
Vol. 50 (2019) Acta Physica Polonica B No 6

SPECTRAL FUNCTION FOR OVEROCCUPIED
GLUODYNAMICS FROM CLASSICAL LATTICE

SIMULATIONS∗

K. Boguslavskia,b, A. Kurkelac,d, T. Lappib,e, J. Peuronf

aInstitut für Theoretische Physik, Technische Universität Wien
1040 Vienna, Austria

bDepartment of Physics, P.O. Box 35, 40014 University of Jyväskylä, Finland
cTheoretical Physics Department, CERN, 1211 Geneva, Switzerland

dFaculty of Science and Technology, University of Stavanger
4036 Stavanger, Norway

eHelsinki Institute of Physics, P.O. Box 64, 00014 University of Helsinki, Finland
fEuropean Centre for Theoretical Studies in Nuclear Physics
and Related Areas (ECT*) and Fondazione Bruno Kessler
Strada delle Tabarelle 286, 38123 Villazzano (TN), Italy

(Received April 2, 2019)

We study the spectral properties of an overoccupied gluonic system
far from equilibrium. Using classical Yang–Mills simulations and linear
response theory, we determine the statistical and spectral functions. We
measure dispersion relations and damping rates of transversally and longi-
tudinally polarized excitations in the gluonic plasma, and also study further
structures in the spectral function.
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1. Introduction

The main purpose of the program of ultrarelativistic heavy-ion colli-
sions is to create and study the properties of deconfined QCD matter in the
laboratory. Our purpose here is to study strongly overoccupied color field
configurations that are relevant for several of the different aspects of the col-
lision process. In the very initial pre-equilibrium stage after the collision, the
dynamics is dominated by gluon saturation. The characteristic aspect of this
regime is the existence of a semihard dominant transverse momentum scale,
the saturation scale Qs � ΛQCD, generated by nonlinear interactions of the
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dense gluonic system. At the saturation scale, the gluon field is nonpertur-
batively strong. This means that the gluon field strengths, or occupation
numbers of gluonic states, are parametrically proportional to the inverse of
the coupling AµAµ ∼ 1/αs. Later in the evolution, it is generally believed
that the plasma reaches a state close to local thermal equilibrium. In such a
thermal system, a part of the degrees of freedom, namely the soft fields with
momenta p . gT are, similarly, nonperturbatively large. These soft fields
are important for many properties of QCD matter. Thus, in both cases,
we are in a situation where we want to understand the real-time behavior
of QCD systems with both a perturbative momentum scale (generically de-
noted here by Q � ΛQCD) and, therefore, weak coupling constant αs � 1,
but also gluon fields (at least for some important momentum modes) in
an overoccupied state. In this regime, the approximation of classical fields
provides a powerful nonperturbative tool.

The standard method for understanding real-time QCD dynamics in
weak coupling is provided by the hard (thermal) loop (HTL) approach. Here,
one develops a perturbation theory based on a separation of two different
momentum scales. The degrees of freedom at the hard scale Q can be
thought of as (classical) particles, and interact with soft (∼ mD) modes
that can be thought of as (classical) fields. In an equilibrium plasma, the
small coupling constant provides such a scale separation, but this approach
can also be generalized to nonequilibrium systems. In addition to analytical
calculations, there are also many numerical implementations (see e.g. [1–3])
of this idea, based on explicitly different descriptions of particle- and field-
like degrees of freedom. Such calculations have been used to understand
e.g. sphaleron transitions in thermal systems and plasma instabilities in
anisotropic ones.

In a heavy-ion collision the system starts from a configuration, at very
early times τ ∼ 1/Qs, where there is only one scale Q ∼ mD ∼ Qs. Equi-
libration is then the process where the two scales develop through various
stages to become parametrically different, mD � T . Following such a sce-
nario, especially at its earliest stages, is problematic with a qualitatively
different description of hard and soft modes. In practical terms, if the soft
modes are described as fields on a lattice with lattice spacing a, the lattice
needs to be fine enough to represent them: mD � 1/a. However, a particle-
like physical picture of the hard modes implies that they are localized at the
scale of the lattice spacing, requiring a � 1/Q, since the de Broglie wave-
length of the hard particles is ∼ 1/Q. In such a description, it is therefore
not possible to have mD ∼ Q.

