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The mechanism of color confinement has been studied in the frame-
work of SU(3) color gauge theory in terms of Abelian fields and monopoles
extracted by adopting magnetic symmetry. The existence of the mecha-
nism of color confinement corresponds to the dual Meissner effect caused
by monopoles. The two length scales, i.e. the penetration depth and co-
herence length are defined to demonstrate the scaling nature of the QCD
vacuum, and their ratio defines the Ginzburg–Landau parameter indicat-
ing the border of type-I and type-II dual superconductor. The existence of
these two length scales describes the intrinsic shape of the confining flux
tube and is a characteristic of the dual superconductor model of confine-
ment in QCD. As a result, the quark confining potential has been com-
puted and the resulting expression of string tension has been constructed
in the infrared sector of SU(3) dual QCD formulation. Moreover, with
the introduction of dynamical quarks, the flux tube breaks and leads to
the creation of quark–anti-quark pairs. Finite temperature quark confining
potential and the associated string tension has also been extracted which
demonstrates a considerable reduction in the vicinity of critical tempera-
ture showing agreement with the recent lattice studies.

DOI:10.5506/APhysPolB.50.1483

1. Introduction

A central issue of elementary particle physics is the description of quark
dynamics. One of the remarkable characteristic of quantum chromodynam-
ics (QCD), the asymptotic freedom, allows to investigate the quark dynam-
ics at small distances by using perturbation theory. On the other hand,
in its infrared sector, the strong coupling leads to some complicated non-
perturbative phenomena such as color confinement. The additional perspec-
tive that has been used to describe the quark dynamics at large distances
∗ Funded by SCOAP3 under Creative Commons License, CC-BY 4.0.
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are some phenomenological potential models [1–5], lattice computation tech-
nique [6] and some non-perturbative solutions of the Schwinger–Dysons
equations [7]. A vital illustration of quark dynamics at large distances are the
flux tube notion appearing between a static quark and anti-quark. The ex-
perimental findings [8–10] in addition to the lattice QCD simulations [11–14]
are in agreement with the flux tube picture with linear confining potentials
[15] and include the breaking of flux tube owing to production of additional
quark–anti-quark pairs. To understand the confinement mechanism, an in-
teresting idea [16–18] was put forward that describes the quark confinement
using the dual version of superconductivity. With such belief, the monopole
degrees of freedom and their condensation in the dual superconductor pic-
ture of the Yang–Mills theory [19–22] play the most dominant role in the
confinement mechanism and is expected to generate an appropriate quark
confining potential. The dynamical evolution of color magnetic monopoles
is not demonstrated by the ‘t Hooft construction, even though there is suf-
ficient lattice evidence [23–30] to illustrate magnetic condensation in SU(3)
QCD vacuum. In the ordinary electric superconductivity, tube-like struc-
tures emerge [31] as a solution to the Ginzburg–Landau equations. Nielsen
and Olesen [32] found similar solutions in the case of the Abelian Higgs
model, where they demonstrate that a vortex solution exists individually
on the type-I or type-II superconductor behavior of the vacuum. The color
flux tube made up of chromoelectric field directed towards the line joining
a quark–anti-quark pair has also been investigated [12] and the study reveal
the characteristics of both superconductor and string models having pen-
etration length and the quantum widening [33, 34]. In this direction, one
of the popular mechanism to work is the Abelian Projection technique pro-
posed by ‘t Hooft [35] that separates the Abelian part and introduces chro-
momagnetic monopoles by fixing a gauge condition, such as the Maximal
Abelian Gauge or Laplacian Abelian Gauge. However, the entire procedure
concentrates around choosing one particular gauge and does not manifest a
gauge-invariant confinement mechanism by breaking of gauge symmetry as
well as color symmetry. The existence of monopoles for the mechanism of
color confinement has also been investigated on the lattice by implementing
Abelian projection technique elucidating a strong support to the dual su-
perconducting picture of color confinement [20, 36–39]. In addition, for the
better understanding of the phenomenon of confinement, several investiga-
tions into QCD suggested that a fluctuating flux-tube is formed in a quark
and an anti-quark [6, 40, 41] having a finite intrinsic thickness. It is, there-
fore, desirable to develop an approach based on the first principles of QCD
that would provide a clear understanding of the physical picture of QCD
vacuum in non-perturbative regime and would also allow to perform some
analytical calculations in low-energy sector of QCD for the study of color
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confinement phenomena. To resolve the discrepancy, a gauge-independent
description of SU(3) dual QCD has been proposed which provides a topo-
logical ground to the confinement by imposing an extra magnetic symmetry
that leads to a decomposition of the Yang–Mills fields in terms of the electric
and magnetic counterparts in a dual symmetric way. The formulation then
describes the dual dynamics between the color isocharges and the topological
charges of the non-Abelian gauge symmetry in a viable manner. The SU(3)
dual QCD model is based on the restricted gauge theory of Cho [42] and
is different from the dual QCD formalism of Baker, Ball and Zachariasen
[7, 43–45], since the said formalism is not developed in terms of magnetic
symmetry, which manifests the topological structure of the symmetry group
in a non-trivial way.

