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We investigate gating kinetics of biological channels influenced by con-
formational changes within the membrane proteins forming the module,
and subject to a coupling with other similar units. By introducing ele-
ments of stochastic thermodynamics, we analyze the information flow and
associated entropy production during gating cycle of a single channel. In
the second part of this paper, synchronized kinetics of multiple units of
that type is analyzed in terms of Kuramoto’s theory.
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1. Introduction

Inorganic compounds are necessary for life. They provide building blocks
for biomolecules, e.g. enzymes, chlorophyll or hemoglobin and act as signal-
ing agents and osmotic pressure determinants, to name only few of their
multiple functions. However, living cells cannot synthesize inorganic ions.
They have to absorb them from the surrounding. This is a serious challenge,
requiring continuous monitoring and regulation of ions concentrations. This
regulation — moving the ions from and to the environment, according to
the physiological needs of an organism — is possible due to the action of ion
channels.

Ion channels are specialized proteins which, together with ion pumps,
sort the charges on both sides of the plasma and/or organelle membranes.
They are found in all mammalian cells and their physiological roles range
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from bulk ion transport to subtle electrogenic signaling. Many ion channels
are closed most of the time, but open in response to specific physiological
stimuli, such as altered concentration of specific compounds, membrane po-
tential changes, or temperature shifts [1]. Particularly, the voltage-gated ion
channels are involved in plethora of physiological processes and form perti-
nent building blocks of signal transduction and processing at different levels
of multicellular organization [2, 3]. The flow of ions across a membrane
implies a transmembrane electrical current. Though the electrical current
through an individual channel is of picoampere magnitude, it can be followed
in certain experimental setups [1–6].

Ion channels, like all proteins, are generally very polar molecules and the
open-closed transitions usually involve significant movement of charge. The
energetics associated with charge movement change when the transmem-
brane potential changes. It is thus that the ion currents that are caused by
channel opening can have a feedback on the open–closed kinetics itself. It
is a positive feedback of this kind that produces the propagation of a signal
through a nerve cell [1].

The aforementioned feedback can also lead to memory effects in the be-
havior of clusters of ion channels. In response to a varying external stimulus
(e.g. applied voltage or temperature), clusters of ion channels have actually
been observed to exhibit hysteresis [4–13]. Hysteresis is a mechanism com-
monly exploited in data storage and synthetic memory applications [5, 13].
It is still a question to what extent hysteretic gating of biological channels
is involved in the storage and transmission of information at molecular level
[7, 14, 15].

In this article, we use a formerly proposed simple channel gating model
[9, 12]. This model exhibits a lagged response to external forcing. With
the methods of stochastic thermodynamics [7, 14–21], we explore energy
flows associated with channel gating and we describe how conformationally
coupled ion channels synchronize their open–closed kinetics. Furthermore,
to quantify the signal transduction encoded in current traces and to analyze
the transmission of information associated with the conformational changes
of the channels, we introduce a formal analysis based on Shannon’s definition
of entropy.

2. Model of a single channel kinetics

To describe gating mechanism of a single ion channel, we use a 4-state
model, introduced in [9, 12], see Fig. 1. The scheme represents opening and
closing kinetics of a non-selective ion channel, which is activated at depolar-
izing potentials and has been shown [6] to exhibit counter-clockwise gating
hysteresis. The simple Boltzmann statistics can be used to fully reproduce
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kinetics of the gating, including direction of the hysteresis cycle [9, 12] by
assuming 2 × 2 discrete states: the normal open/closed states and two dif-
ferent states of “gate tension”. Accordingly, (σc, σg) are binary variables —
σc = ±1, σg = ±1 — denoting states of an open/closed channel and con-
figurational changes within the channel gate, respectively. The membrane
protein changes its conformation in a series of intermediate steps [9, 22, 23]
causing the open-probability of the channel’s gate to depend on the actual
state of the protein. To acknowledge those additional internal degrees of
freedom (σc), two transient states (semi-open 2 = (−1, 1) and semi-closed
4 = (1,−1)) are introduced. Pulling the part of the protein which forms the
gate by external forces (e.g. voltage) results in reaction of attached parts of
the membrane to this pull. If the protein has two different conformational
states, it can yield to this pull and change to a state of a lower energy for
the given state of the gate.