The approach that we are following here avoids this problem. We treat
all degrees of freedom on the same lattice, subject to the same lattice UV
cutoff 1/a. Thus, we do not need to have a large scale separation. On the
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other hand, classical lattice simulations being relatively inexpensive, one
can fit in a rather large separation between the hard and soft scales, even
while maintaining a controllable continuum limit Q � 1/a. We treat even
the hard modes as classical fields, not particles. In the HTL limit, the
classical treatment of the hard scales should not matter for the hard+soft
interactions, since the only important thing about the hard modes are their
color currents, not whether these currents are made of particles or fields. A
drawback of the classical lattice approach is that the interactions between
hard modes are treated incorrectly (as classical fields instead of particles
as they should), although in the overoccupied regime the error is of higher
order in αs. Thus, our system would, ultimately, thermalize to an unphysical
classical equilibrium. The interactions between the hard modes are, however,
much slower, and often neglected in the particle+field simulations in any
case. We refer the reader to e.g. Refs. [4–6] for a discussion on the validity
of the classical approximation. One can see our calculational setup as an
extension of HTL setup to situations where the scale separation mD/Q can
be varied smoothly up to large values.

This paper reviews the recent results presented in more detail in Ref. [7].
In the following, we shall briefly describe our numerical method of linearized
fluctuations, based on the algorithm developed in Ref. [8] and the observables
that we measure. We then introduce our test case system, the isotropic self-
similar UV cascade of gluons. We will then review some of our numerical
results obtained so far and discuss interesting prospects for future projects.

2. Methods

For the time evolution of classical Yang–Mills fields, we use the stan-
dard Hamiltonian lattice [9, 10] formulation of gauge theory in real time.
Here, instead of the gauge potential Ai and the covariant derivative Di =
∂i + ig[Ai, ·], one works with link matrices connecting lattice sites Ui(x) =
eiagAi(x) and covariant finite differences obtained using the links. The canon-
ical conjugate variable to the gauge potential is the chromoelectric field
Ei = ∂tAi. The Hamiltonian setup is formulated in the temporal gauge
A0 = 0, where one must take care to satisfy also the Gauss’ law constraint
[Di, E

i] = 0.
Our first measurable is the “statistical function”, defined as a symmetric

two-point function of the field operator

F abjk
(
x, x′

)
= 1

2

〈{
Âaj (x) , Âbk

(
x′
)}〉

. (1)

The statistical function measures “thermal” fluctuations in the field, and is
related to the phase-space density of particles in system f(p). In the classical
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approximation, the commutator is suppressed by a power of g (because Ai ∼
1/g ). Thus, here F is just a two-point function of the classical field

F abjk
(
x, x′

)
=
〈
Abj(x)Abk

(
x′
)〉

cl
. (2)

The statistical function at equal time is an often measured quantity in CYM
calculations, but in Ref. [7], we also measure it at unequal time.

In addition to the statistical function, the other in general-independent
correlator in quantum field theory is the “spectral function”

ρabjk
(
x, x′

)
= i
〈[
Âaj (x), Âbk

(
x′
)]〉

. (3)

It is a genuinely “quantum” observable and proportional to ∼ ~ due to the
field operator commutation relations. We can nevertheless measure it in the
CYM simulations by using its relation to the retarded propagator as

GabR,jk
(
t, t′, p

)
= θ(t− t′) ρabjk

(
t, t′, p

)
. (4)

The retarded propagator measures the linear response of the system to an
external perturbation, and we measure it with the algorithm developed in
Ref. [8]. We split the gauge field into a background field and a fluctuation

Âai (x)→ Âai (x) + âai (x) , (5)

where the fluctuation generated by an external infinitesimal current is given
by the retarded propagator〈