In the present paper, we utilize the magnetic-symmetry-based SU(3)
dual QCD to discuss its confining structure and the associated confinement
potential for the full QCD along with its thermal response. In Section 2,
the SU(3) dual QCD formulation based on magnetic symmetry has been
analyzed and its resulting flux-tube structure has been investigated for the
mechanism of color confinement. In Section 3, the non-perturbative gluon
propagator has been derived from the SU(3) dual QCD Lagrangian in the
dynamically broken phase of magnetic symmetry and used to extract the
static quark–anti-quark potential. The influence of dynamical effects of the
light quarks on the quark confining potential due to vacuum polarization has
been investigated and used to discuss the polarization effect on the quark
confinement potential. The temperature dependence of quark–anti-quark
potential and influence of dynamical quarks on the quark potential at finite
temperature has also been discussed and the numerical results for the quark
confining potential have been summarized in the last section.

2. SU(3) Dual QCD formulation
and quark confinement potential

Based on the non-Abelian color gauge group, the non-trivial topologi-
cal structure plays an essential role in the form of magnetic symmetry to
establish the magnetically condensed vacuum necessary for the color con-
finement in QCD [46–50]. In the present section, the magnetic symmetry
has been applied to SU(3) color gauge group which provides a complete mass
spectrum of QCD and guarantees the dual Meissner effect for color confine-
ment. In this context, the magnetic structure of the SU(3) color gauge group
may be represented in terms of two internal Killing vectors, the first one is
the λ3-like octet represented as m̂ and the other as the symmetric product
m̂
′

=
√

3m̂ ∗ m̂ which is λ8-like. In this framework, the gauge potential for
the SU(3) color gauge theory may be written in the following form:
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W µ = Aµ m̂+A
′
µ m̂

′ − 1

g
(m̂× ∂µ m̂)− 1

g

(
m̂
′ × ∂µ m̂

′
)
, (1)

where Aµ ≡ m̂·W µ and A′µ ≡ m̂
′ ·W µ are the λ3-like and the λ8-like electric

component along m̂ and m̂′ , respectively. For the SU(3) color gauge group,
the magnetic monopoles emerge as the topological charge of the homotopy
group,Π2(G/H)→ Π2(SU(3)/U(1)⊗U

′
(1)) and to illustrate their existence,

let us follow a gauge transformation using the following parametrization:

U = exp

[
−β′

(
−1

2
t3 +

1

2

√
3t8

)]
× e−αtn exp

[
−
(
β − 1

2
β
′
)
t3e
−αt2

]
,

(2)
so that the magnetic vector m̂ may be rotated to a fixed time-independent
direction and may be written as

m̂ =



sinα cos α2 cos
(
β − β′

)
sinα cos α2 sin

(
β − β′

)
1
4 cosα(3 + cosα)

sinα sin α
2 cosβ

sinα sin α
2 sinβ

−1
2 sinα cosα cosβ

′

−1
2 sinα cosα sinβ

′

1
4

√
3 cosα(1− cosα)



. (3)

