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The quark—gluon plasma created in heavy-ion collisions is not in local
thermal equilibrium at early times. Despite this, dissipative hydrodynam-
ics describes the evolution of the energy-momentum tensor quite well after
only roughly 0.5-1 fm/c. This can be understood using the concept of a
non-equilibrium dynamical attractor. The attractor is a uniquely identifi-
able solution to the dynamical equations to which all solutions are drawn
as the system evolves. Once solutions collapse onto the non-equilibrium
attractor, they are “pseudo-thermalized” in the sense that they have lost
information about the precise initial conditions used, but are not yet in
exact local thermal equilibrium. Here, I review recent work which demon-
strates that there exists a non-equilibrium attractor in full kinetic theory
models which goes beyond the usual low-order momentum moments con-
sidered in hydrodynamical treatments.
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1. Introduction

At the highest collision energies, the Large Hadron Collider (LHC) col-
lides lead (Pb) nuclei with nucleon—nucleon center-of-mass energy /syn =
5.5 TeV. At these energies, central Pb—Pb collisions create a quark-gluon
plasma (QGP) that has an initial central temperature of Ty ~ 600 MeV
at 790 = 0.25 fm/c after the nuclear pass through [1, 2]. The QGP then
expands and cools, eventually hadronizing into the particles which are de-
tected experimentally. The evolution and hadronization of the QGP created
in such events has been modeled quite successfully using relativistic dissipa-
tive hydrodynamics [3—7]. Observables such as the relative yields of different
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hadrons, identified hadronic spectra, and elliptic flow have been well-repro-
duced by hydrodynamic models with a shear viscosity to entropy density
ratio n/s ~ 0.2.

Since traditional viscous hydrodynamics (vHydro) approaches rely on a
linearization around isotropic thermal equilibrium, the conventional wisdom
was that the phenomenological success of vHydro implied that the QGP
created in heavy-ion collisions was in or close to being in isotropic ther-
mal equilibrium for its entire lifetime. In a challenge to this conventional
wisdom, calculations of thermalization and isotropization of the QGP using
both weak and strong coupling methods found that there were sizable non-
equilibrium corrections at early times and, in particular, a large early-time
pressure anisotropy in the local rest frame, Py, < Pr [8]. Despite these
large pressure anisotropies, it was found that after a certain time, called the
hydrodynamization time Thydro, the evolution obtained from both strongly
and weakly coupled descriptions could be accurately modeled using dissipa-
tive relativistic hydrodynamics [9-13]. These studies found Thyaro ~ 2/7,
which at the highest LHC energies translates into mhydro ~ 0.5 fm/c when
considering the center of the fireball created in a zero impact parameter
collision.

The success of dissipative hydrodynamical evolution in the presence of
large non-equilibrium deviations can be understood in the context of the
hydrodynamical attractor [14]. In 0+1d conformal viscous hydrodynamics,
for example, one can reduce the hydrodynamical equations of motion to a
single ordinary differential equation which, subject to the correct boundary
conditions, provides a universal “attractor” solution. If one solves the hy-
drodynamic equations with different initial conditions and plots the results
versus W = T/Teq, one finds that the solutions with different initial condi-
tions converge to the universal attractor solution on a very short time scale
(in the sense of small w). Beyond second-order viscous hydrodynamics, the
existence of a non-equilibrium attractor has been demonstrated using numer-
ical solutions to Einstein’s equations obtained in the strong coupling limit
of N' = 4 supersymmetric Yang-Mills [10-12], QCD effective kinetic theory
simulations [11, 12, 15|, third-order viscous hydrodynamics [16], anisotropic
hydrodynamics [13], and exact solutions to the Boltzmann equation in re-
laxation time approximation (RTA) subject to both Bjorken and Gubser
flows [12, 13, 17-21].

In these proceedings, I report on work contained in Ref. [20]. Therein,
I demonstrated that, using kinetic theory, the idea of the non-equilibrium
attractor can be extended beyond the low-order moments of the one-particle
distribution function typically considered in hydrodynamic approaches. This
was done by considering the evolution of general moments of the one-particle
distribution function using an exact solution of the conformal 0+1d Boltz-
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mann equation in RTA [22, 23]. This exact solution takes the form of a
one-dimensional integral equation for the effective temperature which can
be solved iteratively. Once the effective temperature is known, one can solve
for all moments of the one-particle distribution function and the distribution
function itself.

2. Exact solution for an arbitrary moment

Herein, I present results of exact solution to the RTA Boltzmann equation
subject to boost-invariant and transversally homogenous Bjorken flow. The
underlying kinetic equation is simple

p-u

Prouf(e,p) = ——

WP =2

where 7eq(7) = 57(7)/T(7) is the relaxation time with 7(7) = n(7)/s(7)
being the shear viscosity to entropy density ratio and 7'(7) being the lo-
cal effective temperature. Equation (2.1) can be cast into simpler form by
writing it in terms of manifestly boost-invariant variables [24, 25|. The re-

sulting simpler equation can easily be shown to have a general solution given
by [22, 23, 206]

(fea = 1) (2.1)

dr’

— D (T’ T/) feCI(Tlv w,pr), (2.2)
Teq (T7)

f(rw,pr) = D(r,70) folw, pr) + /

70

where D is the damping function

dr"”

Teq(7")

T2
D(7a,71) = exp —/

T1

(2.3)

Equation (2.2) can be turned into an infinite tower of equations for mo-
ments of the one-particle distribution function

M= [ AP0 (0 2" (). (24)
with the result being [13]
nm _ F(n + 2m + 2) n+2m-+2 Hnm(OéOTO)
MM (T) = W D(7,10)T5 [H20 () /2] (nt2m+2)/4

)
/ dr’ T n+2m+2 nm
+TO/ -~ D (r,7') T ()M ] (2.5)
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with

H"™(y) =
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Note that certain moments map to familiar hydrodynamics variables, e.g.
n=MY =M and P, = M

One can obtain a closed integral equation for T'(7) by considering the
integral equation obeyed by M2 = ¢ = €eq Which simplifies to

T4(T) = D(r, TO)T(?H,}_E(OO:OO)) + / 27_::(/7_/) D (7', 7") T (7'/) H(j) .