âbi(x)
〉

=

∫
d4x′G bc

R,ik

(
x, x′

)
jkc
(
x′
)
. (6)

This leads to our algorithm to calculate the statistical function. We first, at
time t0, perturb the system with a current that exists only for one timestep:
jkc (x) ∼ eik·xδ(t− t0). We then follow the linearized equations of motion for
the fluctuation and its time derivative aai (x) = 〈âai (x)〉, eia(x). Finally, at
a later time t > t0, we measure the correlation of the field aai (t) with the
current jia(t0) and use this to extract the momentum space spectral function
ρ(p, t). A similar procedure with the electric field fluctuation can be used
to obtain time derivatives of the spectral function.

3. Overoccupied cascade

Let us then move on to discuss our test case overoccupied nonequilibrium
system, the isotropic self-similar cascade. This system has been extensively
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studied by many groups (see e.g. [4, 6, 11]), and it has been found that
a kinetic theory formulation can describe the basic properties seen in the
numerical studies. In this system, one starts from an isotropic field configu-
ration where only the modes up to some characteristic hard momentum are
occupied

f(p) ∼ n0
g2
θ(p0 − p) . (7)

In practical calculations, one typically replaces a strict theta function with
a smoother Gaussian momentum distribution, but this detail, or the initial
occupation number n0/g2 ∼ 1/g2 or momentum scale p0 matter little for
the later self-similar time evolution of the system. This is instead fully
determined by the conserved total energy density, which defines the real
characteristic hard scale of the problem as ε ∼ Q4/g2. In what follows,

we specifically define Q = 4

√
10π3/2g2ε/

(√
2(N2

c − 1)
)
, scale dimensionful

quantities with Q to dimensionless ones and, unless otherwise stated, plot
quantities measured at Qt = 1500.

During the time evolution of the system, the energy cascades towards
UV modes in such a way that all the momentum modes up to pmax ∼ t1/7

are occupied. The typical occupation number (e.g. at the hard scale pmax)
decreases with time as

f(pmax) ∼ t−4/7 . (8)

The scaling behavior

f(t, p) = t−4/7fs

(
p/t1/7

)
(9)

becomes evident in the numerical result when we scale the momentum dis-
tribution of gluons by t4/7, and plot it in terms of the scaled momentum
t−1/7p, as shown in Fig. 1 (left).

In the HTL or kinetic theory, one estimates the Debye or plasmon scale
from the (hard) particle distribution as

m2 = 2Nc

∫
d3p

(2π)3
f(p)

p
. (10)

In the scaling regime (9), this gives an estimate

m ∼ t−1/7 (11)

for the time dependence of the soft scale. This scaling is verified numerically
in Fig. 1 (right). This leads us to an important aspect of this self-similar
attractor system, namely that the scale separation pmax/m grows with time.
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Fig. 1. Left: Scaled momentum distribution in terms of the rescaled momentum,
demonstrating the self-similar nature of the cascade. Right: Scaling behavior of
the Debye scale, with the inset showing the unscaled values. The distribution f(p)

is estimated using the equal time electric field correlator.

By looking at different times, one can therefore smoothly turn on or off the
parameter that determines the validity of the HTL approximation. In the
following, we will be mostly working at rather late times where this scale
separation is clear, in order to compare our calculation to HTL in a regime
where it should be a good description of the system.

