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We calculate the production of a photon and two jets at forward rapid-
ity in proton–nucleus collisions within the hybrid dilute-dense framework
in the Color Glass Condensate (CGC) formalism. After obtaining the cross
section for the quark-initiated channel, we consider the correlation limit,
in which the vector sum of the transverse momenta of the three outgo-
ing particles is small with respect to the individual transverse momenta.
In this limit, the cross section simplifies considerably and can be written
in a factorized form, sensitive to various unpolarized and linearly-polarized
transverse-momentum-dependent gluon distribution functions (gluon TMDs).
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1. Introduction

Within the Color Glass Condensate (CGC) framework, the hybrid for-
malism [1] is used to study single inclusive particle production at next-to-
leading order [2–10] and heavy-quark production [11] at forward rapidity. In
this set-up, the wave function of the projectile proton is treated in the spirit
∗ Presented by T. Altinoluk the Cracow Epiphany Conference on Advances in Heavy
Ion Physics, Kraków, Poland, January 8–11 2019.
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of collinear factorization1. Perturbative corrections to this wave function
are provided by the usual QCD splitting processes. On the other hand, the
dense target is treated in the CGC, i.e. it is defined as a distribution of strong
color fields, which during the scattering transfer transverse momentum to
the propagating partonic configuration.

Recently, a lot of effort has been dedicated to the understanding of gluon
TMDs in the CGC. In particular, it was shown in [13] that nonlinear correc-
tions are intimately connected to the process dependence of the gluon TMDs.
Various processes at small x which involve two scales have been studied, such
as dijet, heavy-quark pair or photon–jet production in electron–nucleus or
proton–nucleus collisions [14–20], see [21] for a recent review. The usual
approach is to calculate the cross section in the CGC, after which one takes
the small dipole or correlation limit which corresponds to a leading-power
expansion in the ratio p2

t/Q
2 of the hard scales with Λ2

QCD � p2
t � Q2. On

the one hand, the analysis of the CGC in terms of gluon TMDs allows for a
better understanding of QCD dynamics at high energy. On the other hand,
once a CGC expression is obtained for a gluon TMD in the small-x limit,
its nonlinear evolution in rapidity can be computed with the help of the
JIMWLK [13] or BK [22] equations. In addition, non-perturbative models
such as the McLerran–Venugopalan (MV) [23] or Golec-Biernat–Wüsthoff
(GBW) model [24] can be used to write down analytical expressions.

2. Production cross section

We are interested in the production of a hard photon with transverse
momenta q1 � Qs and two hard jets with transverse momenta q2, q3 � Qs in
forward pA collisions. This process can be studied in two different channels:
(i) quark-initiated channel where the incoming quark emits a photon and a
gluon at O(gegs), and (ii) gluon-initiated channel where the incoming quark
splits into quark–antiquark pair at the order of O(gs) and the final-state
photon is emitted from either the quark or from the antiquark at O(gegs).
Here, for the sake of simplicity, we restrict ourselves to the study of the
quark-initiated channel. However, the set-up and the arguments used for
this channel can be used for the study of the gluon channel (see [25] for the
complete analysis).

The total production cross section for this process in the quark-initiated
channel is written as convolution of the partonic cross section and the quark
distribution function fq(xp, µ2) inside the proton

dσpA→γqg+X

d3q
1

d3q
2

d3q
3

=

∫
dxp fq

(
xp, µ

2
) dσqA→γqg+X

d3q
1

d3q
2

d3q
3

, (1)

1 Multiple collinear scattering effects from the projectile protons have been studied
in [12].
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where xp is the longitudinal momentum fraction carried by the incoming
quark, µ2 is the factorization scale, and the three-momenta q

i
≡ (q+

i , qi) are
the longitudinal and transverse momenta of the produced jets. The partonic
level cross section is formally defined as the expectation value of the number
operator in the outgoing state

