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The Schramm–Loewner evolution (SLE) is a correlated exploration
process, in which for the chordal setup, the tip of the trace evolves in a
self-avoiding manner towards the infinity. The resulting curves are named
SLEκ, emphasizing that the process is controlled by one parameter κ which
classifies the conformal invariant random curves. This process when expe-
riences some environmental imperfections or, equivalently, some scattering
random points (which can be absorbing or repelling) results in some other
effective scale-invariant curves, which are described by the other effective
fractal dimensions and, equivalently, the other effective diffusivity param-
eters κeff . In this paper, we use the classical Henon map to generate scat-
tering (absorbing/repelling) points over the lattice in a random way, that
realizes the percolation lattice with which the SLE trace interacts. We
find some meaningful power-law changes of the fractal dimension (and also
the effective diffusivity parameter) in terms of the strength of the Henon
coupling, namely, the z parameter. For this, we have tested the fractal
dimension of the curves as well as the left passage probability. Our ob-
servations are in support of the fact that this deviation (or, equivalently,
non-zero zs) breaks the conformal symmetry of the curves. Moreover, the
effective fractal dimension of the curves vary with the second power of z,
i.e. DF(z)−DF(z = 0) ∼ z2.

DOI:10.5506/APhysPolB.50.929

1. Introduction

The Schramm–Loewner evolution (SLE) is served as a powerful tool in
classifying two-dimensional (2D) critical statistical systems in one-parameter
classes [1, 2]. In contrast to the conformal field theory (CFT) which deals
with the local fields [3], it analyzes the global quantities of the model in
hand and maps the problem into a dynamical exploration process [2, 4].
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This is done by using a stochastic equation which governs the uniformizing
conformal maps, by which an important parameter, namely, the diffusivity
parameter κ is extracted. This dynamical equation is also referred to as
the Loewner process [1]. The diffusivity parameter is referred to as the
parameter of the universality class of 2D conformal systems [5].

The statistical analysis of such systems becomes possible by mapping
of the extended interfaces of the 2D conformal systems (which can be the
domain walls of the separated phases, or something else, which is com-
monly resultant of the snapshots of a dynamical systems), to the exploration
(Loewner) process. This method has been proved to be very promising in
recognizing and classifying the well-known 2D conformal systems as well as
the less-known ones. The examples for the well-known models are: the Ising
model [6], the Coulomb gases [7], the loop erased random walks [8], and the
self-avoiding walks [9]. A good review on the subject can be found in [2].
The most important examples for the less-known models are also: the BTW
sandpile model [10], the watersheds [11], the graphene system [12], the nor-
mal state of the YBCO superconducting planes [13], the random field Ising
model [14], the Ising model on the percolation systems [15], the (2+1)-
dimensional growing surfaces [16], the Darcy model of fluid propagation in
the porous media [17], and the three-state Potts model [18]. Many aspects
of this model are known, ranging from its Fokker–Planck equation [19], to its
relation to the other models like the Coulomb gases [2], and also many sta-
tistical features (SLE predictions) of the random curves are known, such as
the left passage probability [4], the fractal dimension, and Cardy’s crossing
probability [2].

The correlated dynamical paths in the SLE theory, whatever they are
describing, are defined in the upper half plane in the chordal setup. This
area is regular, and each point of the upper half plane has the chance to
be visited through an exploration process. A question may arise concerning
making of the space partially imperfect by distributing some forbidden or
inactive areas over the host system, i.e. the upper half plane. In other
words, what happens if the dynamical traces of SLE (which are described
by the Loewner process in the regular system) are not allowed to enter some
quenched random regions? This is the main aim of the present paper.