This leads to the gauge transformed magnetic potential

W µ
U−→g−1

[((
∂µβ −

1

2
∂µβ

′
)

cosα

)
ξ̂3 +

1

2

√
3
(
∂µβ

′
cosα

)
ξ̂8

]
, (4)

where m̂ and m̂′ transforms into the space-time-independent ξ3 and ξ8 com-
ponents with the electric potential Aµ and A′µ in the following form:

Aµ = − 1

2g
sin2 α∂µβ

′
, A

′
µ = 0 . (5)

Then the corresponding field strength takes the following form:

Gµν
U−→ −g−1

[
sinα

(
(∂µα∂νβ − ∂να∂µβ)− 1

2

(
∂µα∂νβ

′ − ∂να∂µβ
′
))

m̂

+
1

2

√
3 sinα

(
∂µα∂νβ

′ − ∂να∂µβ
′
)
m̂
′
]
. (6)
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The Lagrangian for the SU(3) dual gauge theory, in principle, may be ob-
tained by substituting the monopole field φ and φ′ created due to the topo-
logical singularities of m̂ and m̂

′ and its regular dual magnetic potentials
Bd
µ and B′ dµ in the following form:

Ld
SU(3) = −1

4
F 2
µν −

1

4
F
′ 2
µν −

1

4
B2
µν −

1

4
B
′ 2
µν + ψ̄rγ

µ

×
[
i∂µ +

1

2
g (Aµ +Bµ) +

1

2
√

3
g
(
A
′
µ +B

′
µ

)]
ψr

+ψ̄bγ
µ

[
i∂µ +

1

2
g (Aµ +Bµ) +

1

2
√

3
g
(
A
′
µ +B

′
µ

)]
ψb

+ψ̄yγ
µ

[
i∂µ −

1√
3
g
(
A
′
µ +B

′
µ

)]
ψy

+

∣∣∣∣(∂µ + i
4π

g

(
Ad
µ +Bd

µ

))
φ

∣∣∣∣2
+

∣∣∣∣∣
(
∂µ + i

4π
√

(3)

g

(
A
′ d
µ +B

′ d
µ

))
φ
′

∣∣∣∣∣
2

−m0

(
ψ̄rψr + ψ̄bψb + ψ̄yψy

)
− V , (7)

where Fµν , F
′
µν , Bµν , B

′
µν are the electric and magnetic field strengths cor-

responding to the potentials Aµ, A
′
µ, Bd

µ, B
′ d
µ respectively, and the quark

triplet is represented by ψr, ψb, ψy. The effective potential responsible for
the dynamical breaking of the magnetic symmetry with its form reliable in
the phase transition study of the SU(3) dual QCD vacuum is given by

V =
48π2

g4
λ
(
φ∗φ− φ2

0

)2
+

432π2

g4
λ
′
(
φ
′∗φ
′ − φ′ 20

)2
, (8)

where φ0 and φ′0 are the vacuum expectation value of fields φ and φ′ .
A crucial insight into the magnetic condensation of QCD vacuum esti-

mates the generation of four magnetic glueballs, two scalarsmφ, m
′
φ and two

vectors mB, m
′
B, respectively. However, the existence of the phenomenon

of color confinement is incomplete without the incorporation of a residual
symmetry, known as color reflection invariance. In order to establish that
the physical vacuum is made of color singlets, the property of color reflection
invariance is implemented. It tells that the two mass modesmφ andm′φ (mB

and m′B) are the same mode m̄φ (m̄B). The estimation of masses has been
done in [51] and has been presented in Table I. The penetration depth (λd

QCD)
and coherence length (ξd

QCD) are related to the vector and scalar glueball
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TABLE I

The masses of vector and scalar glueball as functions of coupling in SU(3) dual
QCD vacuum.