(2π)9 dσqA→γqg+X

d3q
1

d3q
2

d3q
3

(2π) δ

(
p+ −

3∑
i=1

q+
i

)

=
1

2Nc

∑
s,α

out

〈
(q)
[
p+, 0

]α
s

∣∣∣O (q
1
, q

2
, q

3

) ∣∣∣(q)
[
p+, 0

]α
s

〉
out

, (2)

where the normalization 1/2Nc comes from averaging over the spin and
color indices of the outgoing state in the amplitude and in the complex
conjugate amplitude. The number operator is built up in terms of cre-
ation/annihilation operators of the final-state particles. In the quark-initi-
ated channel, the final-state particles are a quark, a gluon and a photon.
Therefore, for this channel, the number operator reads

O
(
q

1
, q

2
, q

3

)
= γ†λ

(
q

1

)
γλ

(
q

1

)
a†bi

(
q

2

)
abi

(
q

2

)
b†βt

(
q

3

)
bβt

(
q

3

)
. (3)

In the above expression, γλ(q
1
) is the annihilation operator of a dressed

photon with polarization λ and three-momentum q
1
, abi(q2

) is the one for
a dressed gluon with color b, polarization i, and three-momentum q

2
and,

finally, bβt (q
3
) is the annihilation operator ofthe dressed quark with color β,

spin t, and three-momentum q
3
. The action of these creation and annihi-

lation operators on the dressed states are defined in the standard way. For
example, in the mixed longitudinal momentum and transverse coordinate
space, the action of the gluon operators are

abi
(
q+

2 , z2

) ∣∣∣(g)
[
k+

2 , x2

]c
η

〉
D

= 2π δbdδiη δ
(
k+

2 − q+
2

)
δ(2)(x2 − z2) , (4)

a†bi
(
q+

2 , y2

)
|0〉 =

∣∣∣(g)
[
q+

2 , y2

]b
i

〉
D
. (5)

In order to evaluate the partonic cross section for the quark-initiated channel
defined in Eq. (2), the crucial ingredient is to derive the outgoing state. The
derivation of the outgoing state has been presented in [25, 26]. Here, we
will only present the sketch of this derivation. The first step to compute
the outgoing state is to calculate the dressed-quark state at O(gegs). In full
momentum space, the dressed-quark state with longitudinal momentum p+,
vanishing transverse momenta, color α and spin s is given in terms of the
bare states as
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[
p+, 0

]α
s

〉
D

= Zq
∣∣(q)

[
p+, 0

]α
s

〉
0

+Zqγ ge
∑
s′,λ

∫
dk+

1

2π

d2k1

(2π)2
F

(1)
(qγ)

[
(γ)

[
k+

1 , k1

]λ
, (q)

[
p+ − k+

1 ,−k1

]
ss′

]
×
∣∣(q)

[
p+ − k+

1 ,−k1

]α
s′

; (γ)
[
k+

1 , k1

]
λ

〉
0

+Zqg gs
∑
s′,η

∫
dk+

2

2π

d2k2

(2π)2
tcαβ F

(1)
(qg)

[
(g)
[
k+

2 , k2

]η
, (q)

[
p+ − k+

2 ,−k2

]
ss′

]
×
∣∣∣(q)

[
p+ − k+

2 ,−k2

]β
s′

; (g)
[
k+

2 , k2

]c
η

〉
0

+Zqgγ gsge
∑
s′s′′

∑
λη

∫
dk+

1

2π

d2k1

(2π)2

dk+
2

2π

d2k2

(2π)2
tcαβ

×
{
F

(2)
(qγ−qg)

[
(γ)

[
k+

1 , k1

]λ
, (g)

[
k+

2 , k2

]η
, (q)

[
p+− k+

1 − k+
2 ,−k1− k2

]
ss′′

]
+F

(2)
(qg−qγ)

[
(g)
[
k+

2 , k2

]η
, (γ)

[
k+

1 , k1

]λ
, (q)

