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We report on the recent progress in the application of the group-theory
criteria combined with the nuclear mean-field theory methods in the con-
text of the experimental verification of the presence of the tetrahedral and
octahedral (sometimes referred to as high-rank) symmetries in sub-atomic
physics. In this article, we focus on the possible coexistence of the two
classes of shapes representing the two symmetries in nuclei simultaneously
as well as we discuss the possible spontaneous breaking of the octahedral
Oh-group symmetry by its tetrahedral Td-subgroup symmetry partner. Ex-
perimental methods which are envisaged for the identification of the dis-
cussed symmetries, the former based on the mass spectrometry and isomer
detection techniques are briefly discussed.
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1. Introduction

The possible existence of nuclear states manifesting tetrahedral and oc-
tahedral shape-symmetries, the latter also referred to as high-rank, or exotic
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symmetries, attracted increasing attention of theorists and experimentalists
during the recent years. Among the first predictions obtained using the
methods similar to those employed in this article, let us quote Ref. [1] fol-
lowing the early pilot project in Ref. [2], followed by Ref. [3], together with
an overview article [4] discussing selected theory aspects (cf. also Refs. [5–8]
and references therein). An analogous overview addressing the experimen-
tal issues can be found in Ref. [9]. The reasons for the growing interest are
numerous and are related to the specific unprecedented quantum properties
of the nuclear states with such symmetries. Let us mention a few of them.

Firstly, at the exact symmetry limit, certain nucleonic states in such
nuclei appear as 4-fold degenerate, an unprecedented mechanism, leading
among others to the existence of the low-lying 8-fold, and 16-fold degenerate
particle–hole excited states with distinct (orthogonal) wave functions.

Secondly, since the high-rank symmetric nuclei are non-spherical, their
orientation in space can be defined and, as any other deformed nucleus,
they generate collective rotational bands. At the same time, their collec-
tive dipole and quadrupole moments vanish due to the strongly restrictive
symmetry properties, Ref. [3]. This eliminates the possibility of the usually
strong electromagnetic decay via collective E1 or E2 transitions. Both these
conditions lead to the presence of EI ∝ I(I + 1) sequences, which energy-
wise look like rotational bands, except that no collective (neither E2 nor
E1) transitions can depopulate these states. This implies the presence of
the collective rotational bands without collective E2 transitions.

Thirdly, one can demonstrate with the help of the elementary methods
of representations of group-theory (see below), that rotational bands asso-
ciated with tetrahedral and/or octahedral symmetry states are not like the
other rotational bands whose dozens of thousands are encountered in the
literature: The corresponding spin-parity (Iπ) rotational sequences do not
follow the rules either of the type ∆I ≡ Iout − Iin = 2, or of πinπout = +1.
Very characteristically and very importantly, those sequences contain dou-
blets, triplets, etc., of degenerate rotational state energies, and in the case
of tetrahedral symmetry, they may mix parities in a very characteristic,
unique manner allowing to identify these symmetries in subatomic physics.
To our knowledge, the first example of identification of such structures in
sub-atomic physics has been presented in Ref. [10].

Fourthly, the strict absence of the collective E2 and E1 transitions at the
exact symmetry limit makes out of the new type of rotational states excellent
candidates for the long lived, possibly very long lived isomers. This suggests
that the most efficient methods of experimental verifications of the presence
of the high-rank symmetries in nature should involve mass spectrometry
techniques rather than γ-detection techniques, see below.
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Let us also emphasise that theory predicts the existence of the whole fam-
ilies of nuclei over the Periodic Table presenting the symmetries in question,
Ref. [1], centred around doubly-magic tetrahedral nuclei with the Zt/Nt

combinations given by: 32, 40, 56, 64, 70, 90, 136, . . . This leads to the
prediction of existence of the following doubly-magic tetrahedral nuclei of
interest in the context (some of them very exotic):

64,72,88Ge ,80,96,104,110 Zr ,112,120,126,146 Ba ,134,154,174 Gd ,160,180 Yb ,226 Th .
(1)

Therefore, the states of interest are expected to appear in many regions of
the Periodic Table, possibly as shape coexisting configurations.

Last but not least, predicted existence of the new class of isomers may
open the new ways to studying the very exotic nuclei whose ground states
might live much shorter than the isomeric high-rank symmetry states. By
the same token, the isomers of this new category may lead to the new fami-
lies of the waiting-point nuclear configurations in the stellar nucleosynthesis
processes and may become, more generally, of a broad interest for astro-
physics.

