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A solution of the Einstein equations for a multi-string system having a
layered structure is found. It is shown that the influence of the gravitational
field of such a multi-string system can lead to stable in time oscillations of
the test null-string in the vicinity of fixed point of space. This situation
can be interpreted as a particle localized in space with an effective nonzero
rest mass.
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1. Introduction

One of directions of the string theory is to study a role of one-dimensional
extended objects in cosmology. Gauge Grand Unified Theories (GUT) pre-
dict a possibility of a formation of one-dimensional topological defects in a
process of phase transitions in the early Universe. These defects are called
cosmic strings [1–8]. It is not excluded that cosmic strings can be preserved
until modern era and can be observable [9, 10].

The radius of the cross section of a cosmic string is estimated as rs ≈
10−31 m. For a description of a string motion in the case when a string
cross-section radius rs is much less than a radius of string curvature, the
following approximation is used. A position of a string is determined by
a line in D-dimensional space-time. Then, a trajectory of a string is a
two-dimensional world surface which is mathematically defined by functions
xm(τ, σ), where τ and σ are parameters on a world surface of a string.

Null-strings realize a limit case of zero tension for cosmic strings [7, 11,
15]. They describe a limit case in which points of a string can interact only
with a surrounding (external) gravitational field, but not with each other.
It is assumed that null-strings realize a high-temperature phase of a string
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theory [15], i.e. they could have been formed in early stages of Universe
evolution. Thus, it is possible that they were taking part in processes of
formation of the observable Universe structure.

For example, in [15], the possibility of a null-string inflation mechanism
for the case of D-dimensional Friedmann–Robertson–Walker spaces (FRW)
described by a homogeneous and isotropic metric was considered. In the
cosmic time t = x0, it has the form of

dS2 =
(
dx0
)2 −R2

(
x0
)

dxiδijdx
j ,

where i, j = 1, . . . , D − 1.
The work notes the possibility of the existence of a phase of an ideal

null-string gas (contracting or expanding) described by the exact equation
of state

ρ = P (D − 1) .

Considering this phase of null-string gas as the dominant source of gravity
in FRW spaces, possible scaling factors R(t) were calculated

RI(t) = [q · (tc − t)]2/D , t < tc ,

RII(t) = [q · (t− tc)]2/D , t > tc ,

where q = (4πGDA/(D − 1)(D − 2))1/2; GD, A, tc are constants. The solu-
tion RI(t) describes the regime of accelerated contraction of the
D-dimensional Universe (dR/dt < 0, d2R/dt2 < 0) with collapse at the
moment of time t = tc. The second solution RII(t) describes the delayed ex-
pansion of the Universe (dR/dt > 0, d2R/dt2 < 0) from the superconstricted
state with zero volume.

We note that in this paper, the transition to an ideal null-string gas was
accomplished by means of the (D − 1)-dimensional spatial averaging of the
energy-momentum tensor of one null-string over a multi-string ensemble.

This example operates with the concept of a gas (net) of null-strings,
however the properties of this gas are still not clear. One of the possible
directions in understanding that the properties of null-string gas can be the
study of the influence of the gravitational field of various time-stable null-
string configurations on the dynamics of a test null-string.

The study of the test null-string motion carried out in [17–21] suggests
that a number of interesting properties of null-string gas can exist. For
example, the formation of stable structures in a space filled with null-string
gas [17]. Namely, the possibility of the existence of a state (phase) of a gas
of null-strings, in which closed null-strings are arranged in parallel planes
and, without changing their initial form (not interacting with each other),
move in one direction.
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The first part of the proposed work is devoted to finding a solution that
describes the gravitational field of the simplest realization of such a state of
a null-string gas (multi-string system). Namely, the states in which m × n
(m, n are constants) of closed null-strings having the shape of a circle move
in one direction.

In the second part of the work, the motion of a test null-string in the
gravitational field of a multi-string system under study is considered for the
case in which the test null-string moves “towards” the multi-string system.

In this work, a unit system is chosen in which the speed of light c = 1.

2. The Einstein equations

In the cylindrical coordinate system x0 = t, x1 = ρ, x2 = θ, x3 = z,
the functions xα(τ, σ), defining the trajectories of motion (world surfaces)
of closed null-strings forming a multi-string system that moves along the
negative direction of the z axis, have the form of

t = τ , ρ = Ri , θ = σ , z = z0
j − τ , (1)

where: τ and σ are parameters on a world surface of a null-string; τ ∈
(−∞,+∞), σ ∈ [0; 2π]; Ri = const, i = 1 . . . n; z0

j = const, j = 1 . . .m;
moreover Ri+1 > Ri, and z0

j+1 > z0
j .

It can be noted that trajectory (1) describes a case of a multi-string
system motion with a layered structure. Specifically, the system has m lay-
ers (surfaces) the distances between which are determined by constants z0

j .
There are n closed coaxial null-strings of different, but constant in time,
radiuses Ri on each layer. Moreover, the position of a closed null-string on
each such a layer is the same.

The energy-momentum tensor for a secluded null-string has the form [5] of

Tαβ
√
−g = ς

∫
dτdσ xα,τx

β
,τδ

4 (xω − xω (τ, σ)) , (2)

where indexes α, β, ω take values 0, 1, 2, 3; functions xω(τ, σ) define a trajec-
tory of a null-string motion (world surface); xα,τ = ∂xα/∂τ ; g = |gαβ|; gαβ is
the metric tensor of external space-time; ς = const.