[
p+− k+

2 − k+
1 ,−k2− k1

]
ss′′

]}
×
∣∣∣(q)

[
p+ − k+

1 − k+
2 ,−k1 − k2

]β
s′′
, (g)

[
k+

2 , k2

]c
η
, (γ)

[
k+

1 , k1

]λ〉
0
. (6)

Here, Zq, Zqγ , Zqg and Zqgγ are the normalization functions. In the wave
function approach, they provide the virtual contributions to the production
process, and are determined by using the orthogonality conditions of the
states. Since we are focused on the tree-level production of a hard photon
and two hard jets, the explicit expressions for these normalization functions
are not relevant for our purposes, and they can be set to identity.

The functions F (1)
(qγ) and F

(1)
(qg) define the momentum structure of the

quark–photon and quark–gluon splittings. The quark–photon splitting func-
tion reads (see, for example, [26])

F
(1)
(qγ)

[
(γ)[k+

1 , k1]λ, (q)
[
p+ − k+

1 , p− k1

]
ss′

]
=

[
−1√
2ξ1p+

]
φλλ̄ss′(ξ1)

(ξ1p− k1)λ̄

(ξ1p− k1)2
(7)

with
φλλ̄ss′(ξ1) =

[
(2− ξ1)δλλ̄δss′ − iελλ̄σ3

ss′ξ1

]
, (8)

where σ3 is the third Pauli matrix and where we have defined the longitudinal
momentum ratio ξ1 ≡ k+

1 /p
+. The function F (1)

(qg) has the same structure as

F
(1)
(qγ), and its explicit expression can be read off from Eq. (7) by exchanging

(1→ 2).



Gluon TMDs from Forward pA Collisions in the CGC 973

The functions F (2)
(qγ−qg) and F (2)

(qg−qγ) in Eq. (6) define the momentum
structure of successive quark–photon and quark–gluon splittings, and differ
in the sequence of the emissions (see Fig. 1). The explicit expression for
F

(2)
(qγ−qg), in which the photon is emitted before the gluon, reads (see, for

example, [26])

F
(2)
(qγ−qg)

[
(p)
[
k+

1 , k1

]λ
, (g)

[
k+

2 , k2

]η
, (q)

[
p+− k+

1 − k+
2 , p− k1− k2

]
ss′′

]
=
∑
s′

[
−1√
2ξ1p+

φλλ̄ss′(ξ1)

][
−1√
2ξ2p+

φ̃ηη̄s′s′′(ξ1, ξ2)

]
(ξ1p− k1)λ̄

(ξ1p− k1)2

×
[
ξ2(p− k1)− ξ̄1k2

]η̄
ξ2(ξ1p− k1)2 + ξ1(ξ2p− k2)2 − (ξ2k1 − ξ1k2)2

(9)

with
φ̃ηη̄s′s′′(ξ1, ξ2) =

ξ1

ξ̄1

[(
2ξ̄1 − ξ2

)
δηη̄δs′s′′ − iεηη̄σ3

s′s′′ξ2

]
, (10)

where the ratios of longitudinal momenta are defined as

ξ1 ≡ k+
1 /p

+ , ξ2 ≡ k+
2 /p

+ , ξ̄1 ≡ 1− ξ1 , ξ̄2 ≡ 1− ξ2 . (11)

k1,�

k2, ⌘, c

p, s,↵ p � k1 � k2, s
00,�p � k1, s

0,↵

1

k2, ⌘, c

k1,�

p, s,↵ p � k1 � k2, s
00,�p � k2, s

0,�

1

Fig. 1. The dressed-quark state to order O(gegs), with the two possible orderings
of the photon respective gluon emission by the quark.