4. Spectral function and dispersion relations

We start this discussion with the statistical and spectral functions for
transversely polarized quasiparticles. Relevant questions here are whether
they both exhibit the same peak structure, and what are the locations and
widths of the peaks. At small frequencies, one would also expect to see an
additional structure, the “Landau cut”. The spectral function is naturally
normalized to unity (actually ~), whereas the statistical function is propor-
tional to the number of particles in the system. In order to compare the
peak structure in the two correlators, it is convenient to divide the statis-
tical function by its value at ∆t = t′ − t = 0, which is what we will do in
the following plots. Figure 2 shows the spectral function for the transverse
polarization. First of all, we see that there is a very nice agreement between
the two functions, which could be interpreted as a generalized fluctuation–
dissipation theorem. In frequency space, one can see a very nice Lorentzian
shape, and extract the quasiparticle width (plasmon damping rate). One
can even clearly see the Landau cut structure at small frequencies, in rough
agreement with the HTL theory curve that uses only the value ofm extracted
numerically from the data as an input parameter.
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Fig. 2. Left: Spectral and statistical functions in the time domain for transverse
polarization. Center: The same functions in the frequency domain, corresponding
to ωρ(ω). Here, the statistical function has been divided by its equal time value,
which makes the normalization the same at zero time separation ∆t = 0. Right:
The spectral function ρ in the time and frequency domain. With one power of
frequency less, the structures at small ω are now more visible. The dashed black
line is the LO HTL functional form, exhibiting a zero-width peak and a “Landau
cut” region at small ω.

For the longitudinal polarization mode, as shown in Fig. 3, the story is
very similar. There is a good agreement between the statistical and spectral
functions, when the former is normalized to the equal time value. For the
longitudinal polarization state, the measurement is harder, since at high
momenta, the quasiparticle peak gets weaker and merges with the Landau
cut, as could have been expected from HTL.
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function for the longitudinal polarization in the time and frequency domains.
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By extracting the location of the peak as a function of momentum, we can
extract a quasiparticle dispersion relation from our data as shown in Fig. 4.
Overall, within our statistics, it is not possible to differentiate between the
HTL functional form and a relativistic dispersion relation ω2 = m2 + p2.
Figure 4 also shows data for the longitudinal polarization. The difference
between the two polarization states is qualitatively as one would expect
from HTL. Quantitatively, we can characterize the dispersion relation by
two different masses from the small and large momentum limits by defining
the plasmon mass ωpl ≡ ω(p→ 0) and the mass gap at p→∞, denoted by
m∞. Our numerical estimate for the ratio of these scales is

ωpl

m∞
= 0.96 , (12)

where the HTL prediction for this quantity would be
ωpl

m∞
=
√

2/3 ≈ 0.82 , (13)

and the NLO correction has been calculated to be negative [12].
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ω2 − p2/m versus p to better illustrate the difference between a relativistic dis-

persion relation (dashed straight line), the HTL functional form (solid red line)
and the numerical result for the transverse polarization state. The green crosses
are a simulation with Qa = 0.47 and the blue stars with Qa = 0.7.

5. Further observables

Let us now discuss a little more the equal time field correlator, i.e. f(p),
which so far was used as a normalization factor to compare the statistical
and spectral functions. In the small momentum limit, the expectation from
HTL theory would be to see a classical thermal distribution
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f(p) ≈ T∗
ω(p)

. (14)

The effective temperature for the soft fields should be given by

T∗ ≡
1
2

∫
p f(t, p) (f(t, p) + 1)∫

p
f(t,p)√
m2+p2

∼ t−3/7 , (15)

where for classical fields, one neglects the 1 in (f + 1). Our results for
the equal time electric field correlator are shown in Fig. 5 (left). We see
that there is a significant enhancement in the infrared compared to the
expectation. We do not currently have a compelling interpretation for this
observation, but certainly the agreement with expectations from HTL is not
as good as for the spectral function.
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the value at p = 0.

In the HTL theory, the plasmon damping rate is also related to the effec-
tive temperature T∗. Our numerical result for the damping rate, extracted
from fitting the time domain signal with an exponentially decaying func-
tion, is shown in Fig. 5 (right). Our measurements of the time dependence
of γ are consistent with the time scaling from Eq. (15). However, we are
able to extract a result in a rather large range of momenta, whereas from
the HTL theory, we only have points at p = 0 (shown in the figure) and
p =∞ [13] (not shown, but consistent within errors). Also here, the agree-
ment of this T∗-dependent observable with HTL is not as good as for the
spectral function.
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6. Future prospects and conclusions
After this quick review of the first results in Ref. [7], let us briefly discuss

what we see as natural next steps in this setup. Given this powerful formal-
ism for real-time calculations, the natural next step would be to use it for
calculations of transport coefficients in such a nonequilibrium gluon plasma.
One would be interested in e.g. the heavy-quark diffusion coefficient, the
shear viscosity η or the jet quenching parameter q̂. Probably the simplest
of these is the first one. Without going into details (see e.g. [14]), for our
purposes, it is enough to state that this is defined as the infinite-time limit
of the local unequal time electric field correlator