Actually, the answer to this question is not simple from both practical
and theoretical point of view, since there are some problems in its realiza-
tion. More precisely, the SLE paths are built by means of some stochastic
Langevin equations that move simultaneously all points of the trace (up to
some definite time), which yields the SLE trace at final. Therefore, we can-
not force the points not to enter the forbidden regions. A possible way to
solve this problem is to couple the SLE Langevin equation with some other
equations which absorb (repel) the traces of the SLE towards (from) the al-
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lowed (forbidden) sites. There are many ways to do so, one of which is using
of the two-dimensional dynamical maps that should be designed carefully
by demanding some points of the space to be stable fixed points and some
unstable fixed points of the map, which is done in the present paper. The
Henon map is a proper candidate for which the classical fixed points can be
easily designed to contain absorbent/repellent fixed points. By choosing the
configuration of absorbent/repellent (scattering) sites completely randomly,
we have actually coupled the SLE theory with the percolation theory. We
have also put a tunable parameter z in the analysis that tunes the strength
of the Henon scatterer (absorbent/repellent) sites.

We have considered four κ values in the dilute SLE phase, i.e. κ = 2, 8
3 , 3

and 4, and tested the effect of the Henon-percolation lattice on them which
is tuned by the parameter z. In each case, we have extracted the effective
diffusivity parameter κeff of the resultant curves. To do so, we have used
two parallel tests: the fractal dimension of the curves and the left passage
probability test. We have interestingly observed some power-law behaviors
in terms of z. We see in the following that the conformal symmetry of the
(initially conformal) random traces breaks down.

The paper has been organized as follows: in the following section, we
introduce shortly the SLE theory. Section 3 has been devoted to the defi-
nition of the problem. In that section, we derive the main equations of our
claim. After describing the numerical methods of the paper in Sec. 4, we
will present our main findings in Sec. 5. We will close the paper with a
conclusion.

2. Schramm–Loewner evolution

According to the SLE theory, one can describe the geometrical objects
(which may be interfaces) of a 2D critical model via a growth process and
classify them into one parameter (κ) classes [2]. From a simple relation
between the central charge c in CFT and the diffusivity parameter κ in
SLE, namely c = (6−κ)(3κ−8)

2κ , one can find the corresponding CFT [2, 4, 19]
and, consequently, the universality class is obtained. Chordal SLEκ is a
growth process defined via the conformal maps, gt(z), which are solutions
of Loewner’s equation

∂tgt(z) =
2

gt(z)− ξt
, (1)

where the initial condition is gt(z) = z and ξt (the driving function) is a
continuous real valued function which is shown to be proportional to the one-
dimensional Brownian motion (ξt =

√
κBt) if the curves have two properties:

conformal invariance and the domain Markov property.
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One of the most important measures of the SLE theory is the left passage
probability (LPP) that is the probability that an arbitrary point z = x+ iy
falls to the right of a chordal curve, i.e. the curve passes from the left of z.
It has been shown that [4]

LPP(θ) =
1

2
+

Γ (4/κ)√
πΓ ((8− κ)/2κ)2F1

[
1

2
,
4

κ
,
3

2
,− (cot(θ))2

]
× cot(θ) , (2)

where cot(θ) ≡ y
x and 2F1 is a hypergeometric function. The above equation

declares that if the curve is conformal, then LPP should be independent of
r ≡

√
x2 + y2. The fractal dimension of the stochastic curve can also be

served as another important measure which is related to κ via the relation
DF = 1 + κ

8 [2]. In the present paper, we regularly use these equations to
extract the effective diffusivity parameter which is defined in the following
section.

Now, we are going to describe the Langevin equation for the chordal
SLE trace. For details, see [20]. Let us first define the shifted conformal
map ht(z) as follows:

ht(z) ≡ gt(z)− ζt (3)

for which one can easily verify that

h−1
t (w)

d
= g−1

t (w + ζt) . (4)

In the above equation, d=means the equality of the distributions of stochastic
processes. The differential equation governing ht is

∂tht(z) =
2

ht(w)
− ∂tζt (5)

in which h0(z) = z. One can retrieve the SLE trace by the relation Γ (t) =
limε↓0 g

−1
t (ζt + iε) = limz→ζt g

−1
t (z) and find the differential equation of the

tip of the SLE trace. The equation governing g−1
t is very difficult to solve.