Equation (6) is the dressed-quark state at O(gegs). Computing the outgoing
state from the dressed-quark state requires three more steps. The first step is
to perform the two-dimensional Fourier transform of the dressed-quark state,
and write it in the mixed longitudinal momentum and the transverse coordi-
nate space. Then, the second step is to take into account the interaction of
the dressed-quark state written in the mixed space. This interaction occurs
in the eikonal approximation and, as a result, the quark and gluon inside
the dressed-quark state undergo a rotation in the color space, which can be
encoded in a Wilson line in the fundamental respective adjoint representa-
tion at the transverse position of the quark or gluon. The Wilson lines are
defined in the standard way in terms of the color fields α− of the target as
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SF,A(x) = P eig
∫

dx+τaα−a (x+,x) , (12)

where τa is the SU(Nc) generator either in the fundamental or the adjoint
representation, as indicated in the subscript ‘F’ or ‘A’. This procedure pro-
vides the outgoing state in terms of the bare components. The final step
is to rewrite the outgoing state in terms of dressed components. After per-
forming these three steps, one gets the relevant part of the final outgoing
state2 as

∣∣(q)
[
p+, 0

]α
s

〉
out

= gsge
∑
s′s′′

∑
λη

∫
d2k+

1

2π

d2k+
2

2π

∫
wvx1x2x3

×
(
δ(2)
[
ω−
(
ξ1x1+ξ̄1v

) ]
δ(2)

[
v−
{(

1− ξ2

ξ̄1

)
x3+

ξ2

ξ̄1
x2

}][
(−i)√
2ξ1p+

φλλ̄ss′(ξ1)

]
×
[

(−i)√
2ξ2p+

φηη̄s′s′′

(
ξ2

ξ̄1

)]
Aη̄(x3 − x2)

{[
tcαβS

βσ
F (x3)ScdA (x2)− SαβF (ω)tdβσ

]
×Aλ̄

(
ξ1, v − x1;

ξ2

ξ̄1
, x3 − x2

)
−
[
SαβF (v)− SαβF (ω)

]
tdβσA

λ̄(v − x1)

}
+δ(2)

[
ω−
(
ξ2x2+ξ̄2v

) ]
δ(2)

[
v−
{(

1− ξ1

ξ̄2

)
x3+

ξ1

ξ̄2
x1

}][
(−i)√
2ξ2p+

φηη̄ss′(ξ2)

]
×
[

(−i)√
2ξ1p+

φλλ̄s′s′′

(
ξ1

ξ̄2

)]
Aλ̄(x3 − x1)

{[
tcαβS

βσ
F (x3)ScdA (x2)− SαβF (ω)tdβσ

]
×Aη̄

(
ξ2, v−x2;

ξ1

ξ̄2
, x3−x1

)
−
[
tcαβS

βσ
F (v)ScdA (x2)−SαβF (ω)tdβσ

]
Aη̄(v−x2)

})
×
∣∣∣(q)

[
p+ − k+

1 − k+
2 , x3

]σ
s′′
, (g)

[
k+

2 , x2

]d
η
, (γ)

[
k+

1 , x1

]λ〉
D
. (13)

Here, Aλ(x−y) is the standard Weizsäcker–Williams field and Aλ(ξ1, v−x1;
ξ2
ξ̄1
, x3 − x2) is the modified Weizsäcker–Williams field for two successive

splittings, which we defined as

Aλ
(
ξ1, v − x1;

ξ2

ξ̄1
, x3 − x2

)
= − 1

2π

ξ1(v − x1)λ

ξ1(v − x1)2 + ξ2
ξ̄1

(
1− ξ2

ξ̄1

)
(x3 − x2)2

.

(14)
Moreover, the first term on the right-hand side of Eq. (13) corresponds to the
case where the photon is emitted before the quark–gluon splitting and the
second term corresponds to photon emission after the quark–gluon splitting.