Since an interaction in the considered multi-string system is only grav-
itational, then generalizing (2) on a considered in the work case, we can
write

Tαβtot =

m∑
j=1

n∑
i=1

(
Tαβ

)
ij
, (3)



770 A.P. Lelyakov, C.S. Osokin

where Tαβtot and
(
Tαβ

)
ij
are, respectively, energy-momentum tensor of multi-

string system, and secluded null-string numerated in this system by indexes
i, j (i.e. the null-string with a radius Ri and in each fixed moment of time
t = t0 located in the plane z = z0

j − t0).
Considering (2), nonzero components of tensor (3) for trajectories (1)

have the form of

T 00
tot = T 33

tot = −T 03
tot =

ς√
−g

m∑
j=1

n∑
i=1

δ
(
q − z0

j

)
δ (ρ−Ri) , (4)

where q = t+ z.
Since for conserving trajectories of a motion of multi-string systems (1)

all directions on hyper-surfaces z = const are equivalent, then the metric
functions are gαβ = gαβ(t, ρ, z). Thus, using an invariance of a quadratic
form relatively to an inversion of θ on −θ, we obtain g02 = g12 = g32 = 0.

It can be also noticed that for the considered multi-string systems, the
quadratic form must be invariant relatively to a simultaneous inversion t→
−t; z → −z. Then

gαβ(t, ρ, z) = gαβ(−t, ρ,−z) . (5)

The result of (5) is g01 = g31 = 0. Finally, using a freedom of choice of a
coordinate system in GTR, we partially fix it by choosing g03 = 0.

Thus, a quadratic form for the task can be represented in the form of

dS2 = e2ν(dt)2 −A(dρ)2 −B(dθ)2 − e2µ(dz)2 , (6)

where ν, µ,A,B are functions of variables t, ρ, z satisfying conditions (5).
A motion of a null-string in pseudo-Riemannian manifold is determined

by a system of equations [15]

xα,ττ + Γαpqx
p
,τx

q
,τ = 0 , (7)

gαβx
α
,τx

β
,τ = 0 , gαβx

α
,τx

β
,σ = 0 , (8)

where Γαpq are the Christoffel symbols. Trajectories of a null-strings motion,
forming multi-string system, must be a particular solution of motion equa-
tions. Thus, an analysis of these equations could give additional limitations
on functions of the quadratic form (6). Considering equations of motion of a
null-string (7), (8) for (6), it can be shown directly that for trajectories (1),
equations (8) lead to an equation

e2ν − e2µ = 0 , (9)

from which
ν = µ . (10)
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Equation (7), considering equality (10), leads to an equation

ν,t − ν,z = 0 , (11)

from which
ν = ν(q, ρ) , (12)

where
q = t+ z . (13)

The Einstein equations system built for multi-string formations (1) al-
lows extending a definition of a dependence of quadratic form functions (6)
(considering (10), (12))

A = A(q, ρ) , B = B(q, ρ) . (14)

It can be represented in the form of(
A,q
A

+
B,q
B

)
,q

− 2ν,q

(
A,q
A

+
B,q
B

)
+

1

2

((
A,q
A

)2

+

(
B,q
B

)2
)

= −2χT00 ,

(15)(
B,ρ
B

+ 2ν,ρ

)
,q

− ν,ρ
(
A,q
A

+
B,q
B

)
− 1

2

B,ρ
B

(
A,q
A
− B,q

B

)
= 0 , (16)(

B,ρ
B

)
,ρ

+
1

2

(
B,ρ
B

)2

+ 2ν,ρ
B,ρ
B
− 1

2

A,ρ
A

B,ρ
B

= 0 , (17)

ν,ρρ + 2(ν,ρ)
2 +

ν,ρ
2

(
B,ρ
B
− A,ρ

A

)
= 0 , (18)

(ν,ρ)
2 + ν,ρ

B,ρ
B

= 0 , (19)

where

T00 = ς
e2ν

√
AB

 m∑
j=1

n∑
i=1

δ
(
q − z0

j

)
δ(ρ−Ri)

 ,

χ = 8πG, G is the gravitational constant.
Integrating system of equations (15)–(19), let us use the algorithm sug-

gested in work [16]. Since a cross-section area radius of a cosmic string is
small (∼ 10−31 m) but still finite, then a model of a null-string in the form
of a thin tube is physically more justified. Therefore, let us consider com-
ponents of string energy-momentum tensor (4) as a limit of some “smeared”
distribution. As such, it is convenient to choose a real massless scalar field
(since we consider a system of scalar null objects). Then, let us constrict
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this “smeared” distribution into the considered multi-string system. We de-
mand that components of the energy-momentum tensor of a scalar field in a
limit of contraction would asymptotically coincide with components of the
null-string energy-momentum tensor. In this approach, we, in fact, deny one-
dimensionality of null-strings, forming a multi-string system and move to a
physically justified model of a null-string in the form of thin tube (“smeared”
null-string).

Components of the energy-momentum tensor for a real massless scalar
field have the form [2] of

Tαβ = ϕ,αϕ,β − 1
2gαβL , (20)

where L = gωλϕ,ωϕ,λ; ϕ,α = ∂ϕ/∂xα; ϕ is a distribution function of a
scalar field, and indices α, β, ω, λ take values 0, 1, 2, 3. In order to provide
self-consistency of the Einstein equations for (6), (10), (12), (14), (20), we
demand

Tαβ = Tαβ (q, ρ)⇒ ϕ = ϕ (q, ρ) . (21)

The system of Einstein equations for (6), (10), (12), (14), (20), (21) may
be represented in the form of(

A,q
A

+
B,q
B

)
,q

−2ν,q

(
A,q
A

+
B,q
B

)
+

1

2

((
A,q
A

)2

+

(
B,q
B

)2
)

=−2χ (ϕ,q)
2 ,

(22)(
B,ρ
B

+ 2ν,ρ

)
,q

− ν,ρ
(
A,q
A

+
B,q
B

)
− 1

2

B,ρ
B

(
A,q
A
− B,q

B

)
=−2χϕ,qϕ,ρ ,

(23)(
B,ρ
B

)
,ρ

+
1

2

(
B,ρ
B

)2

+ 2ν,ρ
B,ρ
B
− 1

2

A,ρ
A

B,ρ
B

= 0 , (24)

