of the non-yrast states assigned originally to classes B and C, whose decay properties show marked deviations from the U(5)-DS limit, changes dramatically. Specifically, the 0_3^+ and 0_4^+ states, which in the U(5)-DS classification are members of the two-phonon triplet and three-phonon quintuplet, interchange their character, and the U(5) decomposition of their $|\Psi_n^{(N)}\rangle$ parts peaks at $n_d = 3$ and $n_d = 2$, respectively. Similarly, for the 2_5^+ state, which is originally a member of the three-phonon quintuplet, the $|\Psi_n^{(N)}\rangle$ part now exhibits a peak at $n_d = 4$. The calculated $B(\text{E2}; 0^+_3 \rightarrow 2^+_1) = 0.25$, $B(\text{E2}; 2^+_5 \rightarrow 4^+_1) = 0.19$ and $B(\text{E2}; 2^+_5 \rightarrow 2^+_2) = 0.12$ W.u. are consistent with the measured upper limits: 7.9, 5 and $0.7^{+0.5}_{-0.6}$ W.u., respectively. The vibrational interpretation is thus maintained in the majority of low-lying normal states in 110 Cd.

Fig. 2. U(5) n_d -decomposition of Class A (lower panel), Classes B, C (middle panel) and intruder (upper panel) states in the U(5)-PDS-CM calculation of Fig. 1 (c). In each panel, the left(right)-hand side displays the n_d -probabilities for the normal (intruder) components of the total wave function $|\Psi\rangle = a|\Psi_n^{(N)}\rangle + b|\Psi_i^{(N+2)}\rangle$.

This work was done in collaboration with J.E. García-Ramos (Huelva) and P. Van Isacker (GANIL) and is supported by the Israel Science Foundation (Grant 586/16).

REFERENCES

- F. Iachello, A. Arima, *The Interacting Boson Model*, Cambridge University Press, Cambridge 1987.
- [2] P.E. Garrett, K.L. Green, J.L. Wood, *Phys. Rev. C* 78, 044307 (2008).
- [3] P.E. Garrett et al., Phys. Rev. C 86, 044304 (2012).
- [4] A. Leviatan, N. Gavrielov, J.E. García-Ramos, P. Van Isacker, *Phys. Rev. C* 98, 031302(R) (2018).
- [5] G. Gürdal, F.G. Kondev, Nucl. Data Sheets 113, 1315 (2012).
- [6] A. Leviatan, Prog. Part. Nucl. Phys. 66, 93 (2011).
- [7] A. Leviatan, *Phys. Rev. Lett.* **77**, 818 (1996).
- [8] A. Leviatan, I. Sinai, *Phys. Rev. C* **60**, 061301(R) (1999).
- [9] A. Leviatan, J.E. García-Ramos, P. Van Isacker, *Phys. Rev. C* 87, 021302(R) (2013).
- [10] J.E. García-Ramos, A. Leviatan, P. Van Isacker, *Phys. Rev. Lett.* 102, 112502 (2009).
- [11] A. Leviatan, N. Gavrielov, *Phys. Scr.* **92**, 114005 (2017).
- [12] P.D. Duval, B.R. Barrett, Nucl. Phys. A **376**, 213 (1982).