λ αs m̄φ m̄B λdQCD ξdQCD κdQCD

[GeV] [GeV] [GeV−1] [GeV−1]
1
4 0.25 1.21 1.74 0.57 0.83 0.69
1
2 0.24 1.68 1.63 0.61 0.59 0.99
1 0.23 2.16 1.53 0.65 0.46 1.42
2 0.22 2.89 1.42 0.70 0.34 2.05

masses in the following manner: m̄B = (λd
QCD)−1 and m̄φ = (ξd

QCD)−1. The

ratio of the characteristic length scales given by κd
QCD =

λdQCD

ξdQCD

defines the

Ginzburg–Landau parameter. The dual QCD vacuum behaves as a type-I
superconducting vacuum for regions where κd

QCD < 1, whereas it switches
to a type-II superconducting behavior when κd

QCD > 1. In the magnet-
ically condensed QCD vacuum, the parameter specifying the confinement
mechanism of SU(3) dual QCD vacuum is closely related to the density of
the condensed monopoles (nm(φ)) in terms of the complex scalar field (φ),
nm = |φ|2 = φ2

0. The variation of characteristic length scales with the
density of the condensed monopoles in SU(3) dual QCD vacuum has been
depicted in Fig. 1, left which, in fact, predicts a typical change in QCD vac-
uum phase from type-I to type-II superconducting state. The SU(3) dual
QCD vacuum which confines the color electric flux in the form of tubes or
filaments, in fact, involves a coherent state formed by the condensation of
monopole pairs. Consequently, the SU(3) dual QCD vacuum shows type-II
and type-I superconducting behavior in relatively weak and strong coupling
or density sector, respectively. Such a coherence among monopole pairs
is completely lost at extremely low values of the strong coupling constant,
where the QCD vacuum comes out from magnetically condensed state and
the magnetic symmetry is restored back which pushes the QCD vacuum
into a purely perturbative phase. The drop in condensed monopole density
in the regions of weaker couplings has been shown in Fig. 1, right. It, in
fact, leads to the unrealistically thin flux tubes because it corresponds to the
high-energy sector where the non-perturbative features of dual QCD start
disappearing in a quite significant manner.
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Fig. 1. (Color online) Left: The length scales as a function of monopole density.
Right: Monopole density with coupling in SU(3) dual QCD vaccum.

3. The quark confining potential
in SU(3) dual QCD formalism

For the field theoretical description of the SU(3) dual QCD vacuum, it is
necessary to build a singularity free system containing electric and magnetic
potentials. The monopoles are described in terms of magnetic potential with
a space-like potential, while the isocharges are described in terms of electric
potential with a time-like potential. These asymmetries cause singularities.
Therefore, using the Lagrangian, Eq. (7), and incorporating Zwanziger’s
formalism [52], we formulate a local Lagrangian that contains electric and
magnetic charges without unphysical singularities. Using the Zwanziger for-
malism, the electric and magnetic fields may be written in the following
form:

G = (∂ ∧A)− (n · ∂)−1(n ∧ k)d ,

Gd =
(
∂ ∧Bd

)
+ (n · ∂)−1(n ∧ j)d , (9)

where A = (A3,A8), Bd = (Bd
3 ,B

d
8). The action obtained after Zwanziger

formalism depends on the spinor fields for quarks (ψ), scalar fields for
monopoles (φ), regular time-like electric (Aµ) and magnetic (Bd

µ) potential,
and a fixed space-like four vector nµ, and may be expressed in the following
form:
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Sd
SU(3) =

∫
d4x

(
− 1

2n2
[n · (∂ ∧A3)]ν

[
n ·
(
∂ ∧Bd

3

)d
]
ν

+
1

2n2

[
n ·
(
∂ ∧Bd

3

)]ν [
n · (∂ ∧A3)d

]
ν

− 1

2n2

[
n ·
(
∂ ∧A′8

)]ν [
n ·
(
∂ ∧B′ d8

)d
]
ν

+
1

2n2

[
n ·
(
∂ ∧B′ d8

)]ν [
n ·
(
∂ ∧A′8

)d
]
ν

− 1

2n2
[n · (∂ ∧A3)]2 − 1

2n2

[
n ·
(
∂ ∧Bd

3

)]2

− 1

2n2

[
n ·
(
∂ ∧A′8

)]2
− 1

2n2

[
n ·
(
∂ ∧B′ d8

)]2

+ψ̄ (iγµ∂
µ − gγµAµ

3 · λ3 −m)ψ

+ψ̄
(
iγµ∂

µ − gγµA
′ µ
8 · λ8 −m

)
ψ

+

∣∣∣∣(∂µ + i
4π

g
Bd

3µ

)
φ

∣∣∣∣2 +

∣∣∣∣∣
(
∂µ + i

4π
√

3

g
B
′ d
8µ

)
φ
′

∣∣∣∣∣
2

− V

 .