2 For the production of a dijet and a photon, the only relevant component of the
outgoing state is the dressed quark–photon–gluon one.
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After all said and done, the final expression for the partonic level cross
section can be organized as follows:

(2π)9 dσqA→γgq+X

d3q
1
d3q

2
d3q

3

=
1

2Nc
g2
sg

2
e(2π)δ

(
p+ −

3∑
i=1

q+
i

)
1

2q+
1

1

2q+
2

×〈Ibef−bef + Iaft−aft + Ibef−aft + Iaft−bef〉 . (15)

The explicit expression for each of the contribution in Eq. (15) can be found
in [25]. Here, for the sake of brevity, let us just give the expression of the
before–before contribution which reads

Ibef−bef =

∫
ww′vv′y1z1y2z2y3z3

eiq1 (y1−z1)+iq2 (y2−z2)+iq3 (y3−z3)δ(2)
[
w′ −

(
ξ̄1v
′ + ξ1y1

)]
×δ(2)

[
w −

(
ξ̄1v + ξ1z1

)]
δ(2)

[
v′ −

{(
1− ξ2

ξ̄1

)
y3 +

ξ2

ξ̄1
y2

}]
×δ(2)

[
v−
{(

1− ξ2

ξ̄1

)
z3+

ξ2

ξ̄1
z2

}]
8Mλ̄λ̄′;η̄η̄′

q

(
ξ1,

ξ2

ξ̄1

)
Aη̄(z3−z2)Aη̄

′
(y3−y2)

×
(
Aλ̄
′ (
v′ − y1

)
Aλ̄(v − z1) W

(AA)
bef−bef

+Aλ̄′
(
ξ1, v

′ − y1;
ξ2

ξ̄1
, y3 − y2

)
Aλ̄
(
ξ1, v − z1;

ξ2

ξ̄1
, z3 − z2

)
W

(AA)
bef−bef

−Aλ̄′
(
ξ1, v

′ − y1;
ξ2

ξ̄1
, y3 − y2

)
Aλ̄(v − z1)W

(AA)
bef−bef

−Aλ̄′
(
v′ − y1

)
Aλ̄
(
ξ1, v − z1;

ξ2

ξ̄1
, z3 − z2

)
W

(AA)
bef−bef

)
, (16)

where the function Mλ̄λ̄′;η̄η̄′
q is the product of the splitting amplitudes and

the functions Wbef−bef define the dipole and quadrupole structures of the
before–before contribution accompanied by the standard or the modified
Weizsäcker–Williams fields as indicated by the superscripts. The explicit
expression of these functions can be found in [25].

3. Correlation limit and gluon TMDs

It was shown in [13] that in the so-called correlation limit |q1 + q2| �
|q1|, |q2| (corresponding to nearly back-to-back jets), the dilute-dense CGC
expression for forward dijet production can be factorized into a hard factors
and transverse-momentum-dependent (TMD) gluon distributions. In the
case of production of three final-state particles, this regime corresponds to
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|q1 + q2 + q3| � |q1|, |q2|, |q3|. In this limit, the production cross section can
be simplified by defining the dipole sizes as

rg = z3 − z2 , r′g = y3 − y2 , (17)
rγ = v − z1 , r′γ = v′ − y1 (18)

with corresponding conjugate momenta

(y3 − z3) → P = q1 + q2 + q3 , (19)(
rγ − r′γ

)
→ q1 , (20)(

rg − r′g
)
→ Q = q2 +

ξ2

ξ̄1
q1 . (21)

In this limit, we can utilize a small dipole approximation and expand the
cross section in powers of the dipole sizes. This expansion can be performed
for all the contributions in the quark-initiated channel as well as the all
the contributions in the gluon-initiated channel3. Again, for the sake of
simplicity, here we only present the result for the before–before contribution
in the quark-initiated channel. After all said and done, we get a factorized
expression for this contribution which can be written as

〈Ibef−bef〉xA=Mλ̄,λ̄′;η̄,η̄′
q

(
ξ1,

ξ2

ξ̄1

)
g2
s(2π)3Nc

{[
H(1)
qg

]λ̄,λ̄′;η̄η̄′;ij
bef−bef

P iP j

P 2
F (1)
qg (xA, P )