Fig. 1. The four-state model of channel gating parametrized by discrete variables
representative for a gate and a given conformation state (σg, σc). The upper two
states have an open gate and the lower two, closed. The states to the right favor
open gate whereas the ones to the left, closed. Vertical transitions are those between
open and closed gate, while parallel describe transitions between configurational
states of the channel protein which favor open/closed gates.

The model can be easily generalized by replacing two states of differ-
ent gate tension by a real value, collective coordinate x̄ which stands for a
conformational change within the gate [9]. Within this scheme, the reaction
pathway of this change is defined in terms of a corresponding potentialW (x̄)
describing the protein’s internal energy as a function of the coordinate x̄.
Since the gate’s thermally driven changes between its open and closed state
are assumed to take place much faster than the protein’s changes of gate
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tension, the latter, parametrized by x̄, take place in the effective potential
Weff(x̄;Vm) that results from summing over both states of the gate,

e−Weff(x̄;Vm) = p(x̄)

=
∑
σg=±1

p(σg, x̄) ∝
∑
σg=±1

e−E(σg,x̄)

= e−E0−W (x̄) 2 cosh
(

1
2∆Eg(Vm) + 1

2∆Ei x̄
)
. (2.1)

Here, E(σg, x̄) = E0 + 1
2∆Eg(V )σg + W (x̄) + 1

2∆Ei σgx̄ is the internal en-
ergy of the system defined up to a constant E0, ∆Eg(Vm) describes energy
contribution from the gate, ∆Ei describes the energy of interaction between
the gate and the protein, and Vm stands for the membrane potential. Such
parametrization results in a two-dimensional structure of an effective poten-
tial as displayed in Fig. 2. Rates of transitions between the two branches of
the observed hysteresis curve can be then modeled with the single-barrier
Kramers kinetics. When described in terms of the effective potential with
cyclic variations of the control parameter (an activating voltage), such a
system has been shown to exhibit typical noise-controlled “resonant effects”:
synchronization, resonant activation and stochastic resonance [10–12]. As
discussed in [9, 12], occurrence of the phenomena can be investigated by
simulating stochastic dynamics (cf. Fig. 3) of the model and performing
statistical analysis of gating trajectories.
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Fig. 2. (Color online) The effective potential Weff(x̄;Vm) (marked in colors) for
the four-state model of channel gating described in the text. The most stable
open/closed states are depicted in the upper right/lower left corners of the plot,
respectively.
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Fig. 3. A long trajectory of the effective “reaction coordinate” derived from the
four-state model. Transition events are modeled by the use of the prototypical
Langevin equation, i.e. as a passage of a test particle moving in the potential well
Weff(x̄;Vm) and driven by fluctuating solvent (environment) represented by action
of random Gaussian forces.

3. Cell membrane as a carrier of bio-information
In line with Shannon’s concepts of signal processing, we will use the

relation between information acquisition and entropy production, originat-
ing from Schrödinger [13, 24] and, more recently, reintroduced in analysis
of nanoscale systems by stochastic thermodynamics [16, 18–21]. Stochas-
tic thermodynamics extends classical thermodynamics to small systems in
contact with environment (heat bath). The main idea is that state func-
tions (like entropy itself) can be expressed by the same relations as in the
standard irreversible thermodynamics, except of the fact that now, the state
variables are random variables, and their evolution accounts for fluctuations
influencing the system beyond equilibrium state. It has been previously
shown how the thermodynamic response of ion channels becomes affected
by abrupt perturbations of the system, for example, with an external voltage
[13–15]. Below, we analyze consequences of channel response to additional
tension on the gate causing either its stiffening or loosening, thus favoring
or disfavoring its opening. For this purpose, we extend former analysis of
the model from [9, 12] by looking at the single ion channel as an information
conductor. The additional degrees of freedom, i.e. states 2 and 4 in Fig. 1,
account for the channel’s complex dynamics. Before the fast opening/closing
transitions, the protein changes its conformation in a series of slow steps,
symbolized here by the two transient states. This separation of fast and
slow processes allows to treat the channel as a bipartite system [17, 19].
For such a system, a detailed knowledge about the entropy production and
information flow may be obtained [19–21].
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Following derivations presented in [20, 21], we extend the original model
by describing channel gating kinetics (Fig. 1) in terms of a Markovian bipar-
tite system whose time-dependent joint probability distribution p(σc, σg; t) ≡
p(x, y; t) evolves according to a master equation:

d

dt
p(x, y; t) =

∑
x′,y′

[
Ky,y′

x,x′p
(
x′, y′; t

)
−Ky′,y

x′,xp(x, y; t)
]
. (3.1)

The transition matrix Ky,y′

x,x′ for a transition from (x′, y′) to (x, y) is of the
form of

Ky,y′

x,x′ =


kyx,x′∆t for x 6= x′ and y = y′

ky,y
′

x ∆t for x = x′ and y 6= y′

0 otherwise,

(3.2)

and satisfies the normalization condition
∑

x,yK
y,y′

x,x′ = 1. Accordingly, the
states parametrized by x and y influence each other but never change simul-
taneously.

The master equation can be also recast in the form of a continuity
equation with currents Jyx,x′ ≡ kyx,x′p(x

′, y; t) − kyx′,xp(x, y; t) and Jy,y
′

x ≡
ky,y

′
x p(x, y′; t)− ky

′,y
x p(x, y; t). Equation (3.1) then reads

d

dt
p(x, y; t) =

∑
x′,y′

Jy,y
′

x,x′ =
∑
x′

Jyx,x′ +
∑
y′

Jy,y
′

x . (3.3)

Entropy production rate Ṡi(t) for the system can be easily derived [20]
by analyzing time derivative of the system’s Shannon entropy (with a Boltz-
mann constant kB set to 1)

S(t) = −〈ln p (σc = x, σg = y; t)〉 ,
dS

dt
= Ṡe(t) + Ṡi(t) , (3.4)

where

Ṡi(t) =
∑
x 6=x′,y

Jyx,x′ ln
kyx,x′p (x′, y; t)

kyx′,xp(x, y; t)
+
∑
x,y 6=y′

Jy,y
′

x ln
ky,y

′
x p (x, y′; t)

ky
′,y
x p(x, y; t)

≥ 0 ,

(3.5)
Ṡe(t) is the entropy flow to the environment and average in Eq. (3.4) is taken
over the joint probability distribution function p(x, y; t).
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In line with a full kinetic scheme displayed in Fig. 1, we will refer to eight
kinetic rates: k+

−,+ ≡ k12, k+
+,− ≡ k21, k−+,− ≡ k34, k−−,+ ≡ k43 which describe

change of a conformation state σc = x while preserving the same state of
the gate σg = y and k−,+− ≡ k23, k

+,−
− ≡ k32, k

−,+
+ ≡ k14, k

+,−
+ ≡ k41 which

describe the closing and opening of the gate at a constant conformation state.
Note, that according to the notation in Eqs. (3.1), (3.2), upper indices refer
to the sign of the gate binary variable, whereas lower ones denote the sign
of σc.

At equilibrium, the detailed balance condition has to be satisfied, i.e.
k12 × k23 × k34 × k41 = k14 × k43 × k32 × k21 yielding zero entropy change
Ṡ(t) = 0. In turn, in stationary nonequilibrium states, the latter condition is
violated and non-zero currents contribute to nonnegative entropy production
expressing energetic costs of channel gating at varying conformation state
of the ion channel.