The above discussion shows that the field of high rank symmetry research
involves numerous unprecedented quantum features/mechanisms and thus
whose studying can be seen as self-motivated. When fully confirmed, the
high-rank symmetries will open new fields of research of, especially, exotic
and, possibly, superheavy nuclei.

We proceed to presenting the summary-description of the methods needed
to help the identification of the new cases after the first discovery of Ref. [10].

2. Towards identification criteria of tetrahedral and octahedral
symmetries in subatomic physics

In order to be able to identify the point group high-rank symmetries,
it is necessary to be able to construct the nuclear Hamiltonian capable of
describing the sought symmetries in nuclei and to construct the unique iden-
tification criteria suitable for detecting the presence of the symmetries in
question in the available experimental data.

In this article, we employ the nuclear mean-field approach with the stan-
dard phenomenological “universal” Woods–Saxon Hamiltonian of Ref. [11].
In what follows, we present briefly, in Sect. 2.1, the main lines of our tech-
nique of generating Hamiltonians with a predefined point group symmetry.
The identification criteria suitable for detecting the presence of tetrahedral
and octahedral symmetries in nuclei in terms of the experimental data are
summarised in Sect. 2.2.
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2.1. Generating mean-field Hamiltonian with
a predefined point-group symmetry

To describe nuclear shapes in a phenomenological mean-field approach,
we employ the basis of spherical harmonics, {Yλµ(ϑ, ϕ)}, with the help of
what we describe any nuclear surface Σ employing deformation parameters
whose full set is denoted {αλ,µ} as

R(ϑ, ϕ) ∼

[
1 +

∑
λ

∑
µ

α∗λµYλµ(ϑ, ϕ)

]
. (2)

Consider a given symmetry point group G composed of elements ĝ ∈ G.
Our goal is to construct a surface, say Σ, invariant under the action of all
the symmetry elements of this group

∀ĝ ∈ G : Σ
ĝ→ Σ′ = Σ ⇒

∑
λµ

α∗λµ
[
ĝ Yλµ(ϑ, ϕ)

]
=
∑
λµ

α∗λµYλµ(ϑ, ϕ) . (3)

One may demonstrate that Eq. (3) represents a system of as many relations
as the number of the group elements and that it is equivalent to a system of
linear equations for {αλµ}, separately at each given order λ. The equations
in question imply, as it was shown in Ref. [12], that tetrahedral symmetry
surfaces can be generated with the help of specific odd (λ ≥ 3) spherical
harmonics. We find

λ = 3 : α3,±2 ≡ t3 , (4)

the order λ = 5 is excluded by the symmetry, and the next solutions are

λ = 7 : α7,±2 ≡ t7 ; α7,±6 ≡ −
√

11/13× t7 , (5)

λ = 9 : α9,±2 ≡ t9 ; α9,±6 ≡ +
√

28/198× t9 , . . . (6)

Similarly, for the octahedral symmetry surfaces, one obtains valid solutions
exclusively for selected spherical harmonics of even order λ ≥ 4 satisfying

λ = 4 : α40 ≡ o4; α4,±4 ≡ ±
√

5/14× o4 , (7)

λ = 6 : α60 ≡ o6; α6,±4 ≡ −
√

7/2× o6 , (8)

λ = 8 : α80 ≡ o8; α8,±4
√

28/198× o8; α8,±8
√

65/198× o8 , . . . (9)

Since the deformed Woods–Saxon Hamiltonian is based on potentials
with the structure

VWS(~r ) =
Vo

1 + exp [distΣ(~r;Ro)/ao]
, (10)
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in which distΣ(~r;Ro) represents the distance of a point ~r from the nuclear
surface Σ, and where Vo, Ro and ao are parameters, it follows that for the
surfaces invariant under the symmetry operations ĝ of the group G, the
whole Hamiltonian becomes invariant under the same symmetry operations.
This property has been used to generate the potential energy surfaces as
functions of deformations illustrated below — in particular for the cases of
tetrahedral and octahedral symmetries.
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Fig. 1. Top: Total energy surfaces for 226Th showing the presence of tetrahedral
symmetry minima at α20 = 0 in competition with quadrupole symmetry min-
ima. At each point, the energy was minimised over octahedral symmetry deforma-
tions o4 and o6, cf. Eqs. (7) and (8). Bottom: Projection over t3-tetrahedral
vs. o4-octahedral symmetry deformations minimised over o6 showing combined
tetrahedral–octahedral symmetry minima at o4 ≈ −0.04. By convention we nor-
malise the macroscopic energy to zero at zero deformation; Eo is the corresponding
shell-energy, whereas Emin denotes the energy at the absolute minimum.
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In the following, we use the standard Strutinsky method with the single
particle spectra generated by the Universal Woods–Saxon Hamiltonian of
Ref. [11] together with the folded-Yukawa macroscopic energy formula of
Ref. [13]. In this article, we limit ourselves to presenting the coexistence of
the tetrahedral and octahedral symmetry degrees of freedom in the tetrahe-
dral doubly magic nucleus 226Th, which is representative for a number of
neighbouring heavy (actinide) nuclei. The main purpose of this article is
to encourage the experimental efforts towards identifying the coexistence of
these important symmetries in heavy nuclei using mass-spectrometry meth-
ods knowing that the tetrahedral symmetry group Td is a subgroup of the
octahedral symmetry group Oh. Some specific criteria facilitating such an
identification as well as the short description of the envisaged experimental
approach are presented below.