ν,ρρ + 2(ν,ρ)
2 +

ν,ρ
2

(
B,ρ
B
− A,ρ

A

)
= 0 , (25)

(ν,ρ)
2+ν,ρ

B,ρ
B

=
χ

2
(ϕ,ρ)

2 . (26)

Comparing the Einstein equations system (15)–(19) with the system
(22)–(26), one can see that during a constriction of a scalar field in a multi-
string system, the following should be valid:

(ϕ,ρ)
2
∣∣
q→z0j ,ρ→Ri

→ 0 , (ϕ,q)
2
∣∣
q→z0j ,ρ→Ri

→∞ ,

(ϕ,qϕ,ρ)|q→z0j ,ρ→Ri → 0 , (27)
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and outside a region where a scalar field is concentrated (i.e. at q 6= z0
j ,

ρ 6= Ri)
ϕ→ 0 , ϕ,q → 0 , ϕ,ρ → 0 . (28)

A generalization of a distribution function of a scalar field suggested in
work [16] on the considered case of a multi-string system is

ϕ(q, ρ) = ln

(
1

α(q) + λ(q)f(ρ)

)
, (29)

where

1. functions λ(q) and α(q) are connected by the relation

λ(q) = (1− α(q))/f0 , f0 = const , (30)

2. functions α(q) and f(ρ) are limited and for all q ∈ (−∞,+∞) and
ρ ∈ [0,+∞) take values in interval of

0 < α(q) < 1 , 0 < f(ρ) < f0 . (31)

Moreover,

α(q)|q /∈(z0j−∆qj ;z0j+∆qj) → 1 , α(q)|q→z0j → 0 , (32)

f(ρ)|ρ/∈(Ri−∆ρi;Ri+∆ρi)
→ f0 , f(ρ)|ρ→Ri → 0 , (33)

where ∆qj and ∆ρi are small positive constants, defining a “thickness”
of a ring (“smeared” null-string) numerated by indexes i and j.

What is more, in a limit of a constriction of a scalar field into a multi-
string system, conditions must be implemented (at ∆qj → 0, ∆ρi → 0):∣∣∣∣ α,qα(q)

∣∣∣∣
q→z0j

→∞ ,
f,ρ
f(ρ)

∣∣∣∣
ρ→Ri

→ 0 , (34)

α,q
α(q)

× f,ρ
f(ρ)

∣∣∣∣
q→z0j ,ρ→Ri

→ 0 . (35)

One of possible examples of functions α(q) and f(ρ), satisfying conditions
(31)–(35), is

α(q) = exp

 m∑
j=1

−1(
ξj

(
q − z0

j + (εq/ξj)
))2

 , (36)

f(ρ) = f0 exp

(
−γ

(
1− exp

(
n∑
i=1

−1

(ζi(ρ−Ri + (ερ/ζi)))
2

)))
. (37)
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Constants ξj and ζi define a size (“thickness”) of a ring (“smeared” null-
string) numerated by indexes i and j inside which a scalar field in variables
q and ρ, respectively, is concentrated. Specifically, as it follows from (36)
and (37), at ∆qj → 0 ∆ρi → 0,

ξj →∞ , ζi →∞ , (38)

and positive constants εq, ερ and γ provide a validation of conditions (32)–
(35) at ∆ρi → 0, ∆qj → 0, ρ → Ri, q → z0

j . Specifically, at ∆qj � 1,
∆ρi � 1

εq � 1 , ερ � 1 , γ � 1 , (39)

and during a following constriction of a scalar field into a multi-string system,
i.e. at ∆ρi → 0, ∆qj → 0

εq → 0 , ερ → 0 , γ →∞ . (40)

Indeed, for (36), (37), (38), (40)∣∣∣∣ α,qα(q)

∣∣∣∣
q→z0j

=
2ξj
ε3q
→∞ , (41)

f,ρ
f(ρ)

∣∣∣∣
ρ→Ri

= γ exp

(
− 1

(ερ)2

)
2ζi
ε3ρ
→ 0 . (42)

Then condition (35) in a limit of contraction of a scalar field into a multi-
string system is fulfilled for all points of “smeared” null-string numerated by
indexes i and j and located inside the region

∣∣∣q − z0
j

∣∣∣ < εq/ξj , |ρ−Ri| <
ερ/ζi.

Using (30), (36), (37) for (29), we obtain an expression of one of possi-
ble distributions of a massless scalar field. During constriction, its energy-
momentum tensor components asymptotically coincide with energy-momen-
tum tensor components of the considered multi-string system. We note that
the form of the distribution function (29), (30), (36), (37) is not general.
This choice should be considered as one of the possible ways of “smearing”
of null-strings forming the multi-string system. The form of the distribu-
tion function of the scalar field must influence gravitational properties of
the string model in the form of a tube of a scalar field. However, since
null-strings correspond to the case in which the scalar field contracts to a
one-dimensional objects, the “smearing” method in the limit cases (38)–(40)
cannot be significant.
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3. Solution of the Einstein equations

Let us complete the system of Einstein equations (22)–(26) by the scalar
field equation which for tensor (20) is(

gαβϕ,α

)
;β

= 0 , (43)

where the semicolon denotes the covariant derivative. For (10), (12), (14),
(21), equation (43) takes the form of

(
ϕ,ρA

−1
)
,ρ

+
(
ϕ,ρA

−1
)(

2ν,ρ +
1

2

(
A,ρ
A

+
B,ρ
B

))
= 0 . (44)

Integrating equations (44), (25) and (24), one can find the connection
between metric functions and the distribution function of the scalar field
ϕ(q, ρ), specifically

A(q, ρ) =
β(q)

(c1)2
(ϕ,ρ)

2 exp (ϕ (c̃3 + 4c̃2) + 4ν0(q)) , (45)

ν(q, ρ) = c̃2ϕ+ ν0(q) , B(q, ρ) = β(q) exp (c̃3ϕ) , (46)

where c̃2 = c2/c1, c̃3 = c3/c1, c1 = c1(q), c2 = c2(q), c3 = c3(q), ν0(q) and
β(q) are integration “constants”.