We assume that the state of a fully open channel (σc = 1, σg = 1) is
the highest (excited) energetic state, separated from the lowest one (σc =
−1, σg = −1) by two additional “semi-open” and “semi-closed” states of
intermediate energies (cf. Fig. 1). Relaxation from the fully open state 1
can be realized by decay with rate a to a semi-closed state 4, or by decay with
rate b to the semi-open state 2. The transition from state 4 to 1 requires
some extra energy to be applied and can be realized with rate ae−ε. Similar
reasoning explains rates between other pairs of states, listed in Table I. The
explicit form of the entropy production rate associated with the steady state
of the system can be written as

Ṡi(t) = 2

[
J34 ln

k34p(3)

k43p(4)
+ J21 ln

k21p(2)

k12p(1)
+ J32 ln

k32p(3)

k23p(2)
+ J41 ln

k41p(4)

k14p(1)

]
(3.6)

with p(i) standing for steady-state probabilities and Jik indicating steady
currents between states i and j, respectively. By using as entry parameters
the rates from the first column of Table I, we get steady-state probabilities
p(1) = p(2) = (2 + 2eε)−1 and p(3) = p(4) = eεp(1). Accordingly, steady
state flows between any two pair of states become zero:

J12 = J21 = p(1)b− p(2)b = 0 ,

J23 = J32 = p(2)a− ae−εp(3) = 0 ,

J41 = J14 = p(1)a− ae−εp(4) = 0 , (3.7)

in line with the detailed balance condition. In other words, unperturbed,
independently operating ion channel does not produce entropy during its
repetitive opening and closing cycles. However, as discussed extensively in
the next section, channels exhibit collective phenomena by detecting and
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responding to the state of their neighbors. For example, the opening of one
channel affects the opening probability of its neighbor [3]. To acknowledge
this fact, we introduce the interaction term exp[±∆G] with ∆G ≥ 0 to
some of the rates from Table I. Positive exponent, exp[+∆G], means that
the environment (e.g. the other channel) favors the transition. Similarly,
negative exponent, exp[−∆G], indicates that the system opposes to change
its state. We consider two cases: the favoring of the open state, when
the environment supports the transitions towards state 1, and of the closed
state, with preferential transitions towards state 3. Since the experimentally
obtained time series of channel’s opening and closing do not distinct between
the main (i.e. open or closed) and the indirect (i.e. semi-open and semi-
closed) states, we modify also the rates of the transitions from and to the
corresponding transients. Table I lists the corresponding sets of transition
rates.

TABLE I

Transition rates during the opening and closing cycle of a single ion channel. Second
column lists the rates for an independent channel, unaffected by the environment.
Third and fourth columns list the rates for a channel with favored open state 1 and
closed state 3, respectively.

Rate Normal Favoring open Favoring closed

k12 b b exp[−∆G] b

k21 b b exp[∆G] b

k23 a a exp[−∆G] a exp[∆G]

k32 a exp[−ε] a exp[−ε+ ∆G] a exp[−ε−∆G]

k34 b b b exp[−∆G]

k43 b b b exp[∆G]

k41 a exp[−ε] a exp[−ε+ ∆G] a exp[−ε−∆G]

k14 a a exp[−∆G] a exp[∆G]

For these transition rates (3rd and 4th columns in Table I), we calculate
the stationary probabilities and flows. With the rates affected by the en-
vironment, the detailed balance is violated and the nonvanishing currents
occur in the system, driving the cycle depicted in Fig. 1 away from the
equilibrium. This results in the positive entropy production rate Ṡi(t) > 0.
Figure 4 shows the entropy production rate at nonequilibrium steady states
as a function of the interaction energy ∆G, when the environment supports
both opening and closing of a given ion channel. When the environment
favors channel opening, with increasing ∆G the system is more likely to
stay in state 1. Eventually, for ∆G big enough, escape from state 1 becomes
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impossible and the channel “freezes out”. For a certain value ∆G = ∆Gmax,
entropy production rate Ṡi(t) reaches a maximum. In this case, the system
reaches nonequilibrium steady state with corresponding steady state fluxes
J21 = J32 = −J34 = −J41. Analogical scenario (cf. lower curve in Fig. 4)
takes place when the closed state of the channel becomes preferred.
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Fig. 4. (Color online) Entropy production rate Ṡi as a function of environmental
pressure ∆G. Light gray/orange plot shows the entropy production when the inter-
action with the environment favors the open state of a channel. Gray/blue plot
shows the same dependency for the enforced closed state. The parameter values
are a = 10, b = 0.1 and ε = 1. The inset shows the entropy production rate for an
irreversible cycle 1 → 2 → 3 → 4 → 1 as a function of ∆G. The nonequilibrium
probabilities are: p1 = 2/4, p2 = 1/4, p3 = 1/8, p4 = 1/8.