Figure 1, top, shows the potential energy of the 226Th nucleus projected
on the quadrupole (elongation α20) and the first order tetrahedral (t3) defor-
mation plane, where at each deformation point, the energy was minimised
over the octahedral first-, and the second order deformations, o4 and o6, re-
spectively. Illustration shows clearly the presence of two strong tetrahedral
symmetry minima which, in the discussed deformation space, appear as the
lowest ones. Figure 1, bottom, shows that the pure tetrahedral symmetry
minima gain about 1 MeV when the minimisation over the octahedral sym-
metry is allowed and thus that the predicted exotic-symmetry configurations
combine both the tetrahedral and octahedral symmetry shape components.
This has interesting and measurable consequences as shown below.

2.2. Rotation properties of tetrahedral and octahedral symmetry systems:
identification criteria based on group theory

The properties of rotational states which arise within the mean-field the-
ory have been studied recently using the Gogny–Hartree–Fock–Bogolyubov
approach with the spin, parity and particle number projection techniques,
Refs. [14, 15]. It has been demonstrated by explicit calculations that the ro-
tational EI ∝ I(I + 1) sequences arise naturally within the projected mean-
field theory, but the spin-parity combinations of the tetrahedral-symmetry
rotational states are not like those known from dozens of thousands of rota-
tional bands described in the literature. Instead, they follow the structures
predicted by the group theory methods applicable to the quantum rotor
Hamiltonians (see below). The corresponding technique will be summarised
in what follows; interested reader may consult Refs. [14, 15] for details.

Let G be the symmetry group of the quantum rotor Hamiltonian. Let
{Di, i = 1, 2, . . . M} be irreducible representations of G. Representations
D(Iπ) of the group of rotation characterised by the definite spin-parity
Iπ-combination can be decomposed in terms of Di as follows:
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D(Iπ) =

M∑
i=1

a
(Iπ)
i Di , (11)

where multiplicity factors a(Iπ)i are given (cf. Ref. [16]) by

a
(Iπ)
i =

1

NG

∑
R∈G

χIπ(R)χi(R) =
1

NG

M∑
α=1

gαχIπ(Rα)χi(Rα) . (12)

Above, NG denotes the order of the group G, {χIπ, χi} are characters asso-
ciated with {D(Iπ), Di}, R denotes the group elements and gα is the number
of elements in the class α, whose representative element is Rα. Tetrahedral
group has 5 irreducible representations, here denoted A1, A2, E, F1 and F2

and 5 classes. Using this information and the known tables of group char-
acters one may demonstrate that the collective band built on the Iπ = 0+

tetrahedral ground-state is composed of the following spin-parity combina-
tion spanned by the irreducible representation A1, cf. e.g. Refs. [14, 16]:

A1 : 0+, 3−, 4+, (6+, 6−)︸ ︷︷ ︸
doublet

, 7−, 8+, (9+, 9−)︸ ︷︷ ︸
doublet

, (10+, 10−)︸ ︷︷ ︸
doublet

, 11−, 2× 12+, 12−︸ ︷︷ ︸
triplet

, · · ·

︸ ︷︷ ︸
Forming a common parabola

(13)

If instead the tetrahedral symmetry mean-field is perturbed by the oc-
tahedral shape components, one should expect two branches, one with the
positive

A1g : 0+, 4+, 6+, 8+, 9+, 10+, (12+, 12+)︸ ︷︷ ︸
doublet

. . . , Iπ = I+

︸ ︷︷ ︸
Forming a common parabola

(14)

and one with the negative parity

A2u : 3−, 6−, 7−, 9−, 10−, 11−, 12−, . . . , Iπ = I−︸ ︷︷ ︸
Forming another (common) parabola