70

This equation can be numerically solved iteratively [22, 23]. Once the
solution for T'(7) is obtained, one can use this to solve for all other mo-
ments M"™"(7) using Eq. (2.5) and the full distribution function itself using
Eq. (2.2).

3. Numerical results

For a given value of 77 and set of initial conditions specified by ag and Tj,
I solve the integral Eq. (2.7) numerically. For this purpose, I wrote a CUDA-
based GPU code which allows one to efficiently solve the integral Eq. (2.7)
efficiently on very large lattices [27]. For all results reported herein, I iterated
the integral equation for temperature (2.7) until the result converged to
sixteen digits at all values of 7.
In Fig. 1, I present the evolution of the scaled moments
— M7
M"™ (1) ="t 3.1
= M) o1
associated with the attractor (black solid line) and a set of representative
solutions for the (dashed/dotted colored lines) with differing levels of initial
momentum-space anisotropy (0.1 < g < 1.5) and fixed initial temperature
To=1GeV at 79 = 0.1 fm/c. Both the attractor and specific solutions
are plotted as a function of the scaled time W = 7/7q = 771/57. For the
solutions with different initial conditions (dashed/dotted colored lines), I
used 2048 points spaced logarithmically between 7 = 0.1 and 100 fm/c. For
the attractor solution, I used 4096 points spaced logarithmically between
7 = 0.001 and 1000 fm/c and tuned the initial anisotropy to o =~ 0.0025
following a method similar to the one outlined in the appendix of Ref. [12].
As can be seen from Fig. 1, all solutions approach the attractor solution
in a finite scaled time. The slowest approach is for the moments with m =0
which appear in the leftmost column of Fig. 1. Considering, for example,
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Fig. 1. (Color online) Scaled moments M """ obtained from the exact attractor so-
lution (solid black line) compared to a set of exact solutions (various colored dotted
and dashed lines) initialized at 7=0.1 fm/c with varying initial pressure anisotropy.
The horizontal axis is W=7/7.q=7T/57. Panels show a grid in n and m.

ﬂgo, the generic solutions visibly merge with the attractor only after w = 6.
For m # 0, however, one sees that all moments computed from individual
solutions visibly merge with the attractor for w 2 2.

In Fig. 2, I show visualizations of the one-particle distribution function
at three different scaled times. I used a typical anisotropic initial condition
from the set shown in Fig. 1. From this figure, we see that the exact solution
for the one-particle distribution function contains two visually identifiable
components. The first is a highly anisotropic piece which becomes increas-
ingly more compressed into the region with p, ~ 0 as a function of scaled
time. This piece comes from the first term in the exact solution Eq. (2.2) and
corresponds to the free streaming contribution. As a function of time, this
contribution becomes more squeezed in the longitudinal direction, however,
eventually, the amplitude of this very narrow ridge decreases exponentially
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Fig.2. Visualization of the one-particle distribution function obtained using a
typical (non-attractor) anisotropic initial condition.

due to the damping function D in the first term in Eq. (2.2). It is this
free-streaming part of the distribution function solution which gives rise to
the slower convergence of moments with m = 0 to their attractors seen in
Fig. 1.

4. Conclusions

In these proceedings, I have summarized the results of an analysis of the
exact attractor for the 0-+1d RTA Boltzmann equation. I studied the higher-
order moments of the one-particle distribution function and the one-particle
distribution function itself. The results demonstrate that the one-particle
distribution exhibits attractor-like behavior in that generic solutions con-
verge to an attractor on a characteristic scaled time scale, which I have
dubbed the “pseudo-thermalization time”, w.. In Ref. [20], it was demon-
strated that, within RTA, moments with m > 0 have pseudo-thermalization
times that are parametrically shorter than the corresponding thermalization
time for 1 < m < 8 and 0 < n < 8. This provides explicit proof that
there is a non-equilibrium attractor that is distinct from the usual late-time
Navier—Stokes evolution of the system.

Since Ref. [20] was published, I have extended the analysis to the case
of number-conserving RTA [28]. Therein, it was demonstrated that a non-
equilibrium attractor also exists, even though the system generically falls
out of chemical equilibrium at late times. Based on this study, it would be
interesting to also look at leading-order scalar field theory, in which case
one has only 2 < 2 collisions and exact number conservation. Previous
works have considered this in the context of aHydro [29] and it was shown
that one could numerically extract the attractor for both number-conserving
RTA and scalar collisional kernels, with the two being qualitatively similar.
One could consider the 2 <> 2 scalar kinetic theory using effective kinetic
theory numerical simulations in order to compare them with the number-
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conserving RTA results obtained herein. It would also be interesting to make
comparisons with the attractor extracted from the effective kinetic theory
framework of Kurkela et al., particularly in the case that (anti-)quarks are
included [11, 15, 30, 31].

M. Strickland was supported by the U.S. Department of Energy, Office
of Science, Office of Nuclear Physics under Award No. DE-SC0013470.
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