We note that the entropy production can also be calculated for a sim-
plified, irreversible cycle 1 → 2 → 3 → 4 → 1 [7]. With nonequilibrium
time-dependent probabilities p(x, y; t), the entropy production rate grows
exponentially with increasing ∆G (inset in Fig. 4) and falls to zero when
the equilibrium is reached.

To acknowledge the composite nature of channel gating, we may separate
the transitions responsible for opening and closing of the channel (vertical
lines in Fig. 1) from the changes in its gate tension (horizontal lines in Fig. 1)
[19]. It allows to compare entropy production rates by the two subsystems,
i.e. during internal changes in the protein, leading to the global effect —
gating. They are given by

ṠXi =
∑
x 6=x′;y

Jyx,x′ ln
wyx,x′p (x′, y)

wyx′,xp(x, y)
,
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ṠYi =
∑
x;y 6=y′

Jy,y
′

x ln
wy,y

′
x p (x, y′)

wy
′,y
x p(x, y)

. (3.8)

As described by Horowitz and Esposito [19], this separation can be used to
write down the second law for both subsystems, X and Y . Figure 5 shows
entropy production rates for both subsystems of an ion channel: global con-
formational changes, which lead to opening/closing, and additional “degrees
of freedom” or gate tension.

A	 B	

C	 D	

ΔG	

ΔG	

ΔG	

ΔG	

Fig. 5. Entropy production rates in two separated subsystems: opening/closing
(i.e. “Y transitions”) and gate tension (i.e. “X transitions”) of the channel. Panel
shows the entropy production rates along X and Y transitions when open (A) and
closed (B) state is favored.

Untill now, we have analyzed some thermodynamical properties of a sin-
gle ion channel. The only interaction with the nonspecified environment
was via the constant term exp[±∆G] in the transition rates. Now, we turn
towards more realistic scenario of an idealized membrane, containing multi-
ple channels. There will be a reciprocal interaction between every channel
and its neighbors. This interaction will have a serious consequences for the
physiology of a whole cell.

4. Synchronization in the group of channels

In living cells, ion channels do not work independently of one another.
Collective behavior has been observed in numerous experiments [25–27] and
mutual cooperativity of channels has been attributed to both, internal pa-
rameters (structural variations) and external factors (membrane proteins).
Notwithstanding, the underlying mechanism by which the membrane pro-
teins “communicate” is still not obvious. One way of propagating the signal
about the given channel’s state is via the membrane. Open channel changes
the structure of nearby lipids in a different way than does the closed one
[28–30]. Hence, the membrane deformation can be a realization of a coupling,
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but only on short distances. Another possibility is the change of ion gradi-
ent between both sides of the membrane. With the opening of channels, the
ions start to flow from and/or inside the cell, changing the transmembrane
potential Vm. The more open channels, the bigger the change in the electric
field and the collective response of other channels. The same effect can be
also achieved experimentally by applying the external potential as in [9].

Ion channel clusters, i.e. regions on a membrane where the action of one
channel is amplified by the actions of the neighboring ones [31–35] have been
found in many cell types and have been documented to play an important
role in signal transduction. For example, specific targeting, clustering and
maintenance of Na+ and K+ channels in myelinated nerve fibers are essential
to achieve high conduction velocities of action potential propagation [36]. It
has been also reported [37] that distributions of receptors in clusters of vari-
able sizes optimize the response to small stimuli and the sensitivity to signal
amplitudes. Similar conclusions have been drawn by Shuai and Jung [34]
who, in their studies of inositol 1,4,5-triphosphate receptors in the plasma
membrane, have shown that channel clustering can dramatically enhance
the cell’s capability of creating a large Ca2+ response to weak stimulation.