The remaining three equations of the system: (22), (23) and (26) consid-
ered for (45) and (46) define the conditions, connecting functions (integration
“constants”): c1(q), c2(q), c3(q), ν0(q) and β(q), and its derivatives. Thus,
equations (23) and (26) for functions (45), (46) are, respectively,

c3,q + 2c2,q − 2c2(q)
β,q
β(q)

− 2ν0,q (c3(q) + 2c2(q)) = 0 , (47)

and
(c̃2)2 + (c̃2) (c̃3) =

χ

2
. (48)

Wherein it is convenient to write equation (22) for functions (45), (46) in
the form of

Ψ0 + Ψ1ϕ+ Ψ2ϕ
2 + Ψ3ϕϕ,q + Ψ4ϕ,q + Ψ5 (ϕ,q)

2 + ϕ,qq = 0 , (49)

where Ψi, i = 0, 1, . . . , 5 are functions containing the integration “constants”,
their derivatives, and also functions determining the distribution of the scalar
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field, for example,

Ψ0 = Ψ−1

(
2Γ,qq − 4ν0,qΓ,q +

1

2

((
β,q
β(q)

)2

+
(
Γ̃,q

)2
))

,

Ψ = 2 (c̃3 + 2c̃2 + 1) ,

Γ = ln

{
β(q)λ(q)

c1(q)
e2ν0(q)

}
, Γ̃ = ln

{
β(q) (λ(q))2

(c1(q))2 e4ν0(q)

}
.

According to (29) and (30), the function ϕ(q, ρ), determining the distri-
bution of the scalar field, satisfies the equation

ϕ,qq −
λ,qq
λ,q

ϕ,q − (ϕ,q)
2 = 0 . (50)

Equating the coefficients at the same powers of the function ϕ and its deriva-
tives in equations (49) and (50), we find conditions on the functions Ψi,
i = 0, . . . , 5 of equation (49)

Ψ0 = Ψ1 = Ψ2 = Ψ3 = 0 , (51)

Ψ4 = −λ,qq
λ,q

, Ψ5 = −1 . (52)

An analysis of equations (47), (48), (51), (52) allows to determine the
explicit form of the functions ci(q), i = 1, 2, 3, ν0(q), and β(q), specifically

c1(q) = c0α0 |λ,q| (c6λ(q) + c7)(1+c̃2)/c4 , (53)

c̃3 =
c3(q)

c1(q)
= −

√
4− 2χ , (54)

c̃2 =
c2(q)

c1(q)
= −1 +

1

2

√
4− 2χ , (55)

β(q) = (c6λ(q) + c7)1/c4 , (56)

e2ν0(q) = α0 |λ,q| (c6λ(q) + c7)(1+2c̃2)/c4 , (57)

where

c4 = −2(c̃2)2 + 4c̃2 + 1

2(1 + c̃2)
, c6 = −c4 · c5 , (58)

α0, c0 c5 and c7 are the integration constants, wherein c0 6= 0.
The found expressions for functions (53)–(57) fix the form of the sought

metric functions (45), (46) up to the values of the integration constants (c0,
α0, c5 and c7). To determine the values of these constants, it is convenient
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to study the expression for the scalar curvature K = gαβgµνRαµβν , where
Rαµβν is the Riemann–Christoffel tensor which for the found functions has
the form of

K = −χ(ϕ,ρ)
2A−1(q, ρ) = −χ(c0)2 (c6λ(q) + c7)−(1+2c̃2)/c4

(α(q) + λ(q)f(ρ))−(c̃3+4c̃2)
. (59)

Outside the region where the scalar field is concentrated, according to (30)
and (32), α(q)→ 1, λ(q)→ 0. Then, equality (59) outside the region where
the scalar field is concentrated takes the form of

K = −χ(c0)2 (c7)−(1+2c̃2)/c4 . (60)

We note that for the values of the constants c̃2 and c̃3, determined by (54)
and (55), the constants −(1 + 2c̃2)/c4 and −(c̃3 + 4c̃2) in equality (59) are
positive

−(1 + 2c̃2)

c4
= 2 +

(
2−
√

4− 2χ

1− χ

)
> 0 , (61)

−(c̃3 + 4c̃2) = 4−
√

4− 2χ > 0 . (62)

Then, in order to ensure that the scalar curvature K tends to zero outside
the region where the scalar field is concentrated, it is necessary to require

c7 = 0 . (63)

When the scalar field is contracted into a multi-string system, that is, at
∆qj → 0, ∆ρi → 0, the following must be satisfied:

K|q→z0j ,ρ→Ri = −χ(c0)2F

(
c6

f0

)−(1+2c̃2)/c4

→ 0 , (64)

where, applying (30), (36), (37),

F =

(
1− e−1/(εq)2

)−(1+2c̃2)/c4

(
e−1/(εq)2 +

(
1− e−1/(εq)2

)
e
−γ

(
1−e−1/(ερ)2

))−(c̃3+4c̃2)
. (65)

We note that according to (40), (61), (62) at the contraction of the scalar
field into a multi-string system, that is at ∆ρi → 0, ∆qj → 0,

F |ερ→0;εq→0;γ→∞ →∞ . (66)