There is a way out of this problem using the backward SLE equation. The
backward SLE mapping ft(z) is defined as follows (note that ζt

d
= ζ−t

d
= −ζt)

[20]:

∂tft(w) = −
2

ft(w)− ζt
. (6)

It has been shown that the probability distribution of ft is the same as g−1
t

[20], i.e.

ft(w)− ζt d
= g−1

t (w + ζt)
d
= h−1

t (w) . (7)
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The schematic representation of this equation has been sketched in Fig. 1.
Therefore, the tip of the SLE trace can be obtained by ΓT = limw→0 g

−1
T (w+

ζT) = limw→0 h
−1
T (w). Now, we can find the trajectory of the tip of the SLE

trace using the backward equation (6) for zt = xt + yt which is (notice that
Re(Γt) and Im(Γt) have the same joint distribution as xt and yt)

∂txt = − 2xt
x2
t + y2

t

− ∂tζt ,

∂tyt =
2yt

x2
t + y2

t

(8)

conditioned to have the initial values x0 = u and y0 = v in which w = u+ iv
is the initial point of the flow. This is the starting point of our analysis, i.e.
the above equations provide the possibility of building numerically the real
SLE traces, and are regularly used in this paper.

Fig. 1. The procedure of the inverse SLE map, leading to retrieval of the SLE
path. Upper: The path of the tip of the trace by repeatedly applying the SLE
uniformizing map. Lower: The inverse procedure using the ft mapping.

3. Exploration process in the landscape of random scatterers
in the Henon-percolation lattice

In this section, we theoretically present a method to make SLE traces
interactive with lattice sites, i.e. declare how they are put into a percolation
media in which there are some centers of absorption and repulsion which
interact with the SLE trace. This is possible via inserting some absorp-
tion/repulsion (scattering) centers in the dynamical equation of the SLE
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trace. Let us go into details by rewriting the Langevin equation of non-
interactive SLEs, i.e. Eq. (8) as follows:{

ẋ = − 2x
x2+y2

−√κḂ
ẏ = 2y

x2+y2

. (9)

As stated above, we intend to use the Henon map to generate the absorp-
tion/repulsion (scattering) centers over the lattice. The Henon map is nor-
mally defined as follows:{

xn+1 − x0 = (yn − y0) + 1− r1(xn − x0)
2

yn+1 − y0 = r2(xn − x0)
, (10)

where r1 and r2 are the control parameters of the map, and (x0, y0) is the
origin or the reference point. In the continuum limit, this equation trans-
forms to {

ẋ = (y − y0) + 1− r1(x− x0)
2 − (x− x0)

ẏ = r2(x− x0)− (y − y0)
. (11)

The fixed points of the Henon map can be readily found by demanding
x∗n+1 = x∗n and y∗n+1 = y∗n, which are found to be x∗n − x0 = r2−1

2r1
∓ 1

2r1

√
(r2 − 1)2 + 4r1

y∗n − y0 = r2x
∗
n

(12)

or equivalently x0 = x∗ −
(
r2−1
2r1
∓ 1

2r1

√
(r2 − 1)2 + 4r1

)
y0 = y∗ − r2x

∗
2

. (13)

We can set x∗ and y∗ to be an arbitrary point in space and also tune r1

and r2 to make the point unstable (repulsive) or stable (absorptive). Then
the corresponding Henon process, when is started from the true reference
point (x0, y0), is driven in/out (depending on the chosen values of r1 and
r2) to/from the point (x∗, y∗).