At the level of statistical analysis of signals, one of useful measures of
channel–channel interaction is assessing the number of ion channels opening
under voltage clamped conditions [38]. To study such collective behavior
of channels, here we address a model system of n channel units distributed
over interacting clusters. Throughout this section, for a single channel, we
will use the simplified transition cycle in which all the reactions showed
in Fig. 1 vary periodically, i.e. 1 → 2 → 3 → 4 → 1 . . . The transitions
between subsequent states of the channel are then reminiscent of a phase-
change of an oscillator [31]. For an isolated channel, the transition rate
k1 = k2 + k3 = k4 is now set to a constant k0 with a system reaching a
steady state p1 = p = 2 = p3 = p4 = 1/4. For many coupled units, the
transition rates are assumed to depend on the state of neighboring units
(thus, coupling neighboring phases). To study emergence of synchrony in
the system of interacting channels, following Wood et al. [31], we define the
transition rate ki of a single unit (a single four-state channel) from state i
to state i+ 1 as

ki = k0 exp

[
a (V Ni−1 + UNi+1 +WNi)

n

]
, (4.1)

where i = 1, 2, 3, 4 and i + 1 = 1 when i = 4 and i − 1 = 4 when i = 1. In
this way, each unit is globally coupled to n − 1 → ∞ units (among which
Ni are in state i). U, V and W are real parameters responsible for coupling
strength with units in certain states. For a given set of channels, they are
determined once and for all. Parameter a, however, is a continuos variable.
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It has been shown that ion channels tend to form clusters, i.e. such
regions on a membrane where the action of one channel is amplified by the
actions of the neighboring ones [32–35]. They do so under the meticulous
control of the cytoskeleton and other assisting proteins [30]. In our case,
the strength of the amplification is determined by the choice of parameters
U, V,W . Additionally, we assume that the more channels interact, the bigger
the collective effect [38]. This feature is captured in the progressive change
of a. It may, or may not, grow linearly. Here, we take the simple case of
a ∝ L, with L being the cluster size, i.e. the number of channels in a given
cluster.

We start with expressing the probability of finding, for the ith unit, Nj

among n units in state j = {i − 1, i, i + i} as Pi = Nj/n. Equation (4.1)
then reads

ki = k0 exp [a (V Pi−1 + UPi+1 +WPi)] . (4.2)

For a set of equations
Ṗi = ki−1Pi−1 − kiPi , (4.3)

we calculate the stationary probabilities P 0
i , obtaining P

0
i = (ki−1/ki)P

0
i−1.

By taking P 0
1 = P 0

2 = P 0
3 = P 0

4 = 1/4, we have k1 = k2 = k3 = k4 ≡ K
with K = k0 exp

[
1
4a(U + V +W )

]
.

Normalization allows us to eliminate one out of four equations. Per-
forming the stability analysis, we find the eigenvalues of the following 3× 3
matrix

λ1 =
K

2
[a(U + V −W )− 4] ,

λ2,3 =
K

4
[a(U − V −W )− 4± (4 + a(U − V +W )) i] . (4.4)

For a(U +V −W ) < 4, the first eigenvalue is negative, λ1 < 0. The real
parts of λ2,3 are negative for a(U − V −W ) < 4. The complex eigenvalues
λ2,3 cross the imaginary axis at ac = 4/(U − V −W ). This yields

λ∗2,3 = ±iω(U, V,W ) , (4.5)

where
ω(U, V,W ) = 2k0 exp

[
U + V +W

U − V −W

]
U − V

U − V −W
. (4.6)

Two types of bifurcations are expected to occur in the system: pitchfork
and Hopf. Their points are determined by the parameters U, V,W and a, as
shown in Fig. 6. Pitchfork bifurcation occurs when the real eigenvalue λ1

changes its sign. Similarly, the Hopf bifurcation occurs when the real parts
of λ2,3 change their signs. For a > 0, pitchfork bifurcation precedes the Hopf
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bifurcation only if V > 0 and 0 < U −W < 4/a. For a given parameter
set (U, V,W ) and for a big enough, eigenvalue λi with i = 1, 2 or 3 may
change its sign. A corresponding bifurcation will then occur, affecting the
dynamics of the system. This explains why the clustering of channels may
lead to collective phenomena like synchronization.