778 A.P. Lelyakov, C.S. Osokin

Then fixing in (58), for example,

c5 = − 1

c4
F 2c4/(1+2c̃2) , (67)

to which
c6 = F 2c4/(1+2c̃2) (68)

corresponds, and taking into account (66), for (64), we obtain (at ∆ρi → 0,
∆qj → 0)

K|q→z0j ,ρ→Ri = −χ(c0)2

F
(f0)(1+2c̃2)/c4 → 0 . (69)

Applying (53)–(58), (63), (67), (68) for equalities (45) and (46), we find
the required solution of the system of equations (22)–(26)

e2ν(q,ρ) = ά
|λ,q|

(λ(q))2

(
α(q) + λ(q)f(ρ)

(λ(q))1/(1−χ)

)2−
√

4−2χ

, (70)

B(q, ρ) = β́

(
α(q) + λ(q)f(ρ)

(λ(q))1/(1−χ)

)√4−2χ

, (71)

A(q, ρ) = γ́(f,ρ)
2

(
α(q) + λ(q)f(ρ)

(λ(q))1/(1−χ)

)2−
√

4−2χ

, (72)

where the functions α(q) and f(ρ) satisfy conditions (31)–(35) and can
be represented in the form of (36), (37), with the constants ά = α0F

2,
β́ = F 2/(

√
4−2χ−1), γ́ = (c0)−2F 2. The constants α0 and c0 in solution

(70)–(72) can be considered as scale factors and equal to 1.

4. Motion characteristics of a test null-string in a gravitational
field of a multi-string system

According to (69) and (65), the curvature of the space in which the multi-
string system is located depends on the value of the constants determining
the “thickness” of the null-strings forming the multi-string system: εq, ερ, ξj ,
γ, ζi, f0. Moreover, in the limit of contraction of a scalar field into a multi-
string system, the curvature of the space tends to zero. Then, according to
(38)–(40), the conditions under which the influence of the gravitational field
of the test null-strings can be neglected (the condition of applicability of the
concept of a test null-string) are

(ε̃q, ε̃ρ) < (εq, ερ) ,
(
ξ̃, γ̃, ζ̃, f̃0

)
> (ξj , γ, ζi, f0) , (73)

where ε̃q, ε̃ρ, ξ̃, γ̃, ζ̃, f̃0 are the constants that determine the “thickness” of
the test null-string.
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For a quadratic form (6), considering (10), (12), (14), equations of a test
null-string motion (7) and (8) can be represented in the form of

q,ττ + 2ν,τq,τ = 0 , (74)
η,ττ + 2ν,ρη,τρ,τ + e−2ν

(
A,q(ρ,τ )2 +B,q(θ,τ )2

)
= 0 , (75)

ρ,ττ +
1

A

{
e2(ν)ν,ρq,τη,τ +A,qq,τρ,τ +

1

2

(
A,ρ(ρ,τ )2−B,ρ(θ,τ )2

)}
= 0 , (76)

θ,ττ +
B,τ
B
θ,τ = 0 , (77)

e2νη,τq,τ −A(ρ,τ )2 −B(θ,τ )2 = 0 , (78)
1

2
e2ν (η,τq,σ + η,σq,τ )−Aρ,τρ,σ −Bθ,τθ,σ = 0 , (79)

where
η = t− z . (80)

In this work, an analysis of possible trajectories of a test null-string
motion will be provided for a particular case

q = q(τ) , η = η(τ) , ρ = ρ(τ) , q,τ > 0 , η,τ > 0 , θ = θ(σ) . (81)

For (81), a test null-string at each instant of its “counter” motion with re-
spect to the multi-string system has a shape of a circle. Its radius is time-
dependent and it is always located in a plane parallel to a plane of the
multi-string system.

The considered case of movement of a test null-string “towards” a multi-
string system (q,τ > 0) includes situations when:

— The test null-string moves in the positive direction of the z axis.

— The test null-string moves in a plane perpendicular to the z axis (for
example, the test null-string expands radially or collapses radially).

— The test null-string moves in the same direction as the multi-string
system, but the projection of the velocity of the test null-string points
on the z axis is less than the speed of light (for example, it moves in
the negative direction of the z axis while changing its size (radius)).

For the case of (81), equations (77) and (79) hold identically and first
integrals of equations (74)–(76), considering (70)–(72) and (78), respectively
take the form of

q,τ = P1e
−2ν , (82)
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η,τ =

(
P2

P1

)2

· |λ,q|
(λ(q))2

q,τ , (83)

|f,ρρ,τ | =
P2

P1
· |λ,q|

(λ(q))2
q,τ , (84)

where P1 and P2 are integration constants, moreover,

P1 > 0 , P2 > 0 . (85)

Constant P2 defines velocities of test null-string points in variable ρ in the
initial moment of time.

From equations (30), (32), (33), it follows that for equations (83) and
(84), the whole range of the variables q and ρ (q ∈ (−∞,+∞), ρ ∈ [0,+∞))
splits into regions, depending on the signs of the derivatives of λ(q) and
f(ρ). A quantity of regions is defined by the amount of null-strings in the
multi-string system.

Consider the simplest example of a multi-string system in which two
closed null-strings of the radii R1 and R2 (R1 < R2) are located in the q = 0
plane at each moment of time and move in the negative direction of the
z axis. For this configuration, the range of the variables q and ρ, depending
on signs of the derivatives of the functions λ(q) and f(ρ), splits into the
following eight regions:

Regions I and V:

ρ ∈ (R2,+∞) for I and ρ ∈ (R1, R) for V , q ∈ (−∞, 0) , (86)

in which
f,ρ > 0 , λ,q > 0 . (87)

Regions II and VI:

ρ ∈ (R,R2) for II and ρ ∈ (0, R1) for VI , q ∈ (−∞, 0) , (88)

in which
f,ρ < 0 , λ,q > 0 . (89)

Regions III and VII:

ρ ∈ (R2,+∞) for III and ρ ∈ (R1, R) for VII , q ∈ (0,+∞) ,
(90)

in which
f,ρ > 0 , λ,q < 0 . (91)
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Regions IV and VIII:

ρ ∈ (R,R2) for IV and ρ ∈ (0, R1) for VIII , q ∈ (0,+∞) , (92)

in which
f,ρ < 0 , λ,q < 0 , (93)

where R = (R1 +R2)/2.
Figure 1 shows an arrangement of regions I–VIII in respect to the surfaces

ρ = R1, ρ = R, ρ = R2, q = 0.