Now, we are in the position to consider the main problem of the paper,
i.e. we combine the SLE dynamical equation with the Henon map to make
the SLE trace interactive with the lattice points. The most direct way is to
insert the right-hand side expressions of Eq. (11) into Eq. (9). By doing so,
we obtain{

ẋ = − 2x
x2+y2

−√κḂ + z
[
y − y0 + 1− r1(x− x0)

2 − (x− x0)
]

ẏ = 2y
x2+y2

+ z [r2(x− x0)− (y − y0)]
(14)



Schramm–Loewner Evolution in the Random Scatterer . . . 935

or in the discrete case (δxn ≡ xn − x0, and δyn ≡ yn − y0),
xn+1 = xn −

(
2xn

x2n+y2n
+ z

[
r1δx

2
n + δxn − δyn − 1

])
δt−√κδBn

yn+1 = yn +
(

2yn
x2n+y2n

+ z [r2δxn − δyn]
)
δt

,

(15)
where the z parameter controls the strength or contribution of the Henon
map. In this process, the SLE traces are partially driven in (out) to (from)
the point (x∗, y∗). This enables us to set x∗ and y∗ a point of interest.

Especially, we can choose (x∗, y∗) to be the center of the squares of a
two-dimensional square lattice. In this case, x∗ = xmid = a (n+ 0.5) and
y∗ = ymid = a (m+ 0.5), where (n ≡

[
xn
a

]
+1,m ≡

[yn
a

]
+1) is the coordinate

of the selected square in the lattice, and a is the lattice constant. In Fig. 2,
we have schematically shown this setup.

Fig. 2. The schematic arrangement of the problem of the SLE trace correlated to
the lattice interactive points. When the tip of the graph reaches a block, the point
which is located right in the middle of the block plays the role of the unstable/stable
fixed point which drives out/in the tip.

The general dynamical process is as follows: Before the process is started,
we determine the fields r1 and r2 over the lattice, i.e. {r1(n,m)}Ln,m=1 and
{r2(n,m)}Ln,m=1. Accordingly, each block of the lattice become repulsive or
attractive region for the SLE trace. The SLE trace evolves according to
Eq. (15). When the trace enters a block (n,m) in the lattice, (x∗, y∗) is
set to the middle of the block, and the corresponding (x0, y0) is calculated
via Eq. (13), and is inserted into the dynamical Eq. (15). This has been
schematically shown in Fig. 3, in which the tip of the SLE trace as well as
the middle of the block have been sketched. r1 and r2 have been set to their
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values in the classical Henon map, with some uncorrelated fluctuations, i.e.
r1(n,m) = 1.4+C(η−0.5) and r2(n,m) = 0.3+C(η−0.5), where η is some
random number with uniform distribution in the [0, 1] interval, and C is the
strength of the randomness that is set to 0.2 in this paper.

Fig. 3. The real SLE trace samples. In each column, the input κ (κ used for
generating SLE traces which interact with Henon-percolation points) is fixed, but
z varies from zero (top) to 8 (bottom), i.e. z = 0, 2, 4 and 8 from top to bottom.

4. The numerical details

In this section, we describe the numerical details and the ways the critical
exponents have been extracted. To generate the samples, we have used
the SLE–Henon Eq. (15), and the random curves have started from the
origin. When the trace of SLE reaches one block of the lattice, the only
attractive/repulsive (scattering) point that acts on it is located at the center
of that block. The size of blocks has been set to a = 10−3, the time step
of the SLE map has been chosen to be δt = 10−5, and the SLE traces have
been allowed to grow over 3×104 steps, i.e. the curves contain 3×104 points.
The effect of Henon map is controlled by the z parameter.

We have run the program for four different κs: κ = 2, 8
3 , 3 and 4. We

have also considered various rates of z to control the effects of the Henon-
percolation lattice: z = 0, 1, 2, 4, 8, 32 and 64. The size of the system can be
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arbitrarily large, but for N = 3×104 point curves, L = 10 (corresponding to
a lattice with linear size Lx = L

a = 104) was sufficient. Some samples of this
problem have been shown in Fig. 3 in which κ refers to the bare diffusivity
parameter from which we start that is constant over each column. In each
column, z varies from zero to higher values, i.e. z = 0, 2, 4 and 8 from top
to bottom.