κ ≡
∞∫
0

dt κ(t) , where κ(t) ∝ Tr
〈
Ei(0,x)Ei(t,x)

〉
. (16)

Here, we have omitted the temporal gauge links needed to make this quan-
tity explicitly gauge-invariant, since they become unity in temporal gauge.
The correlator is in principle a straightforward quantity, but surprisingly
tricky to evaluate numerically. This is due to the fact that the integrand
is very strongly oscillatory, and very fine cancellations are needed to obtain
the value of the integral. However, the time dependence of the integrand
itself contains more physical information than just the constant. In fact,
our preliminary studies strongly suggest that the time dependence contains
very strong slowly oscillating modes. These could be a confirmation of the
infrared enhancement seen in the gauge fixed correlator in Fig. 5. The corre-
lator κ(t) is manifestly gauge-invariant, unlike the electric field correlators as
a function of p that are evaluated in Coulomb gauge. Thus, the time depen-
dence could serve as a gauge-invariant confirmation of the IR enhancement.

Another natural step is to move from a 3-dimensional isotropic cascade
towards the initial stage of a relativistic heavy-ion collision at high energy.
Here, the system starts off, at leading order in the QCD coupling, as an
effectively 2-dimensional boost-invariant glasma [15] field. In a genuinely
2-dimensional system, it seems that an HTL-type approximation cannot be
applied. One way to see this is to look at integral (10) that gives the value of
the Debye mass in terms of the distribution of hard particles, e.g. in thermal
equilibrium. In 3 spatial dimensions, the integral is dominated by the hard
modes, and thus the Debye mass is in a sense an “external” parameter for
the soft fields. In 2 spatial dimensions, assuming that the distribution in
the IR is close to thermal f ∼ 1/ω, integral (10) receives a large, logarith-
mic, contribution from soft modes. Thus, the Debye mass is not an external
parameter any more, but must be self-consistently determined from the soft
modes. Therefore, it is not obvious whether a kinetic theory description
exists for the 2-dimensional system, and specifically whether one would ex-
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pect to see a self-similar cascade solution as a function of time. This is a
situation that can perfectly well be studied in our setup of classical fields
and linearized fluctuations. Concentrating at this stage on a nonexpand-
ing 2-dimensional system (which was studied already in [16], but only at
early times and with equal-time correlators), we find clear evidence for a
self-similar cascade solution, whether or not this has a kinetic theory inter-
pretation. Our preliminary numerical result for the distribution function is
shown in Fig. 6.
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In conclusion, we have here argued that several aspects of a heavy-ion col-
lision exhibit overoccupied f(p) ∼ 1/g2 classical gauge field configurations.
This includes the initial glasma fields with the only relevant momentum scale
p ∼ Qs and later, the soft fields p ∼ gT in thermal system. For controlled
understanding of these fields, we have developed a new numerical algorithm
for linearized fluctuations on top of the fully nonlinearly interacting clas-
sical gauge field. As a first test case of this setup, we study an isotropic
self-similar UV cascade solution. At late enough times, there exists a scale
separation between the hard and soft modes. Thus, one can compare the
results to HTL. We have seen that the HTL approximation is rather well-
satisfied for the spectral function, but more uncertain for quantities related
to the effective temperature of the soft modes, denoted as T∗. In particular,
we are able to extract a plasmon decay rate γ(p) as a function of momentum.
In the future, we see many prospects in extending these methods to trans-
port coefficients, with the heavy-quark diffusion coefficient as a first step.
We also want to study anisotropic systems relevant to the pre-equilibrium
matter in heavy-ion collisions where, as a first application, we demonstrate
a self-similar scaling solution in a purely 2-dimensional gauge theory.
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