(10)

The first four terms are the interaction between the electric and magnetic
potentials A3, Bd

3 and A
′
8, B

′ d
8 , respectively. The fifth, sixth, seventh and

eighth term describe the electric and magnetic potentials A3, Bd
3 , A

′
8 and

B
′ d
8 , respectively. The ninth and tenth term represent the quark terms and

the eleventh and twelfth term describe the interaction of the gauge field Bd
3

and B
′ d
8 with the scalar monopole field φ and φ′ , respectively.

Choosing the effective potential given by Eq. (4), the dynamical break-
ing of magnetic symmetry generally leads to the condensation of magnetic
monopoles and impart color confining properties to the SU(3) dual QCD
vacuum and, therefore, the SU(3) dual QCD action may be written in the
following form:

Sd
SU(3) =

∫
d4x

(
− 1

2n2
[n · (∂ ∧A3)]ν

[
n ·
(
∂ ∧Bd

3

)d
]
ν

+
1

2n2

[
n ·
(
∂ ∧Bd

3

)]ν [
n · (∂ ∧A3)d

]
ν

− 1

2n2
[n · (∂ ∧A3)]2 − 1

2n2

[
n ·
(
∂ ∧Bd

3

)]2

− 1

2n2

[
n ·
(
∂ ∧A′8

)]ν [
n ·
(
∂ ∧B′ d8

)d
]
ν
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+
1

2n2

[
n ·
(
∂ ∧B′ d8

)]ν [
n ·
(
∂ ∧A′8

)d
]
ν

− 1

2n2

[
n ·
(
∂ ∧A′8

)]2
− 1

2n2

[
n ·
(
∂ ∧B′ d8

)]2

+ψ̄ (iγµ∂
µ − gγµAµ

3 · λ3 −m)ψ

+ψ̄
(
iγµ∂

µ − gγµA
′ µ
8 · λ8 −m

)
ψ

+
1

2
m2
B

(
Bd

3µ

)2
+

1

2
m
′ 2
B

(
B
′ d
8µ

)2
)
. (11)

Following the quenched approximation in order to remove the quantum
effects of dynamical quarks and eliminating the fields A3, A

′
8, B

d
3 and B

′ d
8 ,

the effective action including the quark current is given in the following form:

Sd
SU(3) =

∫
d4x

[
j3
µD

µν
3 j3

ν + j8
µD

′µν
8 j8

ν

]
, (12)

where Dµν
3 and D

′ µν
8 are the propagators of the diagonal gluons,

Dµν
3 = −1

2

gµν

∂2 +m2
B

− 1

2

n2

(n · ∂)2

(
m2
B

∂2 +m2
B

)(
gµν − nµnν

n2

)
,

D
′ µν
8 = −1

2

gµν

∂2 +m
′ 2
B

− 1

2

n2

(n · ∂)2

(
m
′ 2
B

∂2 +m
′ 2
B

)(
gµν − nµnν

n2

)
,

j3
µ and j8

ν are the quark currents with their corresponding Fourier compo-
nents given in the following form:

j3
µ(k) = Q3gµ02πδ(k0)

(
e−ik·b − e−ik·a

)
,

j8
µ(k) = Q8gµ02πδ(k0)

(
e−ik·b − e−ik·a

)
.

The SU(3) dual QCD action reduces to the following form:

Sd
SU(3) = −Q2

3

∫
dt

∫
d3k

(2π)3

1

2

(
1− eik·r

)(
1− e−ik·r

)
×
[

1

k2 +m2
B

+
m2
B

k2 +m2
B

1

(n · k)2

]
−Q2

8

∫
dt

∫
d3k

(2π)3

1

2

(
1− eik·r

)(
1− e−ik·r

)
×

[
1

k2 +m
′ 2
B

+
m
′ 2
B

k2 +m
′ 2
B

1

(n · k)2

]
. (13)
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The quark confining potential obtained from Eq. (13) is divided into the
following two parts:

U(r) = UYukawa(r) + ULinear(r) ,

where, UYukawa(r) gives the Yukawa-type potential

UYukawa(r) = −Q2
3

∫
d3k

(2π)3

1

2

(
1− eik·r

)(
1− e−ik·r

) 1

k2 +m2
B

−Q2
8

∫
d3k

(2π)3

1

2

(
1− eik·r

)(
1− e−ik·r

) 1

k2 +m
′ 2
B

,

UYukawa(r) = − 1

4πr

[
Q2

3e
−mBr +Q2

8e
−m′Br

]
. (14)

The second term, ULinear(r), is expressed in the following form:

ULinear = −Q2
3

∫
d3k

(2π)3

1

2

(
1− eik·r

)(
1− e−ik·r

) m2
B

k2 +m2
B

1

(n · k)2

−Q2
8

∫
d3k

(2π)3

1

2

(
1− eik·r

)(
1− e−ik·r

) m
′ 2
B

k2 +m
′ 2
B

1

(n · k)2
, (15)

ULinear =
Q2

3m
2
B

8π2

∞∫
−∞

dkr

k2
r

1

2

(
1− eik·r

)(
1− e−ik·r

) ∞∫
0

dk2
T

1

k2
r + k2

T +m2
B

+
Q2

8m
′ 2
B

8π2

∞∫
−∞

dkr

k2
r

1

2

(
1− eik·r

)(
1− e−ik·r

) ∞∫
0

dk2
T

1

k2
r + k2

T +m
′ 2
B

, (16)

ULinear =
Q2

3m
2
B

8π2

∞∫
−∞

dkr

k2
r

1

2

(
1− eik·r

)(
1− e−ik·r

)
ln

(
Λ2 + k2

B +m2
B

k2
r +m2

B

)

+
Q2

8m
′ 2
B

8π2

∞∫
−∞

dkr

k2
r

1

2

(
1− eik·r

)(
1− e−ik·r

)
ln

(
Λ
′ 2 + k2

B +m
′ 2
B

k2
r +m

′ 2
B

)

=
Q2

3m
2
B

8π
r ln

(
m2
B + Λ2

m2
B

)
+
Q2

8m
′ 2
B

8π
r ln

(
m
′ 2
B + Λ

′ 2

m
′ 2
B

)
, (17)

where the cutoff Λ and Λ
′ correspond to the scalar masses mφ and m

′
φ

associated with the minimal thickness of the vortex and implementing the
property of color reflection invariance, the expression for the quark confining
potential in SU(3) dual QCD vacuum reduces to the following form:

USU(3)(r) = −Q
2

4π

e−m̄Br

r
+
Q2m̄2

B

8π
r ln

(
1 +

(
κd

QCD

)2
)
. (18)
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The resulting expression is characterized by a linearly increasing potential
at large separations with the proportionality constant given by the string
tension (kC) as

kC =
Q2m̄2

B

8π
ln

(
1 +

(
κd

QCD

)2
)
. (19)

The variation of the quark confining potential given by Eq. (18) has been
shown in Fig. 2 for αs = 0.25 and αs = 0.24 coupling. The graphical
representation clearly shows a short-range Coulomb behavior and a long-
range linear rise illuminating the most important features of QCD dynamics,
the asymptotic freedom and confinement. The variation is in agreement with
the phenomenological Cornell potential [53].
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Fig. 2. (Color online) The quark confining potential for αs = 0.25 and αs = 0.24

coupling in SU(3) dual QCD vacuum. The dashed curve denotes the Cornell po-
tential.

Furthermore, extending the role of dynamical quarks on quark confine-
ment, the action and the associated gluon propagator for SU(3) dual QCD
vacuum has been modified by introducing the infrared cutoff (a) [54] ex-
pressed in the following form:

Sd
SU(3) =∫
d4x

[
j3
µ

(
−1

2

gµν

∂2+m2
B

− 1

2

n2

(n · ∂)2+a2

(
m2
B

∂2+m2
B

)(
gµν − nµnν

n2

))
j3
ν

+j8
µ

(
−1

2

gµν

∂2 +m
′ 2
B

− 1

2

n2

(n · ∂)2 + a2

(
m
′ 2
B

∂2 +m
′ 2
B

)(
gµν − nµnν

n2

))
j8
ν

]
,

and

Dµν
3 = −1

2

gµν

∂2 +m2
B

− 1

2

n2

(n · ∂)2 + a2

(
m2
B

∂2 +m2
B

)(
gµν − nµnν

n2

)
, (20)
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D
′ µν
8 = −1

2

gµν

∂2 +m
′ 2
B

− 1

2

n2

(n · ∂)2 + a2

(
m
′ 2
B

∂2 +m
′ 2
B

)(
gµν − nµnν

n2

)
. (21)