Fig. 1. An illustration of the range of the variables ρ and q.

According to (30), (32), (33), the functions f(ρ) and λ(q) at boundaries
between regions I–VIII (i.e., at q = 0, ρ = R1, ρ = R2, ρ = R) have extrema

f,ρ|ρ=R1;R2;R = 0 , λ,q|q=0 = 0 , (94)

moreover, there is no null-string at the boundary ρ = R, unlike ρ = R1, and
ρ = R2.

In work [17], it has been shown that for a test null-string, there is al-
ways only a “narrow” region (“interaction zone”), getting in which a test
null-string can interact with a source null-string. Width of this “zone” is
defined by values of constants f0 and P2, having the same physical inter-
pretation. Moreover, the bigger the value of the constant f0 and the less
the value of the constant P2, the wider is the “interaction zone”. It is ob-
vious that if distances between null-strings in the multi-string system are
bigger than sizes of corresponding “interaction zones” (“interaction zones”
do not overlap), then a motion of a test null-string in a gravitational field
of such a source is defined only by its interaction with a specific null-string.
It is not dependent on an influence of surroundings. In this case, possible
trajectories of a test null-string motion do not differ from the trajectories
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provided in work [17]. In the proposed paper, we will be interested in the
case in which the “interaction zones” for null-strings forming the multi-string
system overlap.

Integrating equation (84) in regions I–VIII, considering that in each of
them two cases ρ,τ > 0 and ρ,τ < 0 can be realized, we find

fkL = UkL + Γ kL
P2

P1
(λ(q))−1 , (95)

where UkL are the integration constants. The index L takes values I–VIII
and denotes the number of a region in which the solution found is realized.
The index k takes values 0, 1 and denotes at k = 0 the case ρ,τ > 0 and at
k = 1 the case ρ,τ < 0. The constants Γ kL take values

Γ 0
I = Γ 0

V = Γ 0
IV = Γ 0

VIII = Γ 1
II = Γ 1

VI = Γ 1
III = Γ 1

VII = −1 ,

Γ 0
II = Γ 0

VI = Γ 0
III = Γ 0

VII = Γ 1
I = Γ 1

V = Γ 1
IV = Γ 1

VIII = 1 . (96)

The integration constants UkL are fixed by the value of the functions f(ρ)
and λ(q) at the boundaries of the regions. From equalities (84) and (94),
it follows [17] that during approach of the test null-string to the bound-
aries q = 0, depending on initial conditions, the following situations can be
realized:

— A test null-string on the boundaries ρ = R1 and ρ = R2 collides with
a null-string forming a multi-string system.

— At ρ = R, the test null-string crosses the boundary q = 0.

— In the regions I, III, near the boundary q = 0, the test null-string has
infinitely large radius.

— In regions VI, VIII, near the boundary q = 0, the test null-string has
an infinitesimal radius.

For these conditions, the constants UkL have the form of

U0
I = U1

VI = U1
III = U0

VIII = f0

(
1 +

P2

P1

)
,

U1
I = U1

IV = U1
V = U1

VIII = U0
II = U0

III = U0
VI = U0

VII = −f0
P2

P1
,

U0
V = U1

VII = U1
II = U0

IV = f(R) + f0
P2

P1
. (97)

It follows from solution (95)–(97) that after crossing the boundary q = 0,
at ρ = R, both the case ρ,τ < 0 and the case ρ,τ > 0 can be realized. For
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example, using explicit form of constants (96) and (97), it can be seen that
equality (95) realized in region II in the case ρ,τ < 0, completely coincides
with the solution in region IV for ρ,τ > 0, and also with the solution ρ,τ < 0
which is realized in region VII.

It can be shown that the solution of equations (82), (83) (that is, the
dependence variables t and z on the time-like parameter τ) in the I–VIII
regions is:

— in regions I, II, V, VI (q < 0)

t =
1

2

(
P 2

2

P1
τ − εq

ξ
− 1

ξ

√
ln−1 (F−(τ))−1

)
, (98)

z = −1

2

(
P 2

2

P1
τ +

εq
ξ

+
1

ξ

√
ln−1 (F−(τ))−1

)
. (99)

— in regions III, IV, VII, VIII (q > 0)

t =
1

2

(
P 2

2

P1
τ − εq

ξ
+

1

ξ

√
ln−1 (F+(τ))−1

)
, (100)

z =
1

2

(
−P

2
2

P1
τ − εq

ξ
+

1

ξ

√
ln−1 (F+(τ))−1

)
, (101)

where
F∓(τ) = 1− f0

f0

(
1− e−1/(εq)2

)−1 ∓ P1τ
. (102)

Let us note that integration constants in the solution of equations (82)
and (83) were fixed by the following conditions:

— at the moment of time t = 0, the test null-string and the considered
multi-string system are located in the same plane z = 0 (q = 0, η = 0),

— at the boundary q = 0, the value of the parameter τ = 0 (i.e. for the
value τ = 0 during the “counter” motion the test null-string and the
multi-string system appear in one plane z = 0), moreover,
in regions I, II, V, VI (q < 0)

at q ∈ (−∞, 0) , the value of the parameter τ ∈ (−∞, 0) ,
(103)

in regions III, IV, VII, VIII (q > 0)

at q ∈ (0,+∞) , the value of the parameter τ ∈ (0,+∞) .
(104)
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Consider an influence of an initial momentum of test null-string points
in the variable ρ (the constant P2) on a motion of the test null-string. For
this purpose, it is convenient to consider the value of constant P2 relatively
to P1, i.e. consider that