Re(λ2,3)>0
 λ1<0


Re(λ2,3)<0
λ1>0


U-W


V

4/a


4/a


-4/a


Fig. 6. (Color online) Parameter space showing the complex dynamics of a system
of coupled ion channels. The light gray/blue line indicates the parameter values
for which pitchfork bifurcation occurs. The dark gray/brown line sets the range
for the Hopf bifurcation. See details in the text.

The choice of parameters (U, V,W ) obviously determines the results ob-
tained by modeling. It should be dictated by the biological properties of a
given channel. Generally, for channels exhibiting positive cooperation (i.e.
opening of one channel increases the opening probability of its neighbors),
U, V,W > 0 and for those negatively coupled (i.e. opening of one channel
decreases the opening probability of its neighbors) parameters are negative.
However, combinations of positive and negative parameters are also possible
and can reproduce the experimentally observed behavior.

In [9], the four-state model was suggested for nonselective voltage-acti-
vated cation channel from human red cells. By changing the membrane
potential, the open channel switched to the transient-open state and even-
tually closed. Similarly, the closed channel was shown to open, exhibiting a
transient state of “gate tension”. Here, we do not introduce voltage explic-
itly, but by tuning the parameters, so that the equilibrium of each state is
shifted towards the preceding (|U | < |V |) or succeeding state (|U | > |V |),
it is possible, at least to some extent, to mimic the action of a real driving
force.



924 B. Lisowski et al.

Through this paper, we use (U, V,W ) = (2,−1, 0) as a default parameter
set. This choice is justified by the physical interpretation of a channel’s
action under changing driving potential presented in [9]. This driving forces
the channel to follow the transition cycle showed in Fig. 1 in a “positive
direction” i.e. 1 → 2 → 3 → 4. Preceding states are then repelling (hence
V < 0), while those ahead of the actual state are attracting (U > 0).

4.1. Order parameter

As a measure of the collective behavior of coupled channels, we introduce,
after Kuramoto [39], synchronization order parameter r:

r =
1

n

n∑
j=1

eiφj , (4.7)

where φj is discrete phase of unit j. In our study we investigate 4-state units
for i = 1, 2, 3, 4, so φ get simple values φi = π/2, π, 3π/2, 2π. In this paper,
we use also the notation

r∞ = 〈r〉

for time that equals the last step of simulation. Parameter r∞ characterizes
phase synchrony of units.

We use the Gillespie algorithm [40] to model the stochastic transitions
showed in Fig. 1 for 100 channels. Depending on the number of channels in
a given state, the transition rates vary according to Eq. (4.1).

With a rise of coupling factor a, phase synchronization remains un-
changed, yet until certain critical point ac, see Fig. 7. For a ≥ ac coupled
units are working coherently and r is increasing rapidly. Eventually, for a
big enough, r saturates at a maximum level.

5. Physiological consequences of channel synchronization

We consider an idealized cell, the membrane of which is perforated by
only one type of ion channels. Each channel works in the way described in
the previous section. While open (states 1 and 2), it allows the ions of a
given type (e.g. Na+) to flow into or outside the cell. The direction of the
flow is governed by the concentration gradient gi.

Our aim is to follow the changes of the ion concentration in such a
cell, cin, when channels are independent (a = 0 in Eq. (4.1)) and weakly
(0 < a < ac) or strongly coupled (a ≥ ac). Starting with the “empty” cell,
that is with cin = 0, we simulate the stochastic behavior of n = 100 channels,
using the aforementioned Gillespie algorithm [40]. In each simulation step,
for every channel in state 1 or 2, one molecule of ion is assumed to pass the
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Fig. 7. (Color online) Synchronization order parameter r for (U, V,W ) = (2,−1, 0)

and 100 oscillators. Dashed line shows the critical value of a for which Re(λ2,3) = 0,
ac = 4

3 . Simulations were done using the Gillespie algorithm, as described in the
main text. Insets show the changes in the ion concentration inside the cell for
sub-critical (bottom/red) and super-critical (top/green) coupling strength, a. The
parameter values are cthresh = 50, k0 = 1, (U, V,W ) = (2,−1, 0) and n = 100.

membrane in a direction dictated by the discrete concentration gradient,
gi = −1, 0, 1. For gi = 1, the ions flow into the cell, while for gi = −1, they
flow out to the environment.