The modified quark confining potential with dynamical quarks under the
property of color reflection invariance in the SU(3) dual QCD vacuum is
obtained in the following form:

USC
SU(3)(r) = −Q

2

4π

e−m̄Br

r
+
Q2m̄2

B

8π

1− e−cm̄Br

cm̄B
ln

1 +

(
κd

QCD

)2

1− c2

 , (22)

where c is a dimensionless parameter given by c = a/m̄B. The resulting
plots for the above potential with different values of c are depicted in Fig. 3
for αs = 0.25 and αs = 0.24 coupling, respectively.
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Fig. 3. (Color online) The quark confining potential with the influence of dynamical
quarks with different values of c for αs = 0.25 and αs = 0.24 coupling in SU(3)
dual QCD vacuum.

The short-range Yukawa part is not modified by the color screening effect
and the result obtained for c = 0 corresponds to the quark confining potential
given by Eq. (18). The influence of light dynamical quarks creates vacuum
polarization and the linear part of the quark confining potential appears to
be screened and such an effect gets dominant as c gets larger.

It is clear that, for r(cm̄B) � 1, the confinement potential shows its
linear behavior given by

USC
c =

Q2

8π
m̄2
B ln

1 +

(
kd

QCD

)2

1− c2

 r . (23)
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On the other hand, for r(cm̄B) � 1, the confinement potential gets satu-
rated as

USC
c =

Q2

8π

m̄B

c
ln

1 +

(
kd

QCD

)2

1− c2

 , (24)

which indicates the dominance of screening at large distances. The SU(3)
dual QCD based on the magnetic symmetry has its own merits to explain
the typical properties of QCD in non-perturbative sector. However, such
non-perturbative features are expected to get largely modified in the high-
temperature region and have important bearings on the QGP/phase struc-
ture of QCD. Let us, therefore, analyze the thermodynamics of SU(3) dual
QCD mainly to study the change in the properties of the QCD vacuum with
temperature especially in terms of the QCD monopole condensation and de-
confinement phase transition. Using the approach discussed above, we have
extended our study to the thermalization and modify the SU(3) dual QCD
quark confining potential in the following way:

USU(3)(r, T ) = −Q
2

4π

exp
(
−m̄(T )

B r
)

r
+

1

2

(
m̄

(T )
B

)2

1− exp
(
−cm̄(0)

B r
)

cm̄
(0)
B



× ln


(
m̄

(0)
B

)2
(

1 +
(
κd

QCD

)2
)
−
(

4παs+λ
λ

)
T 2
[
πα−1

s + 3
2λα

−2
s

]
(
m̄

(0)
B

)2
− πα−1

s

(
4παs+λ

λ

)
T 2


 ,

(25)

which shows a finite thermal contribution to the large scale linear confining
part of the potential and has its important implications on deconfinement
phase transition in QCD. In an identical way, the same analysis may be ex-
tended to the case involving the dynamical quarks along with the mean field
approximation, and we get the associated confining potential in presence of
dynamical quarks as

USC
SU(3)(r, T ) = −Q

2

4π

exp
(
−m̄(T )

B r
)

r
+

1

2

(
m̄

(T )
B

)2

1− exp
(
−cm̄(0)

B r
)

cm̄
(0)
B



× ln


(
m̄

(0)
B

)2
(

1 +
(
κd

QCD

)2
− c2

)
−
(

4παs+λ
λ

)
T 2
[
πα−1

s + 3
2λα

−2
s

]
(
m̄

(0)
B

)2
(1− c2)− πα−1

s

(
4παs+λ

λ

)
T 2


 .
(26)
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In view of the known thermal evolution of the glueballs masses in high-
temperature domain, it is imperative to study the change in the properties
of the QCD vacuum at high temperatures especially in the light of QCD-
monopole condensation. This may further be used to discuss its observa-
tional consequences, as string breaking at high temperatures is extremely
important from the point of view of the heavy-ion collision experiments and
demonstrates a considerable reduction in confinement potential and the as-
sociated string tension in the vicinity of critical temperature (Tc). The varia-