+
[
H(2)
qg

]λ̄,λ̄′;η̄η̄′;ij
bef−bef

[
1

2
δijF (2)

qg (xA, P )− 1

2

(
δij − 2

P iP j

P 2

)
H(2)
qg (xA, P )

]}
. (22)

Here, 〈· · ·〉xA denote CGC averaging with xA referring to the small longitudi-
nal momentum fraction of the gluons in the target wave function. Moreover,
gluon TMDs are defined as∫
y3z3

eiP (y3−z3)
〈

tr
[(
∂iSz3

) (
∂jS†y3

)]〉
xA

= g2
s(2π)3P

iP j

4P 2
F (1)
qg (xA, P ) , (23)

∫
y3z3

eiP (y3−z3)
〈

tr
[
S†z3
(
∂iSz3

)
S†y3

(
∂jSy3

)]
tr
[
Sz3S

†
y3

]〉
xA

= −g2
s(2π)3Nc

1

4

×
[

1

2
δijF (2)

qg (xA, P )− 1

2

(
δij − 2

P iP j

P 2

)
H(2)
qg (xA, P )

]
. (24)

The gluon TMD defined in Eq. (24) consists of two parts, corresponding
the to unpolarized (F (2)

qg ) and linearly-polarized (H(2)
qg ) distributions inside

3 The expansion of each contribution in both quark and gluon channels can be found
in [25].
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the unpolarized target. For the so-called (fundamental) dipole gluon TMD
defined in Eq. (23), the simpler Wilson line structure implies that H(1)qg =

F (1)
qg . Finally, the hard factors that accompany the TMDs are defined as[
H(1)
qg

]λ̄λ̄′;η̄η̄′;ij
bef−bef

=

(
ξ1Π

η̄′;λ̄′j
[
Q; c−1

0 , q1

]
+

(
1− ξ2

ξ̄1

)
Π λ̄′;η̄′j [q1; c0, Q]

)
×
(
ξ1Π

η̄;λ̄j
[
Q; c−1

0 , q1

]
+

(
1− ξ2

ξ̄1

)
Π λ̄;η̄j [q1; c0, Q]

)
− 1

N2
c

(
ξ1Π

η̄′;λ̄′j
[
Q; c−1

0 , q1

]
− ξ2

ξ̄1
Π λ̄′;η̄′j [q1; c0, Q]

)
×
(
ξ1Π

η̄;λ̄j
[
Q; c−1

0 , q1

]
− ξ2

ξ̄1
Π λ̄;η̄j [q1; c0, Q]

)
(25)

and [
H(2)
qg

]λ̄,λ̄′;η̄η̄′;ij
bef−bef

=
(
Π λ̄′;η̄′j [q1; c0, Q]

)(
Π λ̄;η̄i [q1; c0, Q]

)
, (26)

where we have introduced the compact notation Π i;jk[p; c0, q] given by

Π i;jk[p; c0, q] ≡
(
pi

p2

){
1

q2 + c0p2

[
δjk − 2

qjqk

q2 + c0p2

]}
(27)

and c0 = 1
ξ1
ξ2
ξ̄1

(1− ξ2
ξ̄1

).

4. Conclusions

In conclusion, we have computed the production cross section of a hard
photon and two hard jets in forward pA collisions. The computation is
performed adopting the hybrid formalism which is suitable for forward col-
lisions. Here, we have only considered the quark-initiated channel. In this
channel, the quark coming form the dilute projectile emits a gluon and a
photon which then scatter off the target via eikonal interactions, producing
a photon together with a quark jet and a gluon jet. For this channel, we have
taken into account the two possible cases, depending on whether the photon
is emitted before or after the gluon in the amplitude and in the complex
conjugate amplitude.

In the correlation limit, the transverse momenta of the three final-state
particles are much larger than their total transverse momentum P . This
kinematic regime allowed us to perform a small dipole approximation, and
the cross section can be simplified and cast in a factorized form involving
TMD gluon distributions.
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