The number of molecules in the environment is assumed to be infinite.
Internal concentration, cin, may increase up to a threshold value cthresh. For
cin ≤ cthresh, gi = 1. When cin exceeds the threshold, gi = −1. For closed
channels (states 3 and 4), no net flow is observed and gi = 0.

Insets in Fig. 7 show the results of the simulations. For our choice of
parameters, with growing a, eigenvalues λ2,3 eventually change the sign and
the Hopf bifurcation occurs. It drives the channels to cooperative action.
As a result, the hypothetical ion’s concentration starts to change in a reg-
ular manner. It does no longer simply fluctuate near the threshold, as for
subcritical values of a (lower inset in Fig. 7). Instead, it grows and falls
regularly, and the wave-like pattern resembles the electrical spikes of the
changing membrane potential in excitable cells [1, 3]. Moreover, the time
needed to achieve synchronization is shorter for higher values of a and the
“spikes” become narrower. This behavior does not depend on the value of
the threshold: when the ion concentration cin approaches cthresh, it starts to
change in a way showed in the insets in Fig. 7. The ion’s concentration is
a kind of a chemical signal for the cell’s metabolism. Therefore, the impor-
tant result of this part is that the cell can modulate its chemical activity by
allowing for or opposing the ion’s clustering. We speculate that this can be
done, for example, by stiffening or relaxing the membrane, e.g. by modifying
the concentration of cholesterol in the membrane [41]. This would act as a
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modulator: the signal from one channel would be transmitted to the neigh-
boring ones easier or harder, depending on the cell’s needs. This hypothesis
should be tested experimentally.

6. Summary

The cooperative behavior of interacting proteins on the cell membrane
is a timely and important subject of investigations [42, 43]. Local electric
fields exist and arise in living cells and tissues affecting conductance of ion
channels via conformational transitions within the gate area which controls
transmission of ions. These conformational alterations are associated with
energy barriers between states of various subconductances and are depen-
dent on stimulus, such as electrical field or ligands. Several models have been
proposed to describe the kinetics of ion channels [4]. The classical Marko-
vian model [1] assumes that a future transition is independent of the time
that the ion channel stayed in a previous state. Other models as the fractal
and the chaotic [4, 44, 46] assume that the rate of transitions between the
states depends on the time that the ionic channel stayed in a previous state
and frequently also well conform to experimental recordings. Since the prob-
lem of identifiability of a model and discrimination between its Markov or
non-Markov version is not always straightforward (some non-Markov mod-
els of kinetics, as e.g. proposed by the generalized Langevin equation can
be well-mapped on multi-dimensional, multi-state Markov ones), Markovian
approach is adopted as a first and the easiest option to test.

On the other hand, many experiments point out that biological channels
behave in a cooperative manner which depends on external factors (applied
voltage) or structural parameters. As an example, mechano-sensitive chan-
nels are sensitive to mechanical stimuli and adapt their conformation accord-
ing to the local membrane environment. Changes of channel pore geome-
try in terms of electromechanical coupling between voltage sensing domains
and pore-forming domains have been recently addressed by Wawrzkiewicz-
Jałowiecka and Grzywna [45] in their work analyzing fluctuating permeabil-
ity of the Kv 1.2 channels. These authors have pointed to the possibility
of stabilization of open conformations of a channel by voltage-activation
which results in the change of confinement within the pore and facilitates
the transport. Neighboring channels affect themselves by membrane defor-
mation leading to a collective response of a cluster of channels. Although
these types of channels are abundant across realms of life, their behavior
and self-organized cooperativity are not well-understood.

In this article, we have presented a didactic multi-state model of a single
ion kinetics and explained entropy production fluxes arising in course of its
opening and closing. In the second part, we have analyzed a route to a syn-
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chronized behavior of an ensemble of such units coupled with their neighbors
and exhibiting a transition to a collective phase motion at a critical value
of the coupling parameter. We have finish with a brief resume of possible
consequences of the synchronization and suggestions concerning benchmark
experiments to be planned in this field.
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