Fig. 4. (Color online) The temperature-dependent quark potential including color
screening effects for several values of c with αs = 0.25, αs = 0.24 and αs = 0.23

coupling in SU(3) dual QCD vacuum.
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tion of the temperature-dependent quark potential including color screening
effects for several values of c with αs = 0.25, αs = 0.24 and αs = 0.23 cou-
pling in SU(3) dual QCD vacuum has been depicted in Fig. 4 which is in
agreement with the recent lattice studies [55, 56]. It further indicates the
flux tube breaking around Tc and generation of quark-pairs which, in turn,
leads to significant flux screening in high temperature domain.

4. Results and conclusions

The present paper mainly explains the phenomenon of quark confinement
within the framework of the SU(3) non-Abelian color gauge theory in terms
of the dual Meissner effect due to magnetic monopoles. The Abelian gauge
fields have been extracted by inducing a magnetic symmetry and thereby
describe the dual dynamics of the non-Abelian monopoles. In the normal
phase the magnetic symmetry is preserved, whereas in the confined phase,
the magnetic symmetry is dynamically broken and ensures the dual Meissner
effects due to magnetic condensation that confines colored flux in the QCD
vacuum. Using the SU(3) dual QCD Lagrangian along with the Zwanziger
formalism, the associated SU(3) non-perturbative dual gluon propagator has
been evaluated and used to derive the quark confining potential. In the pres-
ence of light dynamical quarks, the SU(3) non-perturbative propagator gets
modified by introducing an infrared momentum cutoff parameter a, and the
quark confining potential is screened in the infrared region due to the quark–
anti-quark pairs creation. The confinement of quark has been shown to be
consistent with the flux-tube picture and illustrates the importance of linear
confining potential. The quark confining potential in the SU(3) dual QCD
vacuum has been obtained for different values of strong coupling and found
to be consistent with the phenomenological Cornell potential V (r) = α/r+br
[53]. The form of the confining potential for a fixed quark and anti-quark
separated by a distance r has also been calculated using lattice gauge the-
ory [57, 58]. At small distances, the origin of the QCD asymptotic freedom
has been revealed in the behavior of quark confining potential. The flux
tube starts from the quark and ends to the anti-quark and may be thought
of as superposition of several flux tubes. Moreover, there are two length
scales that describe the intrinsic shape and characteristics of the confining
flux tube. One is the scale that is related to the curvature of the flux tube
and sets the exponential decay away from the centre of the flux tube. It
measures the coherence of the magnetic monopole condensate and is called
the coherence length (ξd

QCD) of the SU(3) dual QCD vacuum. The other
scale describes the near-Gaussian behavior close to the centre of the flux
tube and is known as the penetration depth (λd

QCD) of the SU(3) dual QCD
vacuum. An attractive Yukawa-like potential [59] may lead to fluctuating
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flux tubes having some intrinsic thickness. The SU(3) dual QCD vacuum be-
haves like an effective dual superconductor which belongs to the borderline
between a type-I and type-II superconductor with κd

QCD ∼ 1. The existence
of the color flux tube provides an explanation for the linearly rising poten-
tial for two opposite static color sources. The slope of the potential i.e. the
string tension defined as the energy density per unit length of the flux tube
approaches a constant value as the distance between the quark and the anti-
quark increases. With the introduction to dynamical quarks, the flux tube
breaks due to the creation of quark and anti-quark pair. As a consequence,
the study of the flux tube imposed itself as a tool to investigate the origin
of the confining potential for QCD. A finite temperature confining potential
has also been extracted from the framework of SU(3) dual QCD formalism.
A considerable reduction in confinement potential and the associated string
tension in the vicinity of critical temperature has been observed and is in
agreement with the recent lattice studies.

Garima Punetha is thankful to the University Grant Commission (UGC),
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