P2 = αP1 , (105)

where the proportionality coefficient α > 0.
Let us find the value of the variables t and z at boundaries of an inter-

action zone which, according to [21], are reached at

|τ | = f0

P2
. (106)

Applying (105) and (106) for equalities (98)–(102), neglecting small sum-
mand at εq � 1 respectively, we find:

— in the region q < 0 (the left boundary of the “interaction zone”: τ =
−f0/P2),

t = −1

2

(
αf0 +

1

ξ

√
ln−1 (1 + α)

)
, (107)

z =
1

2

(
αf0 −

1

ξ

√
ln−1 (1 + α)

)
, (108)

— in the region q > 0 (the right boundary of the “interaction zone”:
τ = f0/P2),

t =
1

2

(
αf0 +

1

ξ

√
ln−1 (1 + α)

)
, (109)

z =
1

2

(
−αf0 +

1

ξ

√
ln−1 (1 + α)

)
. (110)

Notice that at α→ 0 (the initial momenta in variable ρ are small), for the
left boundary of the interaction zone (equalities (107), (108)), we have t < 0,
z < 0 and for the right boundary of the interaction zone (equalities (109),
(110)), the values t > 0, z > 0. Thus, a motion of a test null-string counter
(in positive direction of the z axis) to the multi-string system corresponds
to the case α→ 0.

At α � 1 (the initial momenta in variable ρ are very big), for the left
boundary of the interaction zone, we have t < 0, z > 0 and for the right
boundary of the interaction zone, the values are t > 0, z < 0 (i.e., on the
z axis, the left boundary is located “more to the right” and the right one is
located “more to the left”). From which it follows that in the case α � 1,
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a test null-string is moving in the same direction as the multi-string system
(in negative direction of the z axis), but the projection of a velocity of test
null-string points on the z axis is less than the speed of light, because of a
fast change of the radius.

It can be noticed that for equalities (107)–(110)), one more very inter-
esting case is possible. Specifically, when the value of the constant α is the
solution of equation

αf0 −
1

ξ

√
ln−1 (1 + α) = 0 ,

or which is the same
(α+ 1)α

2
= e(f0ξ)−2

. (111)

It is easy to see that in this case, for the left boundary of the interaction
zone (i.e. at τ = −f0/P2), we have t < 0, z = 0 for the right boundary of the
interaction zone (i.e. at τ = f0/P2), the values t > 0, z = 0. Furthermore, as
was spoken before, at τ = 0 which the value of the variable t = 0 corresponds
to, a test null-string and the multi-string system are also located in the plane
z = 0. From the spoken, it follows that for the value of the constant α which
is the root of equation (111), an influence of a gravitational field of the multi-
string system leads to an appearance of test null-string oscillations in the
variable z in a vicinity of the surface z = 0.

Note that since the test null-string can cross the boundary q = 0 only
at ρ = R = (R1 + R2)/2 for the considered multi-string system, then the
oscillation regime of the test null-string is possible only in regions II, IV, V,
VII.

Figures 2 and 3 provide the graphs of the functions z(τ) and t(τ) which
corresponds to equalities (98)–(101) in the case of an oscillatory motion of
a test null-string for the values of the constants f0 = P1 = 50, P2 = 3,
ξ = 1.4, εq = 10−3, τ ∈ [−16; 16]. From Fig. 2, it is seen that at τ = −16
(τ = −f0/P2 = 50/3 ≈ 16), the test null-string gets at the left boundary of
the “interaction zone” (point A on the graph of the function z(τ)) and in
this moment of time is located in plane z = 0. Then it moves in the negative
direction of the z axis, i.e. moves in the same direction as the multi-string
system (region A–B). At point B, it changes a direction of its motion
and in regions B–C–D moves towards the multi-string system, wherein, in
point C, the test null-string and the multi-string system are located in one
plane (plane z = 0). At point D, it changes its motion direction again and
in region D–F approaches the plane z = 0. At point F (τ = 16), the test
null-string leaves the “interaction zone”, being in the plane z = 0. Wherein
the time function over the entire interval τ ∈ [−16; 16] is increasing (Fig. 3).



786 A.P. Lelyakov, C.S. Osokin

Fig. 2. The figure shows the graph of the functions z(τ), in the case of oscillatory
motion of the test null-string.

Fig. 3. The figure shows the graph of the functions t(τ), in the case of oscillatory
motion of the test null-string.

Figures 4 and 5 show schematically a change of a test null-string radius
in the variables z, ρ in the case of an oscillation regime which is realized
during its motion respectively in regions II, IV, and II, VII. On the provided
figures, points A–F correspond to the points of graph of the function z(τ)
(Fig. 2) and stand for the moments of the change of a test null-string motion
direction.

For the case of motion shown in Fig. 4, the test null-string enters the
gravitational field of a single-layer multi-string system in region II (point A
on the graph) at ρ = R2, ρ,τ < 0. Then, it intersects the boundary z = 0
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Fig. 4. The figure shows schematically a change of a radius of the test null-string
depending on a position on the z axis, in the case of an oscillatory motion which
is realized during its motion in regions II and IV.

Fig. 5. The figure shows schematically a change of a radius of the test null-string
depending on a position on the z axis, axis in the case of an oscillatory motion
which is realized during its motion in regions II and VII.

at ρ = R (point C on the graph). Then, moving in region IV, it increases
its size (ρ,τ > 0) and at ρ = R2, it appears on the right border of region IV
(point F on the graph).