. (15)

The discussed situation is illustrated qualitatively in Fig. 2, left hand-side.
The positive and negative parity branches lie symmetrically with respect to
a parabola corresponding to Eq. (13). The discussed symmetry properties
have been used in Ref. [10] to identify the combination of octahedral and
tetrahedral symmetries using existing experimental data on 152Sm nucleus.
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Fig. 2. Qualitative. Left: The characteristic configuration of two parabolic energy
vs. spin sequences of opposite parities aiming at a common Iπ = 0+ lowest en-
ergy point (tetrahedral symmetry ‘ground-state’). In the case of pure tetrahedral
symmetry, the two branches are expected to form a single one coinciding with the
dashed line (for details cf. Ref. [10]). Right: Hypothetical pure octahedral sym-
metry configuration. The two auxiliary curves are expected to be approximately
parallel and they are not expected to join the common Iπ = 0+ point at the bot-
tom. This feature can be used to distinguish between the scenarios of single or
coexisting symmetry configurations.

On the basis of the calculation results in Fig. 1, indicating the presence of
the strong tetrahedral minima perturbed by the presence of the octahedral
symmetry deformation components, we should expect that the results of the
future experiments should resemble the pattern in the left-hand side of Fig. 2
rather than that in the right-hand side.

3. Search of high-rank symmetries — experimental perspectives

Nuclear-decay spectroscopy relays on coincidence techniques in order to
identify the studied states and suppress the background. This becomes
challenging for states which neither decay via γ-transitions, nor α-, or β-
transitions — like the high-rank symmetry states discussed in this article
— or manifest coincidence times above one millisecond. To study long-life
isomeric states, high-resolution mass spectrometry is the method of choice.
States are identified without necessity of detecting their decay but rather
via identification of their mass/excitation energy. Mapping or searching in
unknown regions always requires measurement methods that are: (i) non-
scanning, thus cover the whole region of interest in a single measurement,
(ii) highly sensitive, to detect also the rarest events, (iii) large dynamic
range (� 10), to detected also weakly populated states, (iv) fast, to measure
short-lived states and (v) high resolving power, to be able to unambiguously
identify and measure also close-lying states, Ref. [17].
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The mass spectrometry methods which fulfil these requirements are, for
half-lives longer than a few seconds, the Schottky mass spectrometry at the
storage rings, Ref. [18], and for all half-lives down to ∼ 10ms, the multiple-
refection time-of-flight mass spectrometer (MR-TOF-MS) of the FRS Ion
Catcher at GSI, Darmstadt, Refs. [19, 20], see Fig. 3. For this system, even
the spatial separation of excited and ground state has been demonstrated in
a measurement time of about 8 milliseconds, Ref. [21].

Fig. 3. In this scatter plot, the excitation energy and half-live of all known isomeric
states according to the NUBASE2012, Ref. [22], are shown. The accessible half-
lives and excitation energy of the different measurement methods (see the text) are
indicated. On the right-hand side, a histogram of the half-lives of the known isomers
is shown. This shows a clear minimum in the millisecond region. The reason for
this is that this region becomes accessible only now with the MR-TOF-MS of the
FRS Ion Catcher experiments.

It is expected that the intensive future measurements using these and
similar techniques will become the methods of choice for the identification of
the high-rank symmetry nuclear configurations whose γ-decay probabilities
vanish at the exact symmetry limit.
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4. Summary and conclusions

In this article, we briefly summarised the theoretical mean-field approach
allowing to study the so-called high-rank symmetries, tetrahedral (Td) and
octahedral (Oh) ones, and their mutual spontaneous symmetry breaking
leading to the coexistence of two approximate realisations of the symme-
tries. We illustrated the theory predictions on the example of a heavy nu-
cleus 226Th which, after the first discovery of the presence of both these
symmetries in nature in Ref. [10], could become a favourable next experi-
mental test-case.

One of the authors, J.D., performed part of this work within the EM-
PIR Project 15SIB10 MetroBeta. This project has received funding from the
EMPIR programme co-financed by the Participating States and from the Eu-
ropean Union Horizon 2020 research and innovation programme. This work
was partially supported by the National Science Centre, Poland (NCN) un-
der contracts No. 2013/08/M/ST2/00257 and 2016/21/B/ST2/01227 and
Polish–French COPIN-IN2P3 collaboration agreement under project num-
bers 04-113 and 05-119.
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