In the analysis of the curves, we have used two parallel tests to extract
the presumable effective diffusivity parameter κeff , namely left passage prob-
ability (LPP) and the fractal dimension of the SLE traces. The numerical
setup of these quantities have been shown in Fig. 4 (top) and (bottom). As
is evident from this figure, the box-counting method has been used to find
the fractal dimension (in which each box contains the same length of the
curve). Moreover, the LPP can be evaluated by varying the θ parameter
from zero to the maximum value, which is π. If the curves are conformally
invariant, then the LPP should not depend on r (which is the case for all
supposed zs, except very large ones z = 32 and 64).

Fig. 4. The procedure of calculating (top) the fractal dimension, and (bottom) the
LPP function of the SLE curves.
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5. Results and discussion

In this section, the results are presented. We should first examine our
numerical procedure for generating SLE curves with arbitrary diffusivity
parameters in the regular host, i.e. see if the numerical tests work for the
case z = 0. Equations (8) should be employed for this purpose. If all the
theoretical and numerical procedures are correct, then by an input of κ into
Eqs. (8), the output κ should be the same. In Fig. 5, we have shown the
two mentioned tests for z = 0, and κ = 2, 8

3 , 3 and 4. In Fig. 5 (a), the
fractal dimension of the curves is the slope of the graph, which is perfectly
in agreement with the theoretical expectations, i.e. DF = 1+ κ

8 for all input
κs. The same is true for Fig. 5 (b), in which the fit has been shown for
κ = 2. Again, a complete agreement with the theoretical value (Eq. (2)) is
obtained. This is indeed the case for all examined κs. All of these confirm
that the methods that we have employed to extract the statistical quantities
are reliable.

10−2

〈L(l) 〉

10−2

10−1

l

Df = 1.250± 0.003

κ = 2

κ = 8
3

κ = 3

κ = 4

2 3 4

κ

1.3

1.4

1.5

ca
lc

u
la

te
d
D
F

0.0 0.5 1.0 1.5 2.0 2.5 3.0

θ

0.0

0.2

0.4

0.6

0.8

1.0

L
P

P

κ = 2

κ = 3

κ = 4

κ = 8
3

fitκ = 2

2.0 2.6 3.0 4.0

initial κ

2.0

2.6

3.0

4.0

κ
b
y

fi
ti

n
g

(a) (b)

Fig. 5. The numerical results for the case z = 0. (a) The fractal dimension, which
is the slope of the l–L graph in the log–log plot, and (b) the LPP function for the
SLE curves. The fits have been shown for κ = 2. The other fits (which have not
been shown here) are as good as κ = 2.

Now, let us go to the calculations of the mixed model. We should do
the calculations for all κs separately to observe how the statistics depends
on the initial κ. This has been done in Fig. 6 for which the slopes of the
log–log plot are the fractal dimension of the curves. We have found that the
relation between the loop lengths l and the linear size of the trace L is power-
law with non-trivial exponent, which depends on the z value. The initial κ
values are κ = 2 (Fig. 6 (a)), κ = 8

3 (Fig. 6 (b)), κ = 3 (Fig. 6 (c)) and κ = 4

(Fig. 6 (d)), which corresponds to c = −2, c = 0, c = 1
2 and c = 1 conformal

field theories, respectively. This fractal dimension grows with second power
of z for all values of κ, i.e. DF(z) −DF(z = 0) ∼ z2. This has been shown
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in the insets of all graphs in which the proportionality constants have been
shown. The numerical values of DF(z = 0) (b in the graphs) are also well-
known, i.e. Dκ=2