For the case of motion shown in Fig. 5, the test null-string enters the
gravitational field of single-layer multi-string system in region II (point A
on the graph) at ρ = R2, ρ,τ < 0. Then, it intersects the boundary z = 0
at ρ = R (point C on the graph). Then, moving in region IV, it decreases
its size (ρ,τ < 0) and at ρ = R2, it appears on the right border of region IV
(point F on the graph).
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The trajectories of the test null-string motion in the field of the multi-
string system having a layered structure (i.e., according to (1), there are
m layers and on each layer there are n closed coaxial null-strings) can be
obtained by combining possible trajectories of the test null-string motion in
the field of a single-layer multi-string system.

Thus, for example, Fig. 6 schematically provides one of possible motion
trajectories of the test null-string for a multi-string system consisted of two
layers in the variables q and ρ. The first layer of the multi-sting system is
located at q = 0 and the second one at q = 2z0. There are two null-strings
of radii R1 and R2, R = (R1 + R2)/2 on each layer. It can be noted that
provided motion trajectory of the test null-string (point A is an initial point
of the trajectory, point F’ is an end point of the trajectory) consists of two
similar regions. The region of trajectory A → C → F describes motion of
the test null-string in the gravitational field of the first layer of the multi-
string system (q = 0). The region of trajectory A′ → C′ → F′ describes
motion of the test null-string in the gravitational field of the second layer of
the multi-string system (q = 2z0). It is seen that both provided regions are
completely identical. Let us note that the motion trajectory A → C → F
provided in Fig. 6 in the variables q and ρ coincides with the analogical points
for the trajectory in the variables z and ρ provided in Fig. 4. Thus, for the
provided example, the test null-string undergoes two complete oscillations
in the region limited both in variable z and variable ρ. It can be noted that
the motion trajectory of the test null-string provided in Fig. 6 is not the
only one possible.

Fig. 6. Schematic illustration of one of possible motion trajectories of the test
null-string.
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Thus, Fig. 7 provides schematically another possible motion trajectory
of the test null-string for the multi-string system considered above and con-
sisted of two layers (point A is an initial point of the trajectory, point F’ is
an end point of the trajectory). This trajectory also consists of two regions.
The region of trajectory A → C → F describes motion of the test null-
string in the gravitational field of the first layer of the multi-string system
(q = 0) and for this region, ρ,τ < 0. The region of trajectory A′ → C′ → F′

describes motion of the test null-string in the gravitational field of the first
layer of the multi-string system (q = 2z0) and for this region, ρ,τ > 0. The
motion trajectory A → C → F provided in Fig. 7 in the variables q and ρ
coincides with the analogical points for the trajectory in the variables z and
ρ provided in Fig. 5. The motion trajectory A′ → C′ → F′ is qualitatively
analogical to trajectory A → C → F, but it describes the motion of the
test null-string with an increasing radius. For the provided example the test
null-string also undergoes oscillations in the region limited both in variable
z and variable ρ. However, both sizes and motion trajectory of the test
null-string in this region are considerably different.

Fig. 7. Schematic illustration of one of possible motion trajectories of the test
null-string.

Thus, it can be said that, depending on the value of the initial momenta
of the test null-string points with respect to the variable ρ (the constant P2),
the influence of the gravitational field of a layered multi-string system can
lead to time-stable oscillations of a test null-string in a vicinity of a fixed
point of space (the repeating trajectories are limited both in the variable z
and in the variable ρ).
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Figures 8 and 9 provide schematically two-dimensional world surfaces of
a test null-string which are realized during its oscillating motion in a gravi-
tational field of the multi-string system in the variables t, z, ρ, respectively,
for the trajectories for the cases illustrated in Figs. 6 and 7.

Fig. 8. The figure provides a two-dimensional world surface of a test null-string in
a case of an oscillating motion which corresponds to Fig. 4.

Fig. 9. The figure provides a two-dimensional world surface of a test null-string in
a case of an oscillating motion which corresponds to Fig. 5.

It can be considered especially interesting that a stable in time and
limited in space regions inside which a null-string oscillations occur (in a
vicinity of a fixed point) can be considered as a localized in space particles
with effective nonzero rest mass. For such particles, a concept of “lifetime”
can be introduced. It, obviously, will depend on the amount of layers in
the multi-string system. A concept “mass” (energy) of the particle can be
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introduced. It should be connected with the size of the region in which
oscillations of a null-string occur and with a motion trajectory of a null-
string in this region.

5. Conclusions

1. A solution of the Einstein equations for a multi-string system moving
along the z axis and having a layered structure is found. Specifi-
cally, there are m layers in the system, and there are n closed co-axial
null-strings of different constant in time radii on each layer. The ar-
rangement of closed null-strings on each such a layer is the same and
orthogonal to the direction of motion.

2. A motion of a test null-string in the gravitational field of the investi-
gated multi-string system is considered for the case in which the “in-
teraction zones” of null-strings forming a multi-string system overlap.
An analysis of possible trajectories of the test null-string was carried
out under the condition that, when moving towards the multi-string
system, the test null-string has always the form of a circle. Its radius
changes with time and is completely located in the plane parallel to
the plane of the null-strings forming the multi-string system

3. It was shown that depending on the value of the initial momenta of the
test null-string points with respect to the variable ρ (constant P2), the
influence of the gravitational field of a layered multi-string system can
lead either to pulsating (limited in the variable ρ and not limited in the
variable z) motion of the test null-string, or to time-stable oscillations
of a test null-string in a vicinity of a fixed point of space (the repeated
trajectories are limited both in the variable z and in the variable ρ).

4. Aa an interesting result of the proposed work can be considered the
fact that time-stable and space-limited regions within which null-string
oscillations occur can be considered as particles localized in space with
an effective nonzero rest mass.
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