F (z = 0) = 5
4 , D

κ=8/3
F (z = 0) = 4

3 , D
κ=3
F (z = 0) = 11

8

and Dκ=4
F (z = 0) = 3

2 . The above analysis shows that the presence of these
type of random scatterers changes considerably the properties of SLE traces.
The increasing of the fractal dimension shows that the traces become more
compact and twisted, which is reasonable having the localization effects of
the disordered media in mind. Such a classical disorder-induced localization
has also been seen in many other systems, ranging from two-dimensional
electron gas [22] to quantum Hall effect [23].
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Fig. 6. The log–log plot of l–L for the initial diffusivity parameter (a) κ = 2, (b)
κ = 8

3 , (c) κ = 3 and (d) κ = 4. Upper insets: The calculated fractal dimension
DF in terms of z. Lower insets: The calculated κeff ≡ 8(DF − 1).

The scaling behavior of l–L graphs does not imply the conformal sym-
metry and some other tests are needed. As stated above, we have calculated
the left passage probability, which has been shown in Fig. 7. The graphs
have been fitted by means of Eq. (2), from which the effective diffusivity
can be extracted. We see from the graphs that not only DF and κeff de-
crease with z, but for large z values, the fitting of the graphs by Eq. (2)
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becomes ill-defined, since the behavior of the graphs changes considerably
and shows vast deviations from that theoretically predicted. For small z,
however, although the fitting is good and reliable, we see that the fractal
dimension shows a decreasing behavior with z which is in contrast to the
result obtained from the scaling behavior of l–L graphs.

As mentioned in the previous sections, for conformal invariant systems,
one expects that the fractal dimension of the interfaces is related to κ by
DF = 1+κ/8, and increasing in the κ value results to increasing of the fractal
dimension. Therefore, these effects show that the system in non-zero z fails
to be conformally invariant.
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Fig. 7. The LPPθ for the initial diffusivity parameter (a) κ = 2, (b) κ = 8
3 ,

(c) κ = 3 and (d) κ = 4. Left insets: κ obtained by fitting the plots, in terms of z.
Right insets: The corresponding fractal dimension Deff

F ≡ 1 + κ/8.

6. Conclusions

In this paper, we have considered the effect of manipulating of the space
through which the SLE trace grows. We introduced the Henon-percolation
lattice. The Henon map is appropriate for this purpose, since it is a two-
dimensional map involving unstable and stable fixed points, which play the
role of repulsive and attractive points in the lattice, respectively. The points
of the lattice have been randomly chosen to be repulsive or attractive. We
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have presented some theoretical equations which couple the SLE theory with
the Henon dynamics by growing the SLE traces in the background of the
Henon-percolation system. We have controlled this coupling by the z pa-
rameter, which favors the Henon dynamics, i.e. z = 0 is the regular SLE.

The dilute phase of SLE was investigated, i.e. κ = 2, 8
3 , 3 and 4, and

their behavior under increasing the amount of z has been investigated. Two
kinds of SLE tests were presented: the fractal dimension of the traces DF

(which was obtained by box-counting method) and left passage probability
LPP(θ). We obtained that the fractal dimension of the curves grows with
second power of z, i.e. DF(z)−DF(z = 0) ∼ z2. This is in contrast to LPP
analysis which shows a decreasing behavior in terms of z. We explicitly show
that the conformal symmetry breaks down for non-zero z, and the traces are
conformal only for z = 0 for which the relation DF = 1 + κ/8 holds.

In many situations, we have random traces (which are supposed to be
SLE traces in the regular host system) in the background of random de-
fects/scatterers. The above analysis shows that the presence of these random
scatterers (when are modeled by the Henon map) changes considerably their
properties. The example is the increasing of the fractal dimension, meaning
that the traces become more twisted, which is reasonable having in mind
the localization effects of the disordered media. Additionally, the absence
of consistency between DF and LPP shows that the conformal invariance is
lost, i.e. the traces are no longer SLE traces for non